
International Journal for Innovation Education and Research      Vol:-6 No-04, 2018 

International Educative Research Foundation and Publisher © 2018    pg. 149 

Population Dynamics in Diffusive Coupled Insect Population 

 

Dongwook Kima, Dong-Hoon Shinb 
aDepartment of Mathematics, Atlanta Metropolitan State College, Atlanta, Georgia, 30310 USA 

bDepartment of Global Finance and Banking, Inha University, Incheon, 22212 Korea 

 

Abstract 

A variety of ecological models exhibit chaotic dynamics because of nonlinearities in population growth and 

interactions. Here, we will study the LPA model (beetle Tribolium). The LPA model is known to exhibit chaos. 

In this project, we investigate two things which are the effect of noise constant and the effect of diffusion 

combined with the LPA model. The effect of noise is not only to change the dynamics of total population 

density but also to blur the bifurcation diagram. Numerical simulations of the model have shown that 

diffusion can drive the total population of insects into complex patterns of variability in time. We will 

compare these simulations with simulations without diffusion. And we conclude that the diffusion 

coefficient is a bifurcation parameter and that there exist parameter regions with chaotic behavior and 

periodic solutions. This study demonstrates how diffusion term can be used to influence the chaotic 

dynamics of an insect population. 

 

Keywords: diffusion, LPA model, insect population, Chaos, periodic behavior 

 

1. Introduction 

A variety of ecological models exhibit various patterns in population dynamics such as equilibrium steady 

state, periodic or chaotic dynamics caused by their nonlinearities in population growth and interactions. 

Sensitivity to initial conditions (initial population or control parameter) is a key characteristic of dynamics 

in population system. Many researchers have investigated how small perturbations of the control 

parameters have affected the ecology system to exhibit the chaotic behavior [1,2,3]. Population fluctuations 

are the result of stable points (node or spiral), stable periodic and aperiodic cycles, chaos, stable and 

unstable manifolds of invariant sets and multiple attractors. Population fluctuations depend on the stability 

of fixed points; stable points are where every trajectory goes to a fixed point, stable periodic trajectories 

occur when population numbers oscillate among a finite number of values and there is a limit cycle around 

the fixed point, aperiodic cycles occur when populations oscillate but the characteristics of the oscillation 

can change, and chaos which provides an unusual, apparently random, and intuitively unexpected 

prediction of population behavior. 

 

The LPA model, describes the dynamics of larval, pupal, and adult Tribolium population, is known to 

exhibit chaotic pattern in their population. Many studies have examined the effect of small perturbations 

of the parameters, such as the survival rate of a pupa in the presence of an adult or the survival rate of an 
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egg in the presence of both larvae and adults, on the dynamics of the total population density [4, 5]. A 

nonlinear mathematical model, LPA model, was used to identify a sensitive region of phase space where 

the addition of a few adult insects would result in a dampening of the life stage fluctuations. 

The few ecological studies of chaos in spatial systems consider models in discrete time and space [6,7] or 

in discrete time and continuous space [8]. In all these models, the diffusive dispersal of organisms drives 

the biological system (prey-predator or host-parasitoid system) into chaotic dynamics. The results of 

discrete models cannot be applied directly to nonlinear interactions and dispersal in continuous time and 

space. It is well known that discrete models exhibit chaos more readily than their continuous counterparts. 

In this paper, A nonlinear mathematical model, LPA model, was used to identify a sensitive region of phase 

space where the addition of a few adult insects would result in a dampening of the life stage fluctuations. 

In other words, we investigate the effect of diffusion on the diffusive coupled LPA model. Numerical 

simulations of the model have shown that diffusion can drive adults into complex patterns of variability in 

time. The main point of this study is to determine whether these patterns are chaotic. We will demonstrate 

that there is diffusion induced chaos and diffusion induced periodicity in the LPA model with diffusion. 

And we conclude that the diffusion coefficient is a bifurcation parameter and that there exist parameter 

regions with chaotic behavior and periodic solutions. 

 

2. Model 

2. 1 LPA Model with Stochastic Terms 

Many species of Tribolium (flour beetle) are cannibalistic, including the species Tribolium castaneum. The 

following model, which is called the LPA model, describes the dynamics of larval, pupal, and adult 

Tribolium populations at time t + 1 as a function of the populations at time t by means of a system of three 

difference equations 

 

𝐿𝑡+1 = 𝑏𝐴𝑡exp⁡(−𝐶𝑒𝑙𝐿𝑡 − 𝐶𝑒𝑎𝐴𝑡 + 𝐸1𝑡)                    (1) 

𝑃𝑡+1 = 𝐿𝑡(1 − 𝜇𝑙)exp⁡(𝐸2𝑡)                           (2) 

𝐴𝑡+1 = [𝑃𝑡 exp(−𝐶𝑝𝑎𝐴𝑡) + 𝐴𝑡(1 − 𝜇𝑎)]exp⁡(𝐸3𝑡)               (3) 

where is 𝐿𝑡 is the number of feeding larvae (referred to as the L-stage) at time t, 𝑃𝑡 is the number of large 

larvae, non-feeding larvae, pupae, and callow adults (collectively the P-stage) and 𝐴𝑡 is the number of 

sexually mature adults (A-stage animals). The unit of time is taken to be the feeding larval maturation 

interval so that after one unit of time a larva either dies or survives and pupates. The unit of time is 2 weeks 

and is, approximately, the average amount of time spent in the feeding larval stage under standard 

experimental conditions described in the reference [5]. The unit of time is also approximately the average 

duration of the P-stage. The quantity b is the number of larval recruits per adult per unit time in the absence 

of cannibalism. The fractions 𝜇𝑙 and 𝜇𝑎 are the larval and adult rates of mortality, respectively, in one-

time unit. 
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The exponential nonlinearities account for the cannibalism of eggs by both larvae and adults 

and the cannibalism of pupae by adults. The fractions 𝐴𝑡exp⁡(−𝐶𝑒𝑙)  and exp(−𝐶𝑒𝑎𝐴𝑡)  are the 

probabilities that an egg is not eaten in the presence of 𝐿𝑡 larvae and adults, respectively, in one-time unit 

[4]. The fraction exp(−𝐶𝑝𝑎𝐴𝑡) is the survival probability of a pupa in the presence of 𝐴𝑡 adults in one-

time unit. The terms 𝐸1𝑡, 𝐸2𝑡 and 𝐸3𝑡 are random noise variables assumed to have a joint multivariate 

normal distribution with a mean vector of zeros and a variance-covariance matrix denoted by Σ (The 

variance-covariance matrix is estimated from experimental data in [5]. The maximum likelihood estimates 

in the variance- covariance matrices are σ11 = 0.3412, 2 = 0.2488, 3 = 1.627 × 14, 2 = 7.312 × 12, 3 = 

34−1.719 × P1, and σ23 = 3.374 × 1). The deterministic skeleton of the model is identified by setting Σ = 

0, or equivalently, by letting 𝐸1𝑡, 𝐸2𝑡 and 𝐸3𝑡equal to zero in Eqs. 1–3. 

 

The noise variables represent unpredictable departures of the observations from the deterministic behavior 

(resulting from environmental and other causes) and are assumed to be correlated with each other within a 

time unit but uncorrelated on longer time scales. These assumptions were found acceptable for many 

previous data sets by standard diagnostic analysis of time-series residuals. The adult mortality rate, 𝜇𝑎, 

may be experimentally set to 0.96 by removing or adding adults at time of census. In Costantino et al. 1997 

[4], recruitment into the adult stage was manipulated by removing or adding young adults at the time of 

census to make the number of new adult recruits consistent with the treatment value of 𝐶𝑝𝑎. 

 

2. 2 Diffusive coupled LPA Model 

To pose the problem in its simplest form, we will assume that we are investigating the deterministic skeleton 

and Σ = 0. We will also assume that only adults move to other insect niches and no unpredictable external 

factors are acting. We set the rate of diffusion, d, to be the same for all niches. With these assumptions, we 

can generalize the LPA model to include the effects of diffusion. Consider a single dimension along which 

adults diffuse at the same constant rate d. Larvae and pupae do not move. Thus, there is no diffusion term 

in the populations of larvae and pupae. 

 

𝐿𝑡+1
𝑗

= 𝑏𝐴𝑡
𝑗
exp⁡(−𝐶𝑒𝑙𝐿𝑡

𝑗
− 𝐶𝑒𝑎𝐴𝑡

𝑗
)                      (4) 

𝑃𝑡+1
𝑗

= 𝐿𝑡
𝑗
(1 − 𝜇𝑙)                               (5) 

where j is jth bin and t is the time 

 

Now, consider the dynamics of the adult population. We will assume that adults can diffuse between bins. 

The equations in this case become 
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𝐴𝑡+1
𝑗

= 𝑃𝑡
𝑗
exp(−𝐶𝑝𝑎𝐴𝑡

𝑗
) + 𝐴𝑡

𝑗(1 − 𝜇𝑎) + 𝑑(𝐴𝑡
𝑗+1

− 2𝐴𝑡
𝑗
+ 𝐴𝑡

𝑗−1
)         (6) 

 

𝐴𝑡+1
𝑗

= 𝑃𝑡
𝑗
exp(−𝐶𝑝𝑎𝐴𝑡

𝑗
) + 𝐴𝑡

𝑗(1 − 𝜇𝑎) + 𝑑(𝐴𝑡
𝑗−1

− 𝐴𝑡
𝑗
)             (7) 
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𝑗
exp(−𝐶𝑝𝑎𝐴𝑡

𝑗
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𝑗+1

− 𝐴𝑡
𝑗
)             (8) 

 

where d is a diffusion coefficient. Eq. (6) is the case for interior bins, Eq. (7) and (8) are the case for the 

right and left boundary, respectively. 

 

2. 3 Numerical Methods 

For the computational simulation, the computer software (MATLAB) has been used. We iterated the LPA 

model for 64000 steps to see the long-term behavior of the total population. By changing the parameter, 

𝐶𝑝𝑎, the population dynamics changes giving rise to bifurcations in dynamics. In the case where Σ = 0 (in 

the absence of noise terms), for each 𝐶𝑝𝑎 , the dynamics of the adult population shows a stable equilibrium, 

periodic cycles or chaos. We simulated the LPA model with both the deterministic skeleton (without noise 

term) and stochastic terms (with noise term) to study the effect of noise on the dynamics of insect total 

population. For the simulation of LPA model with diffusion term, we used the deterministic skeleton to 

investigate the effect of diffusion on the dynamics. The evolution of the total population will be changed 

from steady state (equilibrium) to periodic cycles or periodic cycles to chaos with different value of 

bifurcation parameter, 𝐶𝑝𝑎 (Fig. 1). 

 

Figure 1: Density Bifurcation diagram for total population numbers (L-stage+P-stage+A-stage) using 

deterministic skeleton Σ = 0). For deterministic skeleton, the total population exhibits various patterns of 
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populations with respect to 𝐶𝑝𝑎. We used the following parameter values b=10.45, l 𝐶𝑒𝑙 = 0.01731, 𝐶𝑒𝑎 

= 0.01310, 𝜇𝑙 = 0.2 and 𝜇𝑎 = 0.96.  

 

2. 4 Dynamics of the Insect Population 

The bifurcation diagram conveys information about how the dynamics of the total population changes as a 

function of the parameter, 𝐶𝑝𝑎. The LPA model displays various patterns of populations for different values 

of 𝐶𝑝𝑎. Fig. 1 shows is the density bifurcation diagram of the total population for the LPA model. The 

black color represents zero population, whereas white indicates high populations with gray scales in 

between. Smoothly distributed regions are evidence of quasi-periodicity or chaos, and the sharp lines 

represent periodic cycles. For 𝐶𝑝𝑎 = 0.0, the population dynamics shows a stable equilibrium. For 𝐶𝑝𝑎 ∈

(0, 2.7], the different periodic cycles are shown and the most chaotic behaviors are shown in the range of 

𝐶𝑝𝑎 ∈ [2.8, 4.7] except some values of 𝐶𝑝𝑎. The population dynamics over time is shown in Fig. 2. It is 

clearly observed that the total population is oscillating with different period for 𝐶𝑝𝑎 = 0, 0.2⁡ and 0.7. 

However, the aperiodic cycle or chaotic pattern is shown for 𝐶𝑝𝑎 = 0.4  

 

 

Figure 2: Dynamics of the LPA model for different values of 𝐶𝑝𝑎. For 𝐶𝑝𝑎 = 0, 0.2 and 0.7, these graphs 

show periodic cycles. The total population is oscillating periodically; there are 8 periodic cycles and 3 

periodic cycles, respectively. For a = 0.4, the population shows aperiodic or chaotic pattern. 
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3. Results 

3.1 Density Bifurcation Diagram with Noise 

There are several interesting things that can happen when the system is receiving noises. One of things is 

the pattern of noise-induced chaos in ecological system [5,9]. In general, the noise-induced chaotic pattern 

is referred to as an attractor with sensitive dependence on initial conditions, which changes the structure of 

the system upon switching off the noise. Here, we investigate the effect of noises on the LPA model. 

 

For very small amplitude noise, the density bifurcation diagram shows qualitative changes in structures of 

the total population. In the deterministic skeleton, both periodic cycles and chaotic pattern co-exist in the 

region of 𝐶𝑝𝑎 ∈ [2.8, 4.7] . However, for the amplitude of noise (ϵ) = 0.00001,⁡the region of 𝐶𝑝𝑎 ∈

[2.8, 4.7] is completely chaotic region, that is, no periodic cycles in the total population exist. This implies 

the noise can induce the chaotic pattern in an insect population. Furthermore, increasing the amplitude of 

noise is to blur the bifurcation diagram. Structure is still apparent even for ϵ = 0.0001 . However, 

increasing the amplitude results in destroying the structure of bifurcation diagram. 

 

Figure 3: The effect of noise on the total population. Noise induces chaos and blur the bifurcation 

diagram. 
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3.2 Density Bifurcation Diagram for Diffusive Coupled System. 

Numerous studies have demonstrated that diffusion changes dynamics patterns in biological and ecological 

systems. A continuous predator-prey model in which two populations diffuse along a spatial gradient is 

shown to exhibit temporal chaotic pattern at a fixed point in space. In other words, low diffusion values 

induce a periodic system to aperiodic or chaotic behavior with sensitivity to initial conditions [10]. In 

neuroscience, a strong diffusive connection in a diffusive coupled system induces synchronization of 

connected neurons in a complex neural network [11]. Here, we study the effect of diffusion in an insect 

population.  

 

Figure 4 shows the bifurcation diagram for the control parameter 𝐶𝑝𝑎 with different values of the diffusion 

amplitude coefficient (d = 0, 0.0001, 0.001, 0.005, 0.02 and 0.03, respectively). The figures show the effect 

of the diffusion on the total population density. Different values of the diffusion coefficient induce either 

chaotic or periodic population fluctuation. We used the following parameter values b=10.45, 𝐶𝑒𝑙 = 

0.01731,⁡𝐶𝑒𝑎= 0.01310, 𝜇𝑙  = 0.2 and 𝜇𝑎= 0.96. For the control case (before the system is diffusive 

coupled or the diffusion coefficient= 0), the mixed population fluctuation (periodic and chaotic pattern in 

the total population) exhibits mostly in the range of 𝐶𝑝𝑎 ∈ [0.28 0.47]. However, increasing the diffusion 

amplitude up to d = 0.005 results in expanding the range of 𝐶𝑝𝑎 where the population fluctuation exhibits 

the chaotic behavior. Furthermore, for the higher value of d=0.005, the density bifurcation diagram is 

shown to exhibit the different structure from the one with lower values of the diffusion coefficient.  

 

Figure 5 shows the dynamics of the LPA model for different values of the diffusion coefficient with fixed 

𝐶𝑝𝑎=0.02, 0.2, 0.4, and 0.7, respectively. In the deterministic skeleton, the total population density exhibits 

4 periodic cycles for 𝐶𝑝𝑎= 0.02. However, increasing the diffusion coefficient values results in changing 

the dynamics from the periodic cycles to chaos and chaos to periodic pattern in their total population density 

diagram. For 𝐶𝑝𝑎= 0.4, the total population shows aperiodic cycles or chaos. The diffusion term derives 

the total population density to the periodic pattern with 7 periodic cycles in the region of the diffusion 

coefficient between 0.033 and 0.038. Figure 6 shows how small change in diffusion coefficient induces 

chaotic pattern from periodic cycles.  
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Figure 4: The bifurcation diagram for the control parameter 𝐶𝑝𝑎 (x-axis) with different values of the 

diffusion amplitude coefficient (d = 0, 0.0001, 0.001, 0.005, 0.02 and 0.03, respectively).  
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Figure 5: Dynamics of the LPA model for different values of the diffusion coefficient with fixed 𝐶𝑝𝑎=0.02, 

0.2, 0.4, and 0.7, respectively 
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Figure 6: Histograms of how the small perturbation of the diffusion amplitude affects the population 

fluctuation and how the periodic cycles of the total population changes into a chaotic pattern by a small 

change in diffusion. 

 

5. Conclusion 

We discussed the dynamics of total population with the LPA model. In this discussion, we used the density 

bifurcation diagram (without noise and with noise) to see the dynamics. The effect of noise is to blur the 

density bifurcation diagram. Small-scale features blur most easily and large-scale features retain their 

characteristics longer as the amplitude of noise increases. In the experimental setting, therefore, in the last 

panel of Figure 3, we show predicted population densities for 𝐶𝑝𝑎 = 0 to 1. No fine detail is visible. The 

only relic of the solution is the change in the lower population limit as a function of 𝐶𝑝𝑎. Even if the noise 

constant is large enough, the dynamics of total population is not extinct. In the diffusion case, we have 

shown that there is another parameter that may induce chaos, the diffusion coefficient. Conversely, we have 

also shown that diffusion can also induce periodicity in a previously chaotic system. 

Can diffusion induced chaos be observed? In an experimental setting, if the equations for the evolution of 

the system are unknown, then one is at most able to determine if the dynamics is chaotic or not. However, 

in deliberately designed experiment, when the equations for the dynamics are known and the diffusion 

coefficient can be freely control, one can certainly study if diffusion induced chaos has occurred and what 

diffusion coefficient level can induce chaos. 
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