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Abstract 

To undergraduate students of sociology, and who are required to take at least one course in research 

methods, understanding of the CLT requires the successful negotiation of a number of hurdles, lack of 

training in mathematics in general and mathematical statistics in particular, and a sociological aversion 

to the “bell curve” or normal distribution. This paper critiques the “sweetening” approaches to conduct 

experiments that construct the Central Limit Theorem in the classroom. It proceeds to outline a simple 

type of experiment based on a discrete rectangular population distribution, and offers a proof, 

understandable to sociology undergraduates, of how a discrete rectangular population distribution gives 

rise to a continuous sampling distribution. 

 

1. Introduction 

The Central Limit Theorem (CLT) is a fundamental theorem of mathematical statistics. It has the 

characteristic of fundamental theorems in other branches of mathematics in that it conveys a profound and 

partly surprising finding. While some statisticians point out that there are two fundamental theorems in 

mathematical statistics—the Law of Large Numbers (LLN) and the CLT—and refer to the CLT as the 

“second” fundamental theory of statistics (e.g. Grimstead and Snell 1997), they would not dispute the much 

more surprising result of the CLT compared to the LLN (Wicklin 2014). Indeed, the LLN says that large 

random samples reflect the population. This result is not all that unexpected. It is also often confused with 

the much more extensive result of the CLT, that in repeated large (simple) random samples taken from a 

population, the distribution of the sample mean is normal, with a mean equal to that of the population (μ) 

and a standard deviation equal to that of the population divided by the square root of the sample size. The 

most exhilarating part of the result is that this holds regardless of the population distribution. When we 

consider that the normal distribution is a continuous distribution, with the range of real numbers on the 

horizontal axis, while the population distribution may be very non-normal (e.g. a rectangular or uniform 

distribution), with only a few discrete values, this results is definitely not intuitively obvious. 

 

For undergraduate students of sociology, and who are required to take at least one course in research 

methods, understanding of the CLT requires the successful negotiation of a number of hurdles, lack of 

training in mathematics in general and mathematical statistics in particular, and a sociological aversion to 

the “bell curve” or normal distribution. As a representation of actual populations, the normal distribution 
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has known its heyday. Notably, the famous Belgian statistician and sociologist Adolphe Quetelet (1796-

1874) utilized it to compute deviations in human behavior and characteristics (see Landau and Lazarsfeld 

1968). Today, the average sociology student is understandably weary of the use of the normal distribution 

in describing human traits as average or deviating from the average in a negative or positive direction, and 

the research methods professor’s task partly involves re-introduction of the normal distribution as a vital 

one for quantitative data analysis. The larger task is to convey the “truth” of the CLT to sociology students 

without having to rely on the formal proof. While some form of experimentation is often used in 

“constructivist” approaches that constitute a relatively easy alternative to a formal proof, this method 

requires a leap from the classroom experiment to the situation where many more and larger samples are 

taken from the population. While this leap can be taken constructively by applying combinatorics, 

sociology students do not typically possess skills in this area.  

 

During the 15 years I spent as an economics professor, I found it rather easy to introduce students to the 

Central Limit Theorem, by means of (1) a simple experiment of drawing chips or marbles of four colors 

from a closed container of a fixed total number of them, usually 100; (2) using combinatorics to 

demonstrate that the rudimentary normal-looking curve generated via our experiment becomes more 

“normal” as the number of samples increases indefinitely; and (3) relying on a statistical program—such 

as TSP—to simulate the sample selection of larger-size samples out of non-normal populations. I often 

relied on a section in my own textbook (Author 1989, pp. 257-261) to show the outcome of the second step 

and to formulate the Central Limit Theorem. For other situations than the CLT, such as confidence 

intervals, it is relatively easy to incorporate computer simulations in the classroom, and these are also 

covered in the literature, as exemplified by Dambolena (1986), Kennedy, Olinsky, and Schumacher (1990), 

Ng and Wong (1995), West and Ogden (1998), and Paret and Martz (2008). A review of the relevant 

literature is provided by Mills (2002). The CLT is not so straightforward to convey by simulation, since 

the computer simulation has to include a routine that selects random samples of a given size. When students 

can only see the end result of such random sample selection, they may not necessarily be convinced that 

the outcome is truly illustrating the theorem or concept at hand. 

 

After joining the sociology group of a multidisciplinary department in 1997, I began to look for ways to 

explain the meaning of the CLT using essentially only the first of these three steps. At the same time, I 

noticed that professors teaching research methods to sociology students often “sweetened” the CLT by 

taking samples from a population of M&Ms, with the accompanying objective that the students can eat the 

experiment. Nearly two decades later, I remain convinced that M&Ms do not lend themselves well to such 

experiments, as explained in the next section. 

 

2. Sweetening the CLT? 

Let us start with the consideration that the majority of students would only want to eat M&Ms that only 

they have touched. That does not leave many options for a constructivist experiment. Suppose that we 

purchase a number of small packages of the popular candy, let each student open their bag and count the 
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number of reds out of the total. That result can then be compared with the number of reds that are in the 

population produced by the Mars Company, a number it is willing to share with the public. There are three 

problems with this experiment. The first problem is that we are making the implicit assumption that each 

bag constitutes a simple random sample of the total M&Ms produced. Since the bags are filled by a machine 

that distributes colored candies according to preset percentages for each color, this is not a valid 

assumption. The second problem is that we would not clearly be able to illustrate how the continuous 

normal distribution is associated with non-normal and discrete distributions. The third problem relates to 

the first, and that is that this experiment is more appropriate to construct the law of large numbers than the 

CLT, i.e. in repeated trials, the population frequency of any color of the M&Ms is approximated, as the 

mean of the means for the students’ relative frequencies of “red” will reveal.  

 

M&Ms can be used for experiments in the classroom, in experiments that require each candy bag to be 

examined by one student only, and only once (they do get sticky after a while, despite their hard shell). For 

example, one can test by means of a Chi-squared test whether the counts for each color per bag are the 

same. This is a fun exercise, and the candy does not get germ-covered or sticky in the process, culminating 

in an enjoyable snack in addition to increased understanding of the Chi-squared test. Paret and Martz (2008) 

provide a nice overview of ways in which statistics can be sweetened, using Minitab 16. Not surprisingly, 

the Central Limit Theorem is not one of the five tests reviewed in their paper. This does not mean that 

M&Ms cannot be used at all in a constructionist experiment to demonstrate the CLT. However, the M&Ms 

will (1) be touched by more than one student (yuck) and (2) become sticky before the experiment is 

concluded. Here are the steps of one such experiment: (1) open a number of small M&M bags, and empty 

them in a container that does not reveal the colors (There is no need to have a bag for each student); (2) 

count the number of each color represented by the M&Ms in the bowl; (3) give a numerical code to each 

color (e.g. red = 1, brown = 2, and so on); (3) construct the frequency distribution for this population and 

compute the population mean and variance; (4) let each student draw a given number of M&Ms at random, 

with replacement (here is where the stickiness comes in); (5) shake the container and move on to the next 

student; (6) let each student compute 𝑿  using the numerical codes associated with each color1; (7) let 

students plot their own value of  𝑿 in a graph on the blackboard, and voila. It is doubtful that students will 

want to eat any of the pieces of candy after the experiment is concluded. To be fair, such experiment can 

be conducted with candies wrapped in solid-color cellophane, which would allow step (8): divide the 

candies among the students and eat away. 

 

3. A Useful Constructionist Approach 

It is easier to do the experiment described at the end of the previous section if one uses a well-defined 

population that is non-normal. After all, while a normal population distribution also results in a normal 

sampling distribution, it is much more exhilarating for students (and their teachers) to begin with a very 

non-normal distribution. For CLT experiments, I keep a bag of 100 glass beads in my filing cabinet, with 

                                                        
1 This part of the experiment is also a useful way to show how qualitative information such as a color can be given a numerical code. 
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equal numbers of each of the colors clear (white), yellow, blue and green.2 The population is easily 

visualized and plotted, and its mean and standard deviation easily computed. In fact, this is a good review 

for students who have difficulty computing variances and standard deviations. We assign codes as follows: 

clear = 1, yellow = 2, blue = 3, and green = 4. The population mean μ equals 25 x (1 + 2 + 3 + 4) divided 

by 100, which yields 2.5. The variance and standard deviation are then computed as in the following 

familiar worksheet:3 

 

 

 X μ  X – μ  (X – μ) squared 

 1 2.5  -1.5   2.25 

 2 2.5  -0.5   .25 

 3 2.5  0.5   .25 

 4 2.5  1.5   2.25 

 

This is a good place to remind students that the sum of the absolute deviations (X – μ) will always be zero, 

so we square the deviations prior to computing the variance, which is the sum of the last column divided 

by 4, or 5/4 = 1.25. The standard deviation is √1.25 or 1.12, rather large, considering that the range of 

values is from 1 to 4, and the difference between the highest (or lowest) values and the mean is 1.5 in 

absolute value. The outcome that for the rectangular distribution the variance is identical to this difference 

is not to be expected for all rectangular distributions. The formula for the variance of a discrete uniform 

distribution is (k2 -1)/12, where k = highest value – lowest value + 1 (in our case, 4 – 1 + 1 = is 4. 1/12 of 

k2 -1 equals 1.25, which is the same as we computed in our little worksheet above.  

 

The beads are placed in a dark-colored envelope or bag, which is mixed before each student draws the 

assigned number of beads in one grab, counts the beads, records the colors, and computes her  𝑿 with the 

number codes. The results are recorded in tables, such as Tables 1-4 that are the outcome of four such 

experiments. We can easily see that the mean of the sampling distribution is very close to that of the 

population, and we can compute the standard deviation using SPSS or another computer or calculator, and 

see that it is indeed substantially smaller than that of the population. Plotting our results often yields a 

frequency distribution that indeed seems to approach a normal distribution. Let us not forget that the 

experiments presented in Tables 1-4 are based on very small samples. If n increases to the rule of thumb 

value for a large sample, 30, the results will be very striking indeed. However, such experiment would 

require the aid of a computer program.4  

 

 

 

                                                        
2 I have used variants of this experiment since the 1980s (Bechtold and Johnson 1989), and do not make a claim to its originality. 
3 This provides an opportunity to review the fact that, if there are 25 beads of each color in this rectangular distribution, the variance and 

standard deviation can be computed as if there were only one of each color. 
4 This can be done with Minitab, for example. 
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TABLE 1 

25 Simple Random Draws from a Rectangular Population of 100 Beads  

(25 Each White, Yellow, Blue, and Green; Coded as W=1, Y=2, B=3, G=4) 

n = 3 

Draw Colors  Numbers 𝑿  Draw Colors  Numbers 𝑿  

1 WBG  1 3 4  2.67  14 WWG  1 1 4  2 

2 WBY  1 3 2  2  15 YYW  2 2 1  1.67 

3 BBY  3 3 2  2.67  16 GGY  4 4 2  3.33 

4 WBB  1 3 3  2.33  17 YGB  2 4 3  3 

5 WWY  1 1 2  1.33  18 GGB  4 4 3  3.67 

6 WGB  1 4 3  2.67  19 WYY  1 2 2  1.67 

7 WGB  1 4 3  2.67  20 YGB  2 4 3  3 

8 YGB  2 4 3  3  21 WWB  1 1 3  1.67 

9 WYB  1 2 3  2  22 YYB  2 2 3  2.33  

10 YYY  2 2 2  2  23 WGB  1 4 3  2.67 

11 WGG  1 4 4  3  24 GGB  4 4 3  3.67 

12 YGB  2 4 3  3  25 GBY  4 3 2  3 

13 WWW  1 1 1  1   

 

μXbar = 2.48  μ = 2.5 

TABLE 2 

25 Simple Random Draws from a Rectangular Population of 100 Beads  

(25 Each White, Yellow, Blue, and Green, Coded as W=1, Y=2, B=3, G=4) 

n = 4 

Draw Colors  Numbers 𝑿  Draw Colors  Numbers 𝑿 

1 BBYY  3 3 2 2  2.5  14 GBBB  4 3 3 3  3.25 

2 GGGY  4 4 4 2  3.5  15 WWWG 1 1 1 4  1.75 

3 WYGB  1 2 4 3  2.5  16 WYGG  1 2 4 4  2.75 

4 GGGW  4 4 4 1  3.25  17 WYGG  1 2 4 4  2.75 

5 WYGB  1 2 4 3  2.5  18 GGYB  4 4 2 3  3.25 

6 WGGY  1 4 4 2  2.75  19 GGYB  4 4 2 3  3.25 

7 WGGB  1 4 4 3  3  20 GGGW  4 4 4 1  3.25 

8 BBBB  3 3 3 3  3  21 BBWW  3 3 1 1  2 

9 GYBW  4 2 3 1  2.5  22 GGGB  4 4 4 3  3.75 

10 WYBB  1 2 3 3  2.25  23 WYGB  1 2 4 3  2.5 

11 WYBG  1 2 3 4  2.5  24 GGGY  4 4 4 2  3.5 

12 WYGG  1 2 4 4  2.75  25 WWYY 1 1 2 2  1.5 

13 WWYB 1 1 2 3  1.75   
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μXbar = 2.51  μ = 2.5 

 

TABLE 3 

25 Simple Random Draws) From a Rectangular Population of 100 Beads  

(25 Each White, Yellow, Blue, and Green, Coded as W=1, Y=2, B=3, G=4) 

n = 5 

Draw Colors  Numbers 𝑿  Draw Colors  Numbers 𝑿  

1 BBWWY 3 3 1 1 2 2  14 WWWBB 1 1 1 3 3 1.8 

2 GWYBB 4 1 2 3 3 2.6  15 GBBYY 4 3 3 2 2 2.8 

3 YYYYG 2 2 2 2 4 2.4  16 WWWBB 1 1 1 3 3 1.8 

4 WWBBB 1 1 3 3 3 2.2  17 WWYBG 1 1 2 3 4 2.2 

5 YBBBG 2 3 3 3 4 3  18 WYBBG 1 2 3 3 4 2.6 

6 YYBBG 2 2 3 3 4 2.8  19 YYGGB 2 2 4 4 3 3 

7 YYYGB 2 2 2 4 3 2.6  20 BBGGW 3 3 4 4 1 3 

8 WBBGG 1 3 3 4 4 2.8  21 GGGBY 4 4 4 3 2 3.4 

9 GGBYW 4 4 3 2 1 2.8  22 YYYGB 2 2 2 4 3 2.6 

10 YYWGB 2 2 1 4 3 2.4  23 WWWBY 1 1 1 3 2 1.6 

11 WWYYG 1 1 2 2 4 2  24 WGGGB 1 4 4 4 3 3.2 

12 GYWWB 4 2 1 1 3 2.2  25 YBGGG 2 3 4 4 4 3.4 

13 WYYYG 1 2 2 2 4 2.2 

     

μXbar = 2.55  μ = 2.5 

 

TABLE 4 

25 Simple Random Draws) From a Rectangular Population of 100 Beads  

(25 Each White, Yellow, Blue, and Green, Coded as W=1, Y=2, B=3, G=4) 

n = 6 

Draw Colors  Numbers 𝑿  Draw Colors  Numbers  𝑿  

1 YYBBGG 2 2 3 3 4 4 3  14 WWYBBG 1 1 2 3 3 4 2.33 

2 WWWBBB 1 1 1 3 3 3 2  15 WWBBBG 1 1 3 3 3 4 2.5 

3 YYYBBG 2 2 2 3 3 4 2.67  16 YBBBGG 2 3 3 3 4 4 3.17  

4 WYYGGB 1 2 2 4 4 3 2.67  17 WWWYYB 1 1 1 2 2 3 1.67 

5 WWWYYB 1 1 1 2 2 3 1.67  18 WWYGGG 1 1 2 4 4 4 2.67 

6 WYYYBG 1 2 2 2 3 4 2.33  19 WWWYBG 1 1 1 2 3 4 2 

7 WWYYBG 1 1 2 2 3 4 2.17  20 WWYBBG 1 1 2 3 3 4 2.33 

8 WWYBGG 1 1 2 3 4 4 2.5  21 WYBBGG 1 2 3 3 4 4 2.83 

9 WYYBBG 1 2 2 3 3 4 2.33  22 YYBBGG 2 2 3 3 4 4 3  
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10 WYBGGG 1 2 3 4 4 4  3  23 WYYBBB 1 2 2 3 3 3 2.33  

11 WWWYBB 1 1 1 2 3 3 1.3  24 WYYYBB 1 2 2 2 3 3 2.17 

12 WYYBGG 1 2 2 3 4 4 2.67  25 WYYBBB 1 2 2 3 3 3 2.33 

13 WYBBGG 1 2 3 3 4 4 2.83  

  

μXbar = 2.49  μ = 2.5 

 

4. The Standard Deviation of the Mean, or the Standard Error 

While the experiment also clearly shows that the standard error of the mean is much smaller than the 

population standard deviation, students are not automatically convinced that it equals σ/√n. This part of the 

theorem can be demonstrated very straightforwardly, however. Many sociology students possess sufficient 

mathematical skills to understand that (1) the variance of a constant times a variable, or Var(CX) equals 

the square of the constant times the variance, or C2 Var(X). Most also remember the quadratic formula 

from their high school years, so that it becomes clear that the X need to be independent (as in simple random 

samples) for the covariances to disappear. Accordingly, Var (𝑿 ) = 1/n2 Var (X1 + … + Xn) = n/n2 Var (X), 

so that the standard deviation of the sample mean equals σ/√n. Most of the students in a sociology research 

methods class can derive this result. 

 

5. Another and More Exciting Part of the Theorem 

Our experiment outlined in Section 3 and illustrated by four actual classroom experiments presented in 

Tables 1-4 does not provide a clear way to show how the discrete population distribution gets transformed 

into a sampling distribution of the mean that is continuous. It is clear from the experiments, however, that 

increasingly large sample sizes yield an increasing number of possible values on the 𝑿 axis. We can do 

better than this, however, and introduce an actual proof that is within the realm of understanding of the 

typical sociology student.  

 

The method of mathematical proof by induction relies directly on the properties of natural numbers, which 

progress in a clear pattern 1, 2, 3, and so on. Proof by induction can be envisaged when something needs 

to be proved where a progression of the natural numbers plays a crucial role. Such is the case when we 

think about taking larger and larger samples out of a population. The sample size thus increases from the 

smallest possible size of 1 to 2, 3, 4, and going on to infinity. We need to convince students that, even 

though there are only four distinct (discrete) values on the horizontal axis for the population, an infinite 

number of values on the horizontal axis results for an infinitely large sample size. 

 

It is certainly possible to construct part of this argument experimentally. Table 1 shows that when n = 3, 

we have values for 𝑿 that include the original four values in the population, 1, 2, 3, and 4, and the additional 
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values of 1.33, 1.67, 2.33, 2.67, 3.33, and 3.67. While 6 new values are occupied on the X-axis, they are 

nicely spread out, with two new values between any given values in the population. Thus, a sample size of 

n = 3 has added n – 1 additional values between each population value. This finding carries over to the 

larger sample sizes in Tables 2-4. When n = 4, the values between the population values are now 1.25 (not 

all possible outcomes for the sample mean appear in the experiment shown in the table, but they are easily 

explained as possible outcomes for 𝑿), 1.5, 1.75, 2.25, 2.5, 2.75, … , 3.25, 3.5, and 3.75. By now, students 

have also noticed how evenly spread these “in-between” 𝑿 outcomes are in relation to the population 

values. It is easy to verify in a class experiment that n = 4 leads to n – 1 = 3 such in-between values, n = 5 

leads to 4 in-between values, and n = 6 has 5 in-between values. For example, in this latter case, we have 

between 2 and 3 the five new values 2.17, 2.33, 2.5, 2.67, and 2.87.  

 

The formal extension and proof that each addition to the sample size also adds one additional outcome for 

𝑿  is fairly straightforward. Any proof by induction has only two steps. The first is to demonstrate the 

result for the smallest value of the natural number involved, and the second (harder) is to show that the 

result holds for any two consecutive values of the natural number involved. If these two steps are 

demonstrated, the result holds for any value of the natural number. This proof is outlined below for the 

case of the 4-value discrete uniform distribution, with the incremental sample size following the 

progression of natural numbers, that is, a sample size of 1, or 2, or 3, or 30, or 5000, etc. 

 

In the first step of the proof, we demonstrate that the result holds for n = 1. Indeed, when n = 1, only the 

outcomes 1, 2, 3, or 4 are possible, and zero additional values are possible for 𝑿. This completes the first 

step. 

 

In the second step, we pick a sample size n = k. The sample mean 𝑿  is the sum of k natural numbers for 

our uniform discrete distribution. The smallest possible 𝑿 occurs when each item picked is the white one, 

with a value of 1. So 1 occurs k times, and  𝑿 = k (1)/k = 1. The next highest value for 𝑿 occurs when all 

but one of the items picked is the white one (value of 1), and one is yellow (value of 2), so that we get  𝑿 

= (k – 1 + 2)/k = (k + 1)/k = 1 + 1/k. The next largest value is (k + 2)/k = 2 – 1/k, and so on, until we get 

the largest possible outcome of 2k/k = 2. Thus, gathering the results together, there are k – 1 new values 

for 𝑿   between the values 1 and 2. Extending the same reasoning to the possible values between 2 and 3 

again yields k – 1 new values, and the same goes for the values between 3 and 4. Since we have 

demonstrated the result for steps 1 and 2 of the proof, we have established the proof for the rectangular 

distribution. The proof can easily be extended to other types of discrete distributions. 
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6. Conclusion 

The meaning of the Central Limit Theorem is notoriously difficult to convey to students who are not well 

versed in mathematical statistics, and undergraduate sociology students certain are among these. A well-

designed experiment, however, can help students to “construct” the theory rather than to formally prove it. 

The portion of the theorem that implies that discrete population distributions nevertheless have sample 

distributions for the mean that approach a normal and therefore continuous distribution, can be understood 

by the constructivist approach of the classroom experiment, but students can learn to prove this part of the 

theorem with tools no more extensive than those obtained in the very basic mathematics competency 

program that exists in all universities. 
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