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Abstract

Higher-order accurate finite volume schemes are developed for Helmholtz equations in two dimensions.
Through minimizations of local equation error expansions for the flux integral formulation of the equation,
we determine quadrature weights for the discretization of the equation. Collocations of local expansions
of the solution and the source terms are utilized to formulate weighted quadratures of all local compact
fluxes to describe the equation error expansion within the computational domain. In using the source term
distribution to account for fluxes along all compact directions about each grid point as the centroid of a
local control volume, the right minimizing quadrature weights are determined and optimized for stability
and uniform higher-order convergence. As a result, the resulting local residuals form more complete
descriptions of the wave number k and the complexities of the associated pollution effects. The leading
terms of the residual errors are optimized for pollution effects reductions to ensure stability and robust
convergence of the resulting schemes. Numerical results and analysis of the schemes demonstrate the
effectiveness of the methodology.

Introduction

Numerical methods for simulating the Helmholtz equations have continued to receive significant attention
as reported in the literature [7,28] addressing the quality of the numerical solutions due to pollution effects
associated high wave numbers. As clearly described [28], there have been a lot of published work utilizing
the finite element method [1,7], the finite difference method [30], the boundary element method [15] as
well as the spectral element method [17] addressing the problem of the pollution effects of the numerical
solution of the Helmholtz equation. The compact finite difference method has also been utilized for the
Helmholtz equation [5] as well as for general elliptic equations [20,24,26] since they achieve high-order
accuracies without significant increase in the size of the resulting system matrices.

The use Taylor series expansions to develop numerical schemes is not new and in [25], the traditional
fourth order scheme for the Poisson equation on the compact nine-point stencil was derived.
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The technique has been extended to develop higher-order compact schemes [12] and for other application
problems [8,13,30]. Basically, the univariate series expansion is utilized to derive the finite difference
approximations of the individual terms of the differential equation and then coupled to obtain the numerical
schemes for multi dimensions. Associated truncation errors are formulated to assess the accuracy of the
schemes.

In [11], local multivariate expansions are utilized to develop higher-order discretizations for the Poisson
equations in 3D. First, local expansions for the solution and the source terms are utilized to formulate the
equation error for discretizing the equation using weight parameters for the grid functions in characterizing
the derivatives in the equation in an undetermined fashion. By determining the parameters to annihilate the
leading coefficients of the error, the parameter-based fourth order compact schemes are derived. In [10],
the approach was extended to develop a space-time finite volume differencing framework for effective
higher-order accurate discretizations of parabolic equations. In [11], the traditional fourth order compact
scheme [25] is recovered as a parameterized version of the general parameter-based discretization of the
Poisson equation. Numerical experiments show that other parameter-valued schemes are much more stable
and robust than traditional fourth order compact scheme. In [10], several higher-order discretizations are
constructed for the parabolic equation including a new scheme on the Crank-Nicholson stencil which is
fourth order accurate along a parabolic space-time curve. In these cases, the resulting local residual errors
are utilized to optimize the resulting schemes to achieve uniform computational convergence rates as
reported.

In this paper we present higher-order finite volume discretizations of the Helmholtz equations in two
dimensions with a framework for effective reductions in the pollution effects associated with the numerical
simulations of the equations. The schemes are designed based on using a multivariate series expansions to
approximate local manifolds of the solution to ensure a more accurate charaterization of local fluxes.
Generalized weighted quadratures of the local solution expansions are utilized to formulate local equation
error expansions based on flux integral formulations of the equation in order to capture all local compact
fluxes and preserve operator properties of the equation. The weighted quadrature descriptions express the
approximation of the divergence of flow about each grid point on the computational domain and offers the
right framework to allow for effective higher accuracies and ensure a more uniform higher-order
convergence. Considering flux divergence at each grid point, the interconnections to neighboring points
may be expanded to improve local flux modeling within the computational domain. Therefore, as more
neighboring grid points are included in this framework more robust higher accuracies are achieved.

The local equation residual from the flux differencing within the balanced formulation of the equation
includes all directions of grid points instead of just coordinate directions as in traditional finite difference
schemes [12,22,25]. This formulation exhaustively captures the sum of the approximation errors as the
local equation error residual. The formal error is then minimized by eliminating much of the terms coupled
with the wave numbers in the error to improve consistency, stability, and increase the order of the resulting
schemes as much as possible. The extent and effectiveness of the resolution of the couplings of the wave
number depend on the number of grid points utilized locally. Numerical results and analysis of the schemes
demonstrate the effectiveness of the methodology on stability and accuracy for higher wave numbers.
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Consider the elliptic boundary value problem

—div(pVu)+cu = q, =€ (1.1)
0 .
Bo U +au = g, rel (1.2)

where Q is an open regular bounded domain in R?with v as the outward normal to the smooth boundary T
and assume that 4, f, ¢, a, g are sufficiently smooth.

To obtain higher computational efficiencies and performances desired of higher-order methods, a
complete characterization of the local equation error within the computational domain must be formulated
using the balanced flux integral formulation the equation. We therefore base our approach and methodology
on multivariate Taylor series expansion to approximate the solution locally in order to more accurately
represent and account for all local compact fluxes. To conserve the properties of the equation and be
applicable to a range of applications, we use the finite volume idea [20] of conservative integral
representation of the equation. However, we adopt grid-point centered control volumes in this formulation
to reflect the series expansion of the local manifold containing the solution. Adopting a uniform distribution
of grid points on the control volume ensures that symmetric system matrices are achieved for the resulting
schemes.

The contributions of this paper include:

» A systematic framework based on the finite volume methodology is described for a general elliptic
equation which allows for using local fluxes in discretizing the more balanced integral formulation
of the equation. Adaptive ways to utilize more local as well as nonlocal fluxes are supported and all
fluxes are accounted for by the framework to ensure conservation within the computational domain.

 The residual errors for the resulting schemes are more completely and accurately determined through
optimizations of the equation error expansion to ensure uniform higher-order convergence rates.

o Effective ways to optimize sensitivities of resulting numerical models to coefficients of the
differential equation.

» The design supports the use of other vertex-centered control volumes [26] to develop efficient higher-
order accurate methods.

The paper is organized as follows: In Section 2 we present the framework of the method by describing
the discretization for a general elliptic equation in flux divergence form locally in 2. In Section 3, we apply
the method to develop new efficient higher-order schemes for the Helmholtz equations in two dimensions.
We present the resulting fourth order schemes in Section 4 and illustrate the pollution effects for the fourth
order schemes due to high values of the wave number k. We further illustrate the effectiveness of the new
schemes in reducing the indefiniteness associated with Helmholtz equation in the fourth order schemes and
consistency improvements in Section 4.1. Then the extension to the sixth order schemes are described in
Section 4.2 and numerical results demonstrating the accuracies of the methods are illustrated in Section 5.
Conclusions are presented in Section 7.
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The finite Volume Discretization Framework

We describe the finite volume differencing discretization method for the elliptic boundary value problem

—V - (kVu)+cu = g, imefl (2.1)
uw = g, onel (2.2)

where Q is a bounded domain in R? with a smooth boundary I'. We assume that x € L*(Q) and is positive
and the source q € LA(Q).

To develop a higher-order accurate discretization for (2.1) with robust computational accuracy, the
discretization framework must effectively account for all local compact fluxes to describe the diffusion
effectively within the computational domain. That is, the framework must be conservative of all local fluxes
[6] required for consistent and robust higher-order accuracies. We therefore formulate the equation (2.1)
over local control volumes which can provide the needed support for local fluxes to neighboring grid points
rather than independently in univariate Cartesian coordinate directions [21] as in traditional finite
difference formulations.

We first write the integral formulation of the equation (2.1) as

— | V-skVudv+ /r_’rudt-‘: /th-‘ (2.3)
J0O S v Q

where dv = dxdy in R? By the divergence theorem, equation (2.3) is rewritten into the flux integral

balanced form as
— ?g kVu-vdS + / cudv = / qdv (2.4)
Jan Jo Ja

where v is the unit outward normal to the boundary S of the domain Q.

Now, consider the domain € partitioned into control volumes where each control volume is identified
by its centroid mesh point and a distribution of neighboring mesh points as in Figure 1. A uniform
distribution of grid points is utilized for this work but the approach is applicable for a non-uniform
distribution as well. A combination of uniform distribution for regular grid points and non-uniform
distribution for irregular grid-points may be adopted for handling discretizations on non-rectangular
domains [8]. The grid-point clouds for neighboring control volumes overlap [27] to create interlocking
configurations which help to capture and track local fluxes effectively on the computational domain
necessary for higher level of conservation and robust higher-order rates of convergence.

We thus describe (2.4) about the centroid of each control volume Qn by

— % kVu - v, dSy, + / cudv = / q dv (2.5)
S OQp, JQp 7 Qp

where v is the unit outward normal vector to Shwhich is the boundary of Qn. The equation (2.5) represents
the conservation of u about the centroid of the control volume such that variations in the source distributions
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within the control volume are compensated for by the local diffusive fluxes through the boundary Sk [9].
Thus, the distribution of u within the control volume Qnis completely determined by the sum of all diffusive
radial fluxes about the centroid and the corresponding source distribution. Hence, the associated equation
error, E(u), about the centroid is given by

E(u) = _?g kVu - vy d.S'h—/ cudv —/ gdv = 0. (2.6)
4 Qp, J Qp 7 Qp,

where Qn = [Xm— h,xm+ h] % [yn—h,ya+ h] is a typical control volume with centroid Xo(Xm,yn), as illustrated
by Figure 1. The control volume Qn illustrated with centroid Xo and a compact cloud of quadrature points
X1(Xm +h,yn), Xo(Xm +h,ynth), Xa(Xm,ynth), Xa(Xm—h,ynth), Xs(xm—h,yn), Xe(Xm—h,yn—h), X7(xm,yn—h), and
Xs(Xm+h,yn = h) overlaps with control volumes centered on all these compact quadrature points.

X11 }(4 X3 X, x‘. y +h
= n
.
.
Space, y 3
x1 xﬁ xﬂ #1 X Yo
b o
.
;
.
PR N o T . X, y -h
x -2n X -h L x,+h  x_s2n
Space, X

Figure 1: Control volume Qp in R? with local uniform compact cloud of quadrature points
with Xo(zm, yn) as the centroid

By using a finite number of quadrature points to approximate the local equation error, the discrete
version of (2.6) is therefore nonzero. In fact, we approximate local diffusive fluxes about the centroid of
the control volume by a generalized weighted quadrature of the radial fluxes to the neighboring
quadrature points by

Th

/ K(u)Vu - v, dS, = Z K(ug)Vu - vy 22 k(ugp) Z w;(u; — Ug) (2.7)
J Qy, oQ,, i1
where nj is number of quadrature points, wi is the collocation weight for the local directional flux, Vu - vni
= (ui— up) along the radial direction vni toward location of ui. The number of quadrature points forming the
desired local distribution is part of the available degrees of freedom, which may be increased to improve
local accuracy by incorporating more local and nonlocal fluxes [3].
Based on the adopted set of neighboring quadrature points, the quadrature formulation of (2.4) about
the centroid of the control volume becomes

—r(un) Y Wi (u;—ug) — Y wa; =Y _ vig. (2.8)

C’QF. Q-FI Qh
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where «x(Uo) is an averaging value of x(u) about the centroid. Clearly, the framework as described in (2.8)
allows for both regular and non-regular distribution of quadrature points locally about each centroid and
adaptively.

For a more complete modeling of the local equation error (2.12) in all radial directions, we adopt a local
multivariate Taylor series expansion for u about each centroid (xo,yo) by

C(m,i) d™¢ - ,
ot am+) =3 3 S ey (2.9)

m=0i+j=m

where ¢ is sufficiently smooth and locally defined everywhere such that

D xo, Yo) = ulzg.Yyp)
o o
— " (7. =
ﬁmfﬁyJ( 0, Yo) D20y (70, Yo)-

Consequently, we define the local source term by

C'(m,i) 9™¢
fleo+ 2,90+ 1) = (Z Z ml 0ridy (70, Uo)l y )

m=0i+j=m

(2.10)

where A is the local differential operator description of (2.1) with unique characteristics of the equation
[16] such that
f(o; 90) = q(0,Y0) = Ls®lizomo) = (V- (EVO) + €O)|(zg.00) = (KAD + )| (zg0)-  (2:11)

In this way, any grid functions of ¢ and f on the control volume may be utilized to describe the
approximations the integral fluxes in (2.4) in the form of (2.8). Thus, the grid point spacings may not need
necessarily to be uniform and can be adaptively determined locally. As a result, any desired quadrature
points about the centroid may be included in the approximation of the flux integrals to discretize (2.4).

To enable effective higher-order accuracies, the Cauchy-Kovalevskaya procedure [14] is applied to
replace higher order derivatives of ¢ in the expansions (2.9) and (2.10) by lower order derivatives of the
local source term f. Thus, coefficients such gxxxy, @xyyy, Pxxx, €tc in (2.9) and (2.11) are replaced by fy, fy, fyy,
fxx, etc in order to more accurately represent the physics of the problem in the local expansions. As a result,
the source term derivatives are introduced into (2.9) through higher-order derivatives of the equation (2.11)
given as

- (C)” + d’"w) +ep = f,
—K(Prax + Quyy) + COx fus
—K(Przy + Pyyy) + COy Jys
*H(@rmy + (r‘b-r:rr.u.u) + C@i’-’w = f-r::u-
—K(Prazr + Prayy) + CPua fee;

—K(Quayy + Pyyyy) + COyy = fyys et

The local equation error expansion Eqn is described using the weighted quadrature approximations of
the local fluxes by
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Eq.(¢) = —kl(do) > Wi (b —do) — > wiy — ¥ _vifi, #0 (2.12)

aQp Qn Qk
where
Swi=0. Ywi=1 Y u=1 (2.13)
aQy, aQy, Qn

such that the differential and integral operator properties of the equations are preserved about each centroid.
This error expansion measures the sum of the discrepancies of all possible flux formulation of (2.1) on the
control volume. Thus, the formulation (2.4) offers a more complete accounting of local fluxes than
traditional finite difference approximations which is a parameterized version of this framework.

To obtain the specifics the discretization for (2.1), the discrete minimax approach is utilized to determine
the quadrature weights to annihilate the leading terms of the error expansion hierarchically. That is, the
weights Wi, wi, and vi are determined to annihilate the leading terms of the error expansion of (2.5) and to
further regulate the growth of the residual error. One advantage here is that for various innovative ways
[18,29] to incorporate local micro scale properties into the numerical model, our comprehensive approach
is naturally efficient in determining the right sampling and collocations of the source required for effective
and robust higher-order accuracy.

Discretization of Helmholtz Equations in 2D

In this section, we demonstrate the advantages of the finite volume method described in
Section 2 in developing consistent higher-order accurate schemes for the Helmholtz equation
-Au—-k’u = q inQ, (3.1)
where q is a given source function with compact support, Q < 2is a bounded domain, k = w/c is the wave
number with @ and c as the circular frequency and speed of light respectively.

Many application problems in science including acoustic wave scattering from submarines, noise
reduction in silencers and mufflers, earthquake wave propagation and others [17] are governed by the
Helmholtz equation. The quality of the numerical solutions of the Helmholtz equation depends significantly
on the size of the wavenumber k [4,17,19,31]. Our goal in developing higher-order accurate schemes for
(3.1) is to demonstrate the pollution effect [31] in the local equation error expansion as well as the
effectiveness of our approach in reducing the pollution effects to improve the qualities of the numerical
solutions.

Consider the local approximation ¢ of u about the centroid of the control volume Qnin
two dimensions such that

—Ap — K2 o= f, (3.2)

i f:R?—=C | :
where k is the wave number and - is a local source term with local compact support
defined according to (2.9) and (2.10) such that
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lim  &(x,y) =u(re, o) and lim  f(x,y) = q(x0, Yo)-

(z.y)—+(zo.y0) (z.y)—(zo,y0)

We describe the approximation of balanced flux integral form of the Helmholtz equation
(3.1) about the centroid of the control volume Qnin two dimensions by

8 8 8
=) WiVéi =) widy =) Vif;
i=1 i=0 i=0
and the local equation error expansion Eqn by

Eq(0) = ~Y Wi(di—do)— Y wii— Y Vifs (3.4)
Qh

aQy Qn

(3.3)

where
8

. 8
Wo=> Wi wo=(1-Y w)k’, Vo=1-3V,
— i=1 .

i=1 (3.5)
As discussed above, the source function approximations fi on the control volume are defined specifically
for the Helmholtz equation (3.2) by
f(@o+ 2,0 +y) = —(A + k*)d(xo + 2,90 +y ) (3.6)
such that
Jfo= f(l’(): :Uﬂ) = —@f’m(l’(), y()) - @1;y;(f13(1= y()) - kf?@(l‘()a y())

which is consistent at the centroid of the control volume.

By substituting (2.9) and (3.6) into (3.4), the leading terms of the local equation error expansion are
sorted to display the leading coefficients as functions of the weight parameters. The weight parameters are
then determined to annihilate the leading coefficients sequentially. After eliminating the leading terms up
to the third order terms, the weights are determined as

10 2 1
II" — - 11" — II" — II’S — '[_Ji__rT - II" — 11' — II, — I{-"1 -
0 3 1 3 LI 1 6 8 Gh2
Up = § +dvy, vy =V =U5 = U7 = —112 — 204, Vg = Vg = Ug = Uy ('}T}
5 N ‘ 1 Wy, -
wp = (g — w5k, wi = w3 = wr = wsk®, wy = wy = wg = ws = (ﬂ 2 -,

and the associated equation error residual is obtained as
Local Truncation Error = Tyh* 4+ Tgh® + Tsh® + O(h'Y) (3.8)

where
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2 | 1 ws. ¢ 1. 0'f 1 o' of
Ty = —— (Ao + Af) + k(= — —2)—— 4 (0 — — (S ),
! 2a0 W AOT AN +R (5 =5 )(‘):r;2(‘)y2 (o 90)(‘):;:25)92 210 G f’}y4)
1k, et 19 . 9% 11, 9 9f. 85f  85f
Ty = .ZA"‘ A — Wy — —— )= - — ;2 - — = —
5 = Goaso\F 20T AN F 5w = g ) Gmae T 60as0 " Gt T ayt) T @es  ays)
= 29 9f 1 5 oFf o f 1 9%
+—(— )5+ (v — — oo |+ , =5
24 4207 0x20y? 12 1008 ortoy*  Oxoy? 3024 dxtoy?
13k° kS 17 N 13k o' f  9if
Ty = ————(B2A¢+ Af) + —(— — w5)——— — * :
; 3628800 ¢ 20 AN T 7550553 T W) 5aza,7 ~ 2628800 9nt | ayt
N K : 61 ) of . K ( 73 ws o) Po
720°840 920y | 144'6300 10 ozt

+Higher order derivatives of f.

As clearly illustrated by the local truncation error (3.8), any selections of wsand va subject to (3.5) guarantee

. o — L . . .
fourth order accuracy mathematically. For va=0and'’s = 13, the resulting scheme uses a 5—point stencils

for the discretizations of k?u and f and a 9—point stencil for the diffusion [12,23,25]. As indicated by (3.8),
the mass and the stiffness matrices still depend on ws and vs respectively and their stabilities [11] may be
further determined to optimize the scheme for a uniform of fourth-order accurate convergence.
Furthermore, as illustrated by Ta, Ts, and Tg in (3.8) which are polynomial functions in k, the numerical
accuracies of the resulting schemes are significantly affected for high values k.

It is clear from the last terms in Te and Tgthat a larger twenty-five point control volume is needed to
achieve beyond a sixth-order accuracy. In fact, a tenth-order accuracy can easily be achieved for interior
grid points on the computational domain with twenty-five point control volumes. Now, in order to
computationally achieve the order of accuracy of the schemes for high values of k, we must discretize and
absorb2A¢and [ in Ty, Ts and Tginto the scheme and also choose ws as ws = 3. As a result, the size of
the leading term of the error may not be much affected by large values of the wave number k, and thus
render the scheme to be consistently fourth-order accurate for moderate sizes of k.

Pollution Effects Reductions in Fourth-Order Accurate Schemes

As illustrated by (3.8), the tuncation error terms are polynomial functions of k with the same degree as h.
The basic polynomial

. Y , % f
Pp = A k* Ao+ Bk* /A O k? - D :
E P @ + P j + p amgayg + Paxgayg (41)

appears in T4, in Te multiplied by k?, and in Ts multiplied by k* and so on. Furthermore, the couplings get
more complicated with additional derivative terms in higher order terms beyond h*as indicated by Tg, Ts,
and therefore the source of associated pollution effects and drag on numerical accuracies and convergence
for large values of k. Thus, the pollution effects cannot be eliminated in numerical computations since terms

589‘5 R A } . . -
like Zeog™ 28 1M 16 anq T4 require a larger computational stencil. However, the pollution effects can be
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/ ¢
NS, 3z, and a*atathat are

reduced on the 9—point stencil and our strategy is to resolve the terms
coupled with k in the truncation error. For instance, the compact differencing of the Laplacians of ¢ and f
on the control volume are given by

2 2000 — (P2 + ¢u + P + 0s) — 2(d3 + &1 + b3 + @7)
6

KA+ KA+ Qkfzé:f'my:u + 4 faryy + fraes + fyym) D + O (hlo) (4.2)
_hZQUfO — (f? + f4 + fh’ + fS) - Q(fi + f‘] + f3 + f?)

’ 6

(2frzyy + freze + Fuyyy)B® + O(R®),

h* A

+ %(km@ + Af)RS

1
~ 360"

RIAF =
1
12
which are used in resolving the couplings of k in the residual error.
We rewrite the new symmetric fourth-order scheme for (3.1) on the control volume after resolving the
k couplings in T4 as

(4.3)

8 8
Z (vih; = Z i fi + Residual Error (4.4)
i=0

i=0

where

Vo 10 67k2+17h2k4 o e — e — o —
T 3R 90 Bla @ M T =0 =0a7=

2 N 2_!12 n 11h2k*
3h% 45 7560

1 N Tk? N A1h?k*
(8% = 1 =0 =0 = — | —— _— R
2 Lo 6h2 ' 360 = 30240 )’
2 h2k? 1 h2k?
B, = = +4Bg— Bl =f3=fs=f = — — 28 ,
Do 3+ g = 01 = P = o7 1 H+360'
3 —[j’—%—‘3+h2k2

The associated truncation error is then given as

L1\ @1 (8 &\,
Error = { (.‘54 - @) dr20y? + 240 (534 o 5@'4) } "

K K2 AR 9 &'f. 11 85F  8F) ..
E2A¢+ Af) — S 4 )L A
{6048( o+ 00) ~ 5018 5ma ~ Bt 3yt 60180 2t T ayb)} :

R §4f_ij_5 aﬁf+aﬁf +1 Fo .
3024 Hz29y2 12\ 1008 dxidy*  orioy? 3024 oxztoyt |

+O(h®) (4.6)

where f4still remains a free parameter.
To improve consistency of the discretization furthermore, we apply (4.2) and (4.3) repeatedly to resolve
the couplings in T"s and T g after which the fourth-order scheme becomes
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where
10 67k? 17h2k* N 83015 N he k8
g = — —
0 3h?2 90 1512 226800 51840
2 . 2k:2 11h2 K h* kS n ho k8
(8% = (3 = (¥5 = (X7 = — . S N
! 3 ‘ 7 3h2 ' 45 7560 56700 ' 259200
S Lo TR ALK OTRUES Ok
Q2 = = A = As =7\ G2 T 360 ¢ 30240 | 907200 1036800
2 19h2k2 187h* k4 hO kS
/3() = _+4/347 = B TGT: Tk
3 1512 453600 H1840
1 2h2k? 37hkA hbkb
:; —_— :;; — 5, —_ = — —2f]
o P2 = Ps =1= 13 Ws T 945 1 907200 T 259200
h2k? ht kA h8 kS
Bs = Bo=Ps =P+ 1440 T 36288 T 1036800
The local truncation error is now described as
Local Error = Tsh* + T'6h® + T'gh® + O(h'?) (4.8)
with
. 1 N f 1 [O'f  O'f
T By — — : - I
! ("4 90) D220y? | 240 (ax4 - (‘9y4) ’
X k2 O & o 11 b b
7, | VS O O, O’ O
6048 \ dat ox?oy? oyt 60480 \ Jxb oys
Ll (5 5 O f N o8 f L1 OB
12 \"" 1008 ) \ Oxtoy?2 " ox20y" 3024 dzioy?
. k4 ((')4 oo f) 17k2 8o
° 172800 0x* = Oy’ 907200 datdy?

+Higher order derivatives of f.

Pollution Effects and Computational Accuracy

In this section, we demonstrate the effects on computational accuracies and convergence rates for the
different fourth-order accurate schemes described in Section 4 due to different levels of reductions of
incidences of k in the local truncation error. In this regard, we compare the convergence rates of the schemes
(3.7), (4.4), and (4.7) which are all mathematically fourth order accurate but have different leading terms

in the residual errors due k.

To demonstrate convergence rate consistencies and quality of numerical solutions for moderate sizes of
the wave number k, we consider the exact solution to the Helmholtz equation (3.1) to be

u(x,y) = sin(way + wax?) + sin(wsx + way?)
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which may be described as superposition of two waves. The source function which is also a superposition
of four waves is determined as
fxy) = (Aw22x2 + w12 — K?)sin(wiy + w2x?) + (4wa?x2 + wa? — k?)sin(way + wax?)
—2W2 COS(W1Y + W2X?) — 2W4 COS(W3Yy + Wax?). (4.10)
The source function is much more complex with larger amplitudes depending on the frequencies of the
source waves where part of the waves are out of phase with the rest.
Consider the numerical error e(h), defined as the 1 norm of the difference between the numerical solution

¢ and the exact solution u(x,y) of the Helmholtz equation (3.1). The convergence rate r is expressed such
that

e(h) = |u(x,y)— ol (4.11)
Ch"+o(h") ash— 0
where C is independent of the grid size h. For a sufficiently small h we have that e(h) = Ch" for a numerical

method of order r and hence e(h/2) = C(h/2)". Then the convergence rate through grid refinement analysis
is defined by

e(h)
e(h/2)
= 2"

To evaluate pollution effects due to k in the truncation error, we study the convergence rate R for grid

resolutions h = 5—10 and h = Flo as the size of the wave number k is increased from 20 to 200. In Figures

2, 3, and 4, the convergence rates for the three schemes are displayed for the wave with frequencies w1 =
34, wo=—45, w3 =25, ws=—50 and Dirichlet boundary conditions. The top rows show the complete picture
of the distributions of R(1/50) and the second rows indicate the zoomed-in versions of the top rows. Figures
5, 6 and 7 illustrate similar convergence rate characterizations for the wave with frequencies wy = 4, w, =
—15, w3=5, wa=—20.

Figure 2: Figure 3: Figure 4:
Convergence rate R for Convergence rate R for Convergence rate R for
Scheme (3.7) Scheme (4.4) Scheme (4.7)
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Quality of Numerical Solutions for u(xz,y) = sin(34y — 452?) + sin(25x — 50y?) with
20 < k<200
Figure 5: Figure 6: Figure 7:
Convergence rate R for Convergence rate R for Convergence rate R for
Scheme (3.7) Scheme (4.4) Scheme (4.7)
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Quality of Numerical Solutions for u(z, y) = sin(4dy — 152?) + sin(5x — 20y?) with
20 < k<200

The convergence rate patterns for the two waves u(x,y) = sin(34y—45x2)+sin(25x—50y?) and

u(x,y) = sin(4y—15x?)+sin(5x—20y?) as displayed through Figures 2, 3, 4 and Figures 5, 6, 7 are similar for
the three fourth-order accurate schemes 3.7, 4.4, and 4.7. Furthermore, the convergence rates for all the
three schemes are uniformly fourth order accurate for k < 30 as also indicated by the figures. However,
between k = 30 and k = 110, the fourth-order convergence rate for scheme 3.7 cannot be guaranteed to be
uniform and solution quality breaks down beyond k = 110. Scheme 4.4 is uniformly fourth-order accurate
for k < 80 and solution quality breaks down beyond k = 140. Scheme 4.7 is uniformly fourth-order accurate
for k < 90 and solution quality breaks down beyond k = 200 when pollution level in the O(h'°) term and
beyond dominate the error. Thus, as the polluting term Pe described in (4.1) is resolved from the truncation
error terms, quality of numerical solution improves. Clearly, the approach serves to demonstrate how to
improve convergence sensitivities of numerical modeling to physical phenomena governed by partial
differential equations.

Sixth-Order Schemes

In this section, we discuss sixth-order accuracy for (3.1) on the nine-point compact control volume. From
the truncation error terms in (4.8), the numerical approximation of the fourth order derivatives of the source
term are needed as indicated in [22] in order to annihilate T 4 in (4.8) to ensure sixth-order accuracy.
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It is clear from (4.7) that a larger computational stencil like a twenty-five point stencil is needed in order
to extend to a tenth-order accuracy. For a given source term f, the last degree of freedom is selected as
P4 = 56 and in order to annihilate T"s, a second order approximation for @=7 T y% given below

1 ht orf  Of e 8f  O°f
4 1 — 12 - : 5 7 - - - .
15 ( ! 2 fom(h+fstfot] )) 24(]((?:1;4 + 8-y4) 5760(0:1;° dy®

) + O(h®)
(4.12)
is needed. When the above result (4.12) is incorporated in (4.7) and (4.8) withA1 = % , Sixth order

accuracy is guaranteed.
For very high frequency regimes, the repeated use of (4.12) as indicated by the truncation error (4.8) is
needed to reduce the size of the computational error as indicated in Tables 3 and 4.

Numerical Experiments

Several numerical tests have been performed to validate the effectiveness of this finite volume method for
developing efficient, stable and consistent schemes for the Helmholtz equations on uniform mesh points.
Pollution effects associated with high wave numbers has been demonstrated where the numerical schemes
become more efficient for moderate sizes of the wave number for a given resolution as more truncation
error terms coupled with k are determined and resolved.

We present some of the results of our tests to illustrate fourth- and sixth-order order accuracies for the
schemes on a rectangular domain with Dirichlet boundary conditions.
The errors e(h) are measured with I” norm according to (4.11) and the order of accuracy or convergence
rate r is expressed such that for a constant C independent of h we have

_ Tos(Gy)
log(f2) (5.1)

where hiand hy are the grid spacings due to any two errors [25] measured according to (4.11)

alf
/ ) o -
We have demonstrated in Section 4.1 the need to resolve the termsA@-‘ A 22207, and 9TV

coupled with k in the truncation error for the nine-point compact control volume in order to ensure
uniformly convergent schemes for the Helmholtz equation. So we present some of the numerical results
for the scheme (4.7) through the following examples :

Example 1.
Consider the exact solution to the Helmholtz equation as
u(x,y) = exp(xy)
where the corresponding source term is determined as
f(x,y) = =< + y?)exp(xy) — k> exp(xy)
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with k as the wave number. We present grid refinement analysis for this example in Table 1 to illustrate
pollution effects associated with high wave numbers.

Table 1:
Fourth order grid refinement analysis for u(x,y) = exp(zy) for Scheme (4.7)

h |lu — &nllwe | cvee. || ||u — énllw | cvee. || ||u — énll- | cvee.
k=10 rate k=50 rate k=100 rate

1/16 | 5.980e~% 1.188¢=% 1.023e=%
1/32 [ 3.686e " | 4.02 | 7.838¢ "™ | 3.92 | 2.180e " | 5.55
1/64 || 2.206e=% | 4.00 | 4552e=% | 4.11 | 7.527e=% | 4.86
1/128 || 1.430e=" | 4.00 | 2793¢="10 | 4.03 | 8.100e 1" | 3.22

Clearly, convergence is uniformly fourth-order accurate for k = 10 and k = 50 but not as uniform for k =
100 for this example as has been demonstrated for example (4.9) in Figures 4 and 7.

Example 2.

Consider the exact solution to the Helmholtz equation to be (4.9) whose source term is given by (4.10).
The exact solution here may be described as the superposition of two nonlinear waves whose maximum
amplitude is 2. However, the source term may be seen as a superposition of four nonlinear waves with
variable amplitudes and some of the waves being out of phase. Thus, the source term can be complex
necessitating the use of (4.12) to demonstrate sixth-order accuracy.

Table 2:
Fourth-order grid refinement analysis for
u(z,y) = sin(4y — 152?) + sin(5z — 20y?) with (4.7)

h |u — dnll | cvge. | |[u— opllx | cvge. || ||u— dnlls | cvee.
E=10 rate E =50 rate k=100 rate
1/16 5.511e~"2 4.630e "2 3.320¢—3

1/32 | 3.351e™™ | 4.04 || 1.244e7% | 522 | 6.346e ™ | 2.39
1/64 | 2.081e" | 4.01 || 7.779¢=% | 4.00 | 1.832e=%" | 5.11
1/128 | 1.299¢=% | 4.00 | 4.860e=" | 4.00 | 2.081e=% | 3.14

Again, convergence is uniformly fourth-order accurate for k = 10 and k = 50 but not as uniform for k = 100
as has been demonstrated in Figure 7.

In Table 3, we demonstrate six-order convergence analysis for u(x,y) = sin(4y — 15x?) + sin(5x — 20y?)
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Table 3:
Sixth-order grid refinement analysis for
u(z,y) = sin(dy — 152?) + sin(5x — 20y?)

h lu— dpll | cvee. || [|u — ¢l | cvee. | ||u — &yl | cvee.
k=10 rate k =50 rate k=100 rate

1/16 || 1.961e=™ 6.520e=" 7.080e=%
1/32 || 2.958¢7% | 6.05 || 8.910e~"7 | 6.19 | 2.382¢" | 8.21
1/64 || 4.581e=% | 6.01 1.348¢=% | 6.05 | 4.157e=" | 5.84
1/128 || 7.145¢~19 | 6.00 || 2.097¢1Y | 6.01 | 6.385e~1" | 6.02

Again, convergence is uniformly sixth-order accurate for k = 10 and k = 50 but not as uniform for k = 100.

Example 3.
ﬂ

Lastly, we demonstrate the need to resolve the source term derivative a1

+ ay* in the truncation error

terms coupled with k in order to improve computational accuracy and quality of the solution. For instance,
with the wave number set at k = 500, and the exact solution as u(x,y) = sin(34y—45x?)+sin(25x—50y?), there
is a significant difference between when (4.12) is applied only in T"s and when (4.12) is applied both T s
and Tg as indicated by the truncation error (4.8). We demonstrate such numerical results in Tables 4 and
5.

Table 4: Table 5:
Computational error with &£ = 500 when Computational error with £ = 500 when
(4.12) is applied in Tg of (4.8) (4.12) is applied in Ty and Ty of (4.8)
| b [ lu—oxl | cvee. rate | | b [ lu— ¢l | evee. rate |
1/100 || 9.6835¢~ 2 1/100 || 3.8605¢"
1/200 || 3.0540e~"™ 4.987 1/200 || 6.8845e~" 5.809
1/400 || 6.4445¢~" 5.566 1/400 || 8.1239¢~" 6.405
ol | 2lf
Results in Tables 4 and 5 clearly show that using (4.12) to resolve the source term derivative 9z* " 4% in

the truncation error terms coupled with k has been significant for the quality of numerical solution.

Discussion of Results

The local truncation error for the schemes may be described as a power series about the centroid (Xo,Yo) of
the control volume by
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B K) = 3 {Tie (6,0, K) + Tol€ m} ((€ = o) + (7 — o)) (6.1)

i=0

where |& — Xo| < h, |7 — yo| < h, and p = 4 or p = 6 for the fourth and sixth order methods respectively. The
term To(¢ 7) represents the local truncation error for the associated Poisson equation which has been shown
to computationally converge uniformly. The term Tk(¢ #,k) is due to the wave number k and is described

as
p+2n

Pt Ci(€,n)
T = (e Y- S
] Zo k 6.2)

where Cjis a combination of higher-order derivatives of the source term and the solution. As discussed

above, the truncation error terms are partly populated by k which dominate and determine the sizes of the
errors for high wave numbers. One suggested way to reduce the size of the pollution error [2,7] is to require
that hk be maintained as a constant. For moderate sizes of k and limited resolutions of the Pe terms in Tk,
uniform convergence rates for the resulting fourth-order schemes have been achieved for the Helmholtz
equations.

From (4.6) and (6.2), one way for Tk to converge uniformly is to require the option of hk < 1
necessitating smaller grid sizes. However, this choice which results in large size system matrices is
expensive and the other way is by higher-order methods as illustrated above where the Pe terms are resolved
as much as possible. The level of this reduction is limited by the number of grid points represented on the

%

control volume. For a nine-point compact control volume, dx5y* in s and beyond cannot be resolved

which puts a limitation on effective pollution effects reduction for high wave numbers. Therefore, for a
given resolution of the control volume there is a limit on the size of the wave number for which consistency
of the resulting schemes can be assured as illustrated in Section 4.1.

Conclusion

We have demonstrated the effectiveness of utilizing the finite volume discretization approach in developing
new higher-order schemes for the Helmholtz equations with effective strategies for handling pollution
effects associated with high wave numbers. In particular, pollution effects on convergence rates and quality
of numerical solutions have been demonstrated. Using a more balanced flux integral formulation to
construct an equation error expansion of the equation, a minimizing quadrature of local compact grid points
are found for the discretization which further provides a more complete description and hence optimization
of the pollution effects for improved quality of solutions. The fact that pollution effects associated with
Helmholtz equations cannot be eliminated but may be reduced to obtain improved quality of solutions for
moderate sizes of the wave number has also been demonstrated. Thus, this approach further serves to
formulate a framework for improving sensitivities of higher-order numerical models for modeling physical
phenomena.
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