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Abstract 

Higher-order accurate finite volume schemes are developed for Helmholtz equations in two dimensions. 

Through minimizations of local equation error expansions for the flux integral formulation of the equation, 

we determine quadrature weights for the discretization of the equation. Collocations of local expansions 

of the solution and the source terms are utilized to formulate weighted quadratures of all local compact 

fluxes to describe the equation error expansion within the computational domain. In using the source term 

distribution to account for fluxes along all compact directions about each grid point as the centroid of a 

local control volume, the right minimizing quadrature weights are determined and optimized for stability 

and uniform higher-order convergence. As a result, the resulting local residuals form more complete 

descriptions of the wave number k and the complexities of the associated pollution effects. The leading 

terms of the residual errors are optimized for pollution effects reductions to ensure stability and robust 

convergence of the resulting schemes. Numerical results and analysis of the schemes demonstrate the 

effectiveness of the methodology. 

 

Introduction 

Numerical methods for simulating the Helmholtz equations have continued to receive significant attention 

as reported in the literature [7,28] addressing the quality of the numerical solutions due to pollution effects 

associated high wave numbers. As clearly described [28], there have been a lot of published work utilizing 

the finite element method [1,7], the finite difference method [30], the boundary element method [15] as 

well as the spectral element method [17] addressing the problem of the pollution effects of the numerical 

solution of the Helmholtz equation. The compact finite difference method has also been utilized for the 

Helmholtz equation [5] as well as for general elliptic equations [20,24,26] since they achieve high-order 

accuracies without significant increase in the size of the resulting system matrices. 

   The use Taylor series expansions to develop numerical schemes is not new and in [25], the traditional 

fourth order scheme for the Poisson equation on the compact nine-point stencil was derived.  
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The technique has been extended to develop higher-order compact schemes [12] and for other application 

problems [8,13,30]. Basically, the univariate series expansion is utilized to derive the finite difference 

approximations of the individual terms of the differential equation and then coupled to obtain the numerical 

schemes for multi dimensions. Associated truncation errors are formulated to assess the accuracy of the 

schemes. 

   In [11], local multivariate expansions are utilized to develop higher-order discretizations for the Poisson 

equations in 3D. First, local expansions for the solution and the source terms are utilized to formulate the 

equation error for discretizing the equation using weight parameters for the grid functions in characterizing 

the derivatives in the equation in an undetermined fashion. By determining the parameters to annihilate the 

leading coefficients of the error, the parameter-based fourth order compact schemes are derived. In [10], 

the approach was extended to develop a space-time finite volume differencing framework for effective 

higher-order accurate discretizations of parabolic equations. In [11], the traditional fourth order compact 

scheme [25] is recovered as a parameterized version of the general parameter-based discretization of the 

Poisson equation. Numerical experiments show that other parameter-valued schemes are much more stable 

and robust than traditional fourth order compact scheme. In [10], several higher-order discretizations are 

constructed for the parabolic equation including a new scheme on the Crank-Nicholson stencil which is 

fourth order accurate along a parabolic space-time curve. In these cases, the resulting local residual errors 

are utilized to optimize the resulting schemes to achieve uniform computational convergence rates as 

reported. 

   In this paper we present higher-order finite volume discretizations of the Helmholtz equations in two 

dimensions with a framework for effective reductions in the pollution effects associated with the numerical 

simulations of the equations. The schemes are designed based on using a multivariate series expansions to 

approximate local manifolds of the solution to ensure a more accurate charaterization of local fluxes. 

Generalized weighted quadratures of the local solution expansions are utilized to formulate local equation 

error expansions based on flux integral formulations of the equation in order to capture all local compact 

fluxes and preserve operator properties of the equation. The weighted quadrature descriptions express the 

approximation of the divergence of flow about each grid point on the computational domain and offers the 

right framework to allow for effective higher accuracies and ensure a more uniform higher-order 

convergence. Considering flux divergence at each grid point, the interconnections to neighboring points 

may be expanded to improve local flux modeling within the computational domain. Therefore, as more 

neighboring grid points are included in this framework more robust higher accuracies are achieved. 

   The local equation residual from the flux differencing within the balanced formulation of the equation 

includes all directions of grid points instead of just coordinate directions as in traditional finite difference 

schemes [12,22,25]. This formulation exhaustively captures the sum of the approximation errors as the 

local equation error residual. The formal error is then minimized by eliminating much of the terms coupled 

with the wave numbers in the error to improve consistency, stability, and increase the order of the resulting 

schemes as much as possible. The extent and effectiveness of the resolution of the couplings of the wave 

number depend on the number of grid points utilized locally. Numerical results and analysis of the schemes 

demonstrate the effectiveness of the methodology on stability and accuracy for higher wave numbers. 
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   Consider the elliptic boundary value problem 

 

where Ω is an open regular bounded domain in ℝ2with ν as the outward normal to the smooth boundary Γ 

and assume that μ, f, c, α, g are sufficiently smooth. 

   To obtain higher computational efficiencies and performances desired of higher-order methods, a 

complete characterization of the local equation error within the computational domain must be formulated 

using the balanced flux integral formulation the equation. We therefore base our approach and methodology 

on multivariate Taylor series expansion to approximate the solution locally in order to more accurately 

represent and account for all local compact fluxes. To conserve the properties of the equation and be 

applicable to a range of applications, we use the finite volume idea [20] of conservative integral 

representation of the equation. However, we adopt grid-point centered control volumes in this formulation 

to reflect the series expansion of the local manifold containing the solution. Adopting a uniform distribution 

of grid points on the control volume ensures that symmetric system matrices are achieved for the resulting 

schemes. 

   The contributions of this paper include: 

• A systematic framework based on the finite volume methodology is described for a general elliptic 

equation which allows for using local fluxes in discretizing the more balanced integral formulation 

of the equation. Adaptive ways to utilize more local as well as nonlocal fluxes are supported and all 

fluxes are accounted for by the framework to ensure conservation within the computational domain. 

• The residual errors for the resulting schemes are more completely and accurately determined through 

optimizations of the equation error expansion to ensure uniform higher-order convergence rates. 

• Effective ways to optimize sensitivities of resulting numerical models to coefficients of the 

differential equation. 

• The design supports the use of other vertex-centered control volumes [26] to develop efficient higher-

order accurate methods. 

   

   The paper is organized as follows: In Section 2 we present the framework of the method by describing 

the discretization for a general elliptic equation in flux divergence form locally in 2. In Section 3, we apply 

the method to develop new efficient higher-order schemes for the Helmholtz equations in two dimensions. 

We present the resulting fourth order schemes in Section 4 and illustrate the pollution effects for the fourth 

order schemes due to high values of the wave number k. We further illustrate the effectiveness of the new 

schemes in reducing the indefiniteness associated with Helmholtz equation in the fourth order schemes and 

consistency improvements in Section 4.1. Then the extension to the sixth order schemes are described in 

Section 4.2 and numerical results demonstrating the accuracies of the methods are illustrated in Section 5. 

Conclusions are presented in Section 7. 
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The finite Volume Discretization Framework 

We describe the finite volume differencing discretization method for the elliptic boundary value problem 

 

where Ω is a bounded domain in ℝ2 with a smooth boundary Γ. We assume that κ ∈ L∞(Ω) and is positive 

and the source q ∈ L2(Ω). 

    To develop a higher-order accurate discretization for (2.1) with robust computational accuracy, the 

discretization framework must effectively account for all local compact fluxes to describe the diffusion 

effectively within the computational domain. That is, the framework must be conservative of all local fluxes 

[6] required for consistent and robust higher-order accuracies. We therefore formulate the equation (2.1) 

over local control volumes which can provide the needed support for local fluxes to neighboring grid points 

rather than independently in univariate Cartesian coordinate directions [21] as in traditional finite 

difference formulations. 

     We first write the integral formulation of the equation (2.1) as 

 

where dv = dxdy in ℝ2. By the divergence theorem, equation (2.3) is rewritten into the flux integral 

balanced form as 

 

where ν is the unit outward normal to the boundary S of the domain Ω. 

    Now, consider the domain Ω partitioned into control volumes where each control volume is identified 

by its centroid mesh point and a distribution of neighboring mesh points as in Figure 1. A uniform 

distribution of grid points is utilized for this work but the approach is applicable for a non-uniform 

distribution as well. A combination of uniform distribution for regular grid points and non-uniform 

distribution for irregular grid-points may be adopted for handling discretizations on non-rectangular 

domains [8]. The grid-point clouds for neighboring control volumes overlap [27] to create interlocking 

configurations which help to capture and track local fluxes effectively on the computational domain 

necessary for higher level of conservation and robust higher-order rates of convergence. 

    We thus describe (2.4) about the centroid of each control volume Qh  by 

   

where νh is the unit outward normal vector to Sh which is the boundary of Qh. The equation (2.5) represents 

the conservation of u about the centroid of the control volume such that variations in the source distributions 
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within the control volume are compensated for by the local diffusive fluxes through the boundary Sh [9]. 

Thus, the distribution of u within the control volume Qh is completely determined by the sum of all diffusive 

radial fluxes about the centroid and the corresponding source distribution. Hence, the associated equation 

error, E(u), about the centroid is given by 

 

where Qh = [xm − h,xm + h] × [yn − h,yn + h] is a typical control volume with centroid X0(xm,yn), as illustrated 

by Figure 1. The control volume Qh illustrated with centroid X0 and a compact cloud of quadrature points 

X1(xm +h,yn), X2(xm +h,yn+h), X3(xm,yn+h), X4(xm−h,yn+h), X5(xm−h,yn), X6(xm−h,yn−h), X7(xm,yn−h), and 

X8(xm+h,yn = h) overlaps with control volumes centered on all these compact quadrature points. 

 

   By using a finite number of quadrature points to approximate the local equation error, the discrete 

version of (2.6) is therefore nonzero. In fact, we approximate local diffusive fluxes about the centroid of 

the control volume by a generalized weighted quadrature of the radial fluxes to the neighboring 

quadrature points by

 

where ni is number of quadrature points, wi is the collocation weight for the local directional flux, ∇u · νhi 

= (ui − u0) along the radial direction νhi toward location of ui. The number of quadrature points forming the 

desired local distribution is part of the available degrees of freedom, which may be increased to improve 

local accuracy by incorporating more local and nonlocal fluxes [3]. 

   Based on the adopted set of neighboring quadrature points, the quadrature formulation of (2.4) about 

the centroid of the control volume becomes 
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where κ(u0) is an averaging value of κ(u) about the centroid. Clearly, the framework as described in (2.8) 

allows for both regular and non-regular distribution of quadrature points locally about each centroid and 

adaptively. 

   For a more complete modeling of the local equation error (2.12) in all radial directions, we adopt a local 

multivariate Taylor series expansion for u about each centroid (x0,y0) by 

 

 

where φ is sufficiently smooth and locally defined everywhere such that 

 

Consequently, we define the local source term by 

  (2.10) 

where Δκ is the local differential operator description of (2.1) with unique characteristics of the equation 

[16] such that 

 

   In this way, any grid functions of φ and f on the control volume may be utilized to describe the 

approximations the integral fluxes in (2.4) in the form of (2.8). Thus, the grid point spacings may not need 

necessarily to be uniform and can be adaptively determined locally. As a result, any desired quadrature 

points about the centroid may be included in the approximation of the flux integrals to discretize (2.4). 

   To enable effective higher-order accuracies, the Cauchy-Kovalevskaya procedure [14] is applied to 

replace higher order derivatives of φ in the expansions (2.9) and (2.10) by lower order derivatives of the 

local source term f. Thus, coefficients such φxxxy, φxyyy, φxxxx, etc in (2.9) and (2.11) are replaced by fx, fy, fyy, 

fxx, etc in order to more accurately represent the physics of the problem in the local expansions. As a result, 

the source term derivatives are introduced into (2.9) through higher-order derivatives of the equation (2.11) 

given as 

. 

   The local equation error expansion EQh is described using the weighted quadrature approximations of 

the local fluxes by   
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such that the differential and integral operator properties of the equations are preserved about each centroid. 

This error expansion measures the sum of the discrepancies of all possible flux formulation of (2.1) on the 

control volume. Thus, the formulation (2.4) offers a more complete accounting of local fluxes than 

traditional finite difference approximations which is a parameterized version of this framework. 

   To obtain the specifics the discretization for (2.1), the discrete minimax approach is utilized to determine 

the quadrature weights to annihilate the leading terms of the error expansion hierarchically. That is, the 

weights Wi, wi, and vi are determined to annihilate the leading terms of the error expansion of (2.5) and to 

further regulate the growth of the residual error. One advantage here is that for various innovative ways 

[18,29] to incorporate local micro scale properties into the numerical model, our comprehensive approach 

is naturally efficient in determining the right sampling and collocations of the source required for effective 

and robust higher-order accuracy. 

 

Discretization of Helmholtz Equations in 2D 

In this section, we demonstrate the advantages of the finite volume method described in 

Section 2 in developing consistent higher-order accurate schemes for the Helmholtz equation 

 −Δu − k2 u = q in Ω, (3.1) 

where q is a given source function with compact support, Ω ⊂ 2 is a bounded domain, k = ω/c is the wave 

number with ω and c as the circular frequency and speed of light respectively. 

    Many application problems in science including acoustic wave scattering from submarines, noise 

reduction in silencers and mufflers, earthquake wave propagation and others [17] are governed by the 

Helmholtz equation. The quality of the numerical solutions of the Helmholtz equation depends significantly 

on the size of the wavenumber k [4,17,19,31]. Our goal in developing higher-order accurate schemes for 

(3.1) is to demonstrate the pollution effect [31] in the local equation error expansion as well as the 

effectiveness of our approach in reducing the pollution effects to improve the qualities of the numerical 

solutions. 

    Consider the local approximation φ of u about the centroid of the control volume Qh in 

two dimensions such that    

−Δφ − k2 φ = f, (3.2) 

where k is the wave number and  is a local source term with local compact support 

defined according to (2.9) and (2.10) such that 
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We describe the approximation of balanced flux integral form of the Helmholtz equation 

(3.1) about the centroid of the control volume Qh in two dimensions by 

  (3.3) 

and the local equation error expansion EQh by 

 

where 

 . (3.5) 

As discussed above, the source function approximations fi on the control volume are defined specifically 

for the Helmholtz equation (3.2) by 

 ) (3.6) 

such that 

 

 

which is consistent at the centroid of the control volume. 

    By substituting (2.9) and (3.6) into (3.4), the leading terms of the local equation error expansion are 

sorted to display the leading coefficients as functions of the weight parameters. The weight parameters are 

then determined to annihilate the leading coefficients sequentially. After eliminating the leading terms up 

to the third order terms, the weights are determined as 

 

 

and the associated equation error residual is obtained as 

 

where 
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         +Higher order derivatives of f. 

 

As clearly illustrated by the local truncation error (3.8), any selections of w5 and v4 subject to (3.5) guarantee 

fourth order accuracy mathematically. For v4 = 0 and , the resulting scheme uses a 5−point stencils 

for the discretizations of k2u and f and a 9−point stencil for the diffusion [12,23,25]. As indicated by (3.8), 

the mass and the stiffness matrices still depend on w5 and v4 respectively and their stabilities [11] may be 

further determined to optimize the scheme for a uniform of fourth-order accurate convergence. 

Furthermore, as illustrated by T4, T6, and T8 in (3.8) which are polynomial functions in k, the numerical 

accuracies of the resulting schemes are significantly affected for high values k. 

    It is clear from the last terms in T6 and T8 that a larger twenty-five point control volume is needed to 

achieve beyond a sixth-order accuracy. In fact, a tenth-order accuracy can easily be achieved for interior 

grid points on the computational domain with twenty-five point control volumes. Now, in order to 

computationally achieve the order of accuracy of the schemes for high values of k, we must discretize and 

absorb and  and T8 into the scheme and also choose . As a result, the size of 

the leading term of the error may not be much affected by large values of the wave number k, and thus 

render the scheme to be consistently fourth-order accurate for moderate sizes of k. 

 

Pollution Effects Reductions in Fourth-Order Accurate Schemes 

As illustrated by (3.8), the tuncation error terms are polynomial functions of k with the same degree as h. 

The basic polynomial 

  (4.1) 

appears in T4, in T6 multiplied by k2, and in T8 multiplied by k4, and so on. Furthermore, the couplings get 

more complicated with additional derivative terms in higher order terms beyond h4 as indicated by T6, T8, 

and therefore the source of associated pollution effects and drag on numerical accuracies and convergence 

for large values of k. Thus, the pollution effects cannot be eliminated in numerical computations since terms 

like  and T8 require a larger computational stencil. However, the pollution effects can be 
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reduced on the 9−point stencil and our strategy is to resolve the terms  and ∂x
∂
2
4

∂y
f 

2 that are 

coupled with k in the truncation error. For instance, the compact differencing of the Laplacians of φ and f 

on the control volume are given by 

 

  (4.3) 

which are used in resolving the couplings of k in the residual error. 

   We rewrite the new symmetric fourth-order scheme for (3.1) on the control volume after resolving the 

k couplings in T4 as 

 

where 

 (4.5) 

The associated truncation error is then given as 

 

where β4 still remains a free parameter. 

    To improve consistency of the discretization furthermore, we apply (4.2) and (4.3) repeatedly to resolve 

the couplings in Tˆ6 and Tˆ8 after which the fourth-order scheme becomes 
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where 

 

The local truncation error is now described as 

 Local Error = Tˆ
4h

4 + Tˆ
6h

6 + Tˆ
8h

8 + O(h10) (4.8) 

with 

, 

                     +Higher order derivatives of f. 

 

Pollution Effects and Computational Accuracy 

In this section, we demonstrate the effects on computational accuracies and convergence rates for the 

different fourth-order accurate schemes described in Section 4 due to different levels of reductions of 

incidences of k in the local truncation error. In this regard, we compare the convergence rates of the schemes 

(3.7), (4.4), and (4.7) which are all mathematically fourth order accurate but have different leading terms 

in the residual errors due k. 

   To demonstrate convergence rate consistencies and quality of numerical solutions for moderate sizes of 

the wave number k, we consider the exact solution to the Helmholtz equation (3.1) to be 

 

 u(x,y) = sin(w1y + w2x
2) + sin(w3x + w4y

2) (4.9) 
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which may be described as superposition of two waves. The source function which is also a superposition 

of four waves is determined as 

 f(x,y) = (4w2
2x2 + w1

2 − k2)sin(w1y + w2x
2) + (4w4

2x2 + w3
2 − k2)sin(w3y + w4x

2) 

 −2w2 cos(w1y + w2x
2) − 2w4 cos(w3y + w4x

2). (4.10) 

The source function is much more complex with larger amplitudes depending on the frequencies of the 

source waves where part of the waves are out of phase with the rest. 

Consider the numerical error e(h), defined as the l∞ norm of the difference between the numerical solution 

φ and the exact solution u(x,y) of the Helmholtz equation (3.1). The convergence rate r is expressed such 

that 

 

 

where C is independent of the grid size h. For a sufficiently small h we have that e(h) ≈ Chr for a numerical 

method of order r and hence e(h/2) ≈ C(h/2)r. Then the convergence rate through grid refinement analysis 

is defined by 

 
   To evaluate pollution effects due to k in the truncation error, we study the convergence rate R for grid 

resolutions ℎ =
1

50
  and ℎ =

1

100
 as the size of the wave number k is increased from 20 to 200. In Figures 

2, 3, and 4, the convergence rates for the three schemes are displayed for the wave with frequencies w1 = 

34, w2 = −45, w3 = 25, w4 = −50 and Dirichlet boundary conditions. The top rows show the complete picture 

of the distributions of R(1/50) and the second rows indicate the zoomed-in versions of the top rows. Figures 

5, 6 and 7 illustrate similar convergence rate characterizations for the wave with frequencies w1 = 4, w2 = 

−15, w3 = 5, w4 = −20. 

    Figure 2:                Figure 3:                         Figure 4: 

      Convergence rate R for             Convergence rate R for             Convergence rate R for 
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 Figure 5:           Figure 6:                           Figure 7: 

 Convergence rate R for           Convergence rate R for                Convergence rate R for 

 

 

     The convergence rate patterns for the two waves u(x,y) = sin(34y−45x2)+sin(25x−50y2) and  

u(x,y) = sin(4y−15x2)+sin(5x−20y2) as displayed through Figures 2, 3, 4 and Figures 5, 6, 7 are similar for 

the three fourth-order accurate schemes 3.7, 4.4, and 4.7. Furthermore, the convergence rates for all the 

three schemes are uniformly fourth order accurate for k ≤ 30 as also indicated by the figures. However, 

between k = 30 and k = 110, the fourth-order convergence rate for scheme 3.7 cannot be guaranteed to be 

uniform and solution quality breaks down beyond k = 110. Scheme 4.4 is uniformly fourth-order accurate 

for k ≤ 80 and solution quality breaks down beyond k = 140. Scheme 4.7 is uniformly fourth-order accurate 

for k ≤ 90 and solution quality breaks down beyond k = 200 when pollution level in the O(h10) term and 

beyond dominate the error. Thus, as the polluting term PE described in (4.1) is resolved from the truncation 

error terms, quality of numerical solution improves. Clearly, the approach serves to demonstrate how to 

improve convergence sensitivities of numerical modeling to physical phenomena governed by partial 

differential equations. 

 

Sixth-Order Schemes 

In this section, we discuss sixth-order accuracy for (3.1) on the nine-point compact control volume. From 

the truncation error terms in (4.8), the numerical approximation of the fourth order derivatives of the source 

term are needed as indicated in [22] in order to annihilate Tˆ
4 in (4.8) to ensure sixth-order accuracy. 
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   It is clear from (4.7) that a larger computational stencil like a twenty-five point stencil is needed in order 

to extend to a tenth-order accuracy. For a given source term f, the last degree of freedom is selected as

 and in order to annihilate Tˆ4, a second order approximation for  given below 

 

is needed. When the above result (4.12) is incorporated in (4.7) and (4.8) with  , sixth order 

accuracy is guaranteed. 

   For very high frequency regimes, the repeated use of (4.12) as indicated by the truncation error (4.8) is 

needed to reduce the size of the computational error as indicated in Tables 3 and 4. 

 

Numerical Experiments 

Several numerical tests have been performed to validate the effectiveness of this finite volume method for 

developing efficient, stable and consistent schemes for the Helmholtz equations on uniform mesh points. 

Pollution effects associated with high wave numbers has been demonstrated where the numerical schemes 

become more efficient for moderate sizes of the wave number for a given resolution as more truncation 

error terms coupled with k are determined and resolved. 

    We present some of the results of our tests to illustrate fourth- and sixth-order order accuracies for the 

schemes on a rectangular domain with Dirichlet boundary conditions. 

The errors e(h) are measured with l∞ norm according to (4.11) and the order of accuracy or convergence 

rate r is expressed such that for a constant C independent of h we have 

  (5.1) 

where h1 and h2 are the grid spacings due to any two errors [25] measured according to (4.11)  

   We have demonstrated in Section 4.1 the need to resolve the terms , and

coupled with k in the truncation error for the nine-point compact control volume in order to ensure 

uniformly convergent schemes for the Helmholtz equation. So we present some of the numerical results 

for the scheme (4.7) through the following examples : 

 

Example 1. 

Consider the exact solution to the Helmholtz equation as 

u(x,y) = exp(xy) 

where the corresponding source term is determined as 

f(x,y) = −(x2 + y2)exp(xy) − k2 exp(xy) 
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with k as the wave number. We present grid refinement analysis for this example in Table 1 to illustrate 

pollution effects associated with high wave numbers. 

 

Clearly, convergence is uniformly fourth-order accurate for k = 10 and k = 50 but not as uniform for k = 

100 for this example as has been demonstrated for example (4.9) in Figures 4 and 7. 

 

Example 2. 

Consider the exact solution to the Helmholtz equation to be (4.9) whose source term is given by (4.10). 

The exact solution here may be described as the superposition of two nonlinear waves whose maximum 

amplitude is 2. However, the source term may be seen as a superposition of four nonlinear waves with 

variable amplitudes and some of the waves being out of phase. Thus, the source term can be complex 

necessitating the use of (4.12) to demonstrate sixth-order accuracy. 

                                         

 

Again, convergence is uniformly fourth-order accurate for k = 10 and k = 50 but not as uniform for k = 100 

as has been demonstrated in Figure 7.  

In Table 3, we demonstrate six-order convergence analysis for u(x,y) = sin(4y − 15x2) + sin(5x − 20y2) 
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Again, convergence is uniformly sixth-order accurate for k = 10 and k = 50 but not as uniform for k = 100. 

 

Example 3. 

Lastly, we demonstrate the need to resolve the source term derivative  in the truncation error 

terms coupled with k in order to improve computational accuracy and quality of the solution. For instance, 

with the wave number set at k = 500, and the exact solution as u(x,y) = sin(34y−45x2)+sin(25x−50y2), there 

is a significant difference between when (4.12) is applied only in Tˆ6 and when (4.12) is applied both Tˆ6 

and Tˆ8 as indicated by the truncation error (4.8). We demonstrate such numerical results in Tables 4 and 

5. 

 

 

Results in Tables 4 and 5 clearly show that using (4.12) to resolve the source term derivative  in 

the truncation error terms coupled with k has been significant for the quality of numerical solution. 

Discussion of Results 

The local truncation error for the schemes may be described as a power series about the centroid (x0,y0) of 

the control volume by 
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where |ξ − x0| ≤ h, |η − y0| ≤ h, and p = 4 or p = 6 for the fourth and sixth order methods respectively. The 

term T0(ξ,η) represents the local truncation error for the associated Poisson equation which has been shown 

to computationally converge uniformly. The term TK(ξ,η,k) is due to the wave number k and is described 

as 

  (6.2) 

where Ci is a combination of higher-order derivatives of the source term and the solution. As discussed 

above, the truncation error terms are partly populated by k which dominate and determine the sizes of the 

errors for high wave numbers. One suggested way to reduce the size of the pollution error [2,7] is to require 

that hk be maintained as a constant. For moderate sizes of k and limited resolutions of the PE terms in TK, 

uniform convergence rates for the resulting fourth-order schemes have been achieved for the Helmholtz 

equations. 

   From (4.6) and (6.2), one way for TK to converge uniformly is to require the option of hk < 1 

necessitating smaller grid sizes. However, this choice which results in large size system matrices is 

expensive and the other way is by higher-order methods as illustrated above where the PE terms are resolved 

as much as possible. The level of this reduction is limited by the number of grid points represented on the 

control volume. For a nine-point compact control volume,  and beyond cannot be resolved 

which puts a limitation on effective pollution effects reduction for high wave numbers. Therefore, for a 

given resolution of the control volume there is a limit on the size of the wave number for which consistency 

of the resulting schemes can be assured as illustrated in Section 4.1. 

 

Conclusion 

We have demonstrated the effectiveness of utilizing the finite volume discretization approach in developing 

new higher-order schemes for the Helmholtz equations with effective strategies for handling pollution 

effects associated with high wave numbers. In particular, pollution effects on convergence rates and quality 

of numerical solutions have been demonstrated. Using a more balanced flux integral formulation to 

construct an equation error expansion of the equation, a minimizing quadrature of local compact grid points 

are found for the discretization which further provides a more complete description and hence optimization 

of the pollution effects for improved quality of solutions. The fact that pollution effects associated with 

Helmholtz equations cannot be eliminated but may be reduced to obtain improved quality of solutions for 

moderate sizes of the wave number has also been demonstrated. Thus, this approach further serves to 

formulate a framework for improving sensitivities of higher-order numerical models for modeling physical 

phenomena. 
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