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Abstract 

Efficient higher-order accurate finite volume schemes are developed for the threedimensional Poisson’s 

equation based on optimizations of an equation error expansion on local control volumes. A weighted 

quadrature of local compact fluxes and the flux integral form of the equation are utilized to formulate the 

local equation error expansions. Efficient quadrature weights for the schemes are then determined 

through a minimization of the error expansion for higher-order accurate discretizations of the equation. 

Consequently, the leading numerical viscosity coefficients are more accurately and completely determined 

to optimize the weight parameters for uniform higher-order convergence suitable for effective numerical 

modeling of physical phenomena. Effectiveness of the schemes are evaluated through the solution of the 

associated eigenvalue problem. Numerical results and analysis of the schemes demonstrate the 

effectiveness of the methodology. 
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1. Introduction 

The problems of interest in this work have been extensively investigated and we describe some of the 

relevant research. Higher order compact schemes for elliptic equations have been well-investigated, 

[5,23,25–28], since they achieve high-order accuracies without significant increases in the bandwidths of 

the coefficient matrices. In [19,25,27], and other application problems [6,17,31], the univariate Taylor 

series expansion is used to derive the finite difference approximations of individual terms of the differential 

equation and then coupled to obtain the schemes for multiple spatial dimensions. Subsequently, truncation 

errors are formulated to assess the accuracies of the schemes. 

In [12,13], the multivariate Taylor expansion is used in developing higher-order finite volume schemes for 

elliptic equations in two spatial dimensions. First, local approximations for the unknown and the source are 

utilized to formulate an equation error expansion for the integral form of the equation. Generalized 

weighted quadratures of the local approximations are utilized for the equation error expansions based on 

flux integral formulations of the equation in order to capture all local compact fluxes and preserve operator 
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properties of the equation within the computational domain. The weight parameters are subsequently 

determined to minimize this wellbalanced error by eliminating the leading terms of the error. As a result, 

the leading coefficients of the resulting residuals which are the numerical viscosity coefficients are 

consequently more accurately and completely determined for the computational domain. These viscosity 

coefficients which describe the growth rates of local residual errors are then optimized by right choices of 

quadrature weights for the schemes to ensure uniformly diminishing residual errors. In [11], the approach 

was extended to develop a space-time finite volume differencing framework for effective higher-order 

accurate discretizations for parabolic equations. 

In this paper, we utilize the local equation error expansion approach [11–13] to develop higher-order 

accurate discretizations for the three-dimensional Poisson’s equation based on approximations of the flux 

integral formulations of the equation. 

This ensures that the resulting residual errors are more accurately and completely determined for optimal 

quadrature weights for the discrete equations and further guarantee uniformly converging residual errors. 

That is, the focus is on the efficient representation of both the solution and the source term in the discrete 

representations of the equations. Our work in [11,12] shows that the rates of higher-order accurate 

convergence of the solution depends on efficient discretization of the source term in the discrete 

representation of the equation. While the 19-point stencil and the 27point stencil may be used for the 

solution [14,25,27], the associated stencils to be used for the source term should be emphasized as either 

the 7-point stencil or the 19-point stencil or the 27-point stencil. By using the equation error expansion 

which combines all local compact fluxes of the solution and their corresponding source term 

approximations in describing the resulting residual errors, the errors associated with all the various stencils 

for the source term may be optimally assessed. The weighted quadrature descriptions express the 

approximation of the divergence of the flow about each point within the computational domain and offers 

the right framework to allow for effective local flux improvements to ensure more uniform higher-order 

accuracies. Hence, there is effective representation of fluxes to neighboring grid points which ensures 

conservation of flow within the computational domain. 

The equation error expansions allow for flexible configurations of local grid-point clouds [7,10,16] to be 

adopted as desired in order to effectively approximate fluxes in all compact directions of neighboring grid 

points needed to account for high frequencies in data distributions [15,30]. The structured distribution of 

grid points [1] ensures that accuracy estimates of the local residual error can be guaranteed. Thus, a local 

equation error [2] is formulated for the integral formulation of the equation on the control volume instead 

of just the coordinate directions as in traditional finite difference formulations [19,25]. This error is then 

locally constrained by the derivatives of the equation through the Cauchy-Kovalevskaya procedure [20] 

and then minimized by eliminating the leading terms iteratively to determine the weights to approximate 

the equation. These weights are further optimized to control the growth of residual errors and ensure 

uniformly diminishing computational errors and robust higher-order accurate convergence of the schemes. 

The paper is organized as follows: In Section 2, we present the discretization framework of the method for 

a general elliptic equation in flux divergence form in 2. In Section 3, we apply the method to develop new 

efficient higher-order schemes for the three-dimensional Poisson equation. We discuss quadrature-weight 
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optimizations of the residual errors for consistent fourth-order convergence for the resulting schemes in 

Section 4. In Section 5, we apply the resulting schemes to discuss the solution of the associated eigenvalue 

problem for the unit cube to demonstrate the efficiency of the numerical schemes. Numerical errors for the 

eigenvalue problem associated with different local stencil supports for the discretizations are demonstrated 

in Section 6. Sixth-order accurate discretizations for the three-dimensional Poisson equation is discussed 

in Section 7 and conclusions are presented in Section 8. 

 

2. Finite Volume Differencing Discretization Framework 

We describe the finite volume differencing discretization method for the elliptic boundary value problem 

−∇ · (κ∇u) = q, in ∈ Ω (2.1) 

u = g, on ∈ Γ (2.2) 

where Ω is a bounded domain in 2 or 3 with a smooth boundary Γ. We assume that κ ∈ L∞(Ω) is positive 

and the source function q ∈ L2(Ω). 

To develop a higher-order accurate discretization for (2.1) with a robust computational convergence, the 

discretization framework must effectively be able to represent all local fluxes to as many neighboring grid 

points as possible within the computational domain. That is, the framework must be conservative of all 

local compact fluxes [4] required for consistent and robust higher-order accuracies. We therefore formulate 

the equation (2.1) over local control volumes which can support all possible local fluxes to neighboring 

mesh points rather than independently in univariate coordinate directions [24] as in traditional finite 

difference formulations. 

We first write the integral formulation of the equation (2.1) as 

  (2.3) 

where dv = dxdy in 2 or dv = dxdydz in 3. By the divergence theorem, the equation (2.3) is rewritten into the 

flux integral balance form as 

  (2.4) 

where ν is the unit outward normal to the boundary S of the domain Ω. 

Now, consider the domain Ω partitioned into control volumes where each control volume is identified by 

its centroid mesh point and a distribution of neighboring mesh points. A uniform distribution of grid points 

is utilized for this work but the approach is applicable for a non-uniform distribution as well. A combination 

of uniform distribution for regular grid points and non-uniform distribution for irregular grid-points may 

be adopted [6]. The grid-point clouds for neighboring control volumes overlap [29] to create interlocking 

configurations which help to capture and track local fluxes effectively on the computational domain 

necessary for higher level of conservation and robust higher-order computational convergence. 

We thus describe (2.4) about the centroid of each control volume Qh by 

  (2.5) 
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where νh is the unit outward normal vector to Sh which is the boundary of Qh. The equation (2.5) represents 

the conservation of u about the centroid grid point of the control volume such that variations in the local 

source term distribution within the control volume are compensated for by the radial fluxes through the 

boundary Sh [9]. That is, the distribution of u within the control volume Qh is completely determined by the 

sum of all diffusive radial fluxes about the centroid and the corresponding source term distribution. Hence 

the resulting equation error E(u), about the centroid grid point is given by 

 , (2.6) 

where Qh, a typical control volume in 2 with a centroid X0(xm,yn), is described as Qh = 

[xm−h,xm+h]×[yn−h,yn+h] and illustrated by Figure 2.1. In illustrating the control volume Qh with centroid 

X0 by a finite cloud of quadrature points X1(xm + 

), 

 

Fig. 2.1. Local Control Volume, Qh in 2, illustrating local compact fluxes to neighboring quadrature points 

within the computational domain with X0(xm,yn) as the centroid 

X6(xm − h,yn − h), X7(xm,yn − h), and X8(xm + h,yn = h), as in Figure 2.1, Qh overlaps with control volumes 

centered on all these neighboring quadrature points. 

In utilizing a finite number of quadrature representation points on the computational domain to 

approximate the local equation error, the discrete representation of (2.6) is therefore nonzero. In fact, we 

approximate the local diffusive flux about each centroid grid point (xm,yn) by a generalized weighted 

quadrature of the radial fluxes to the neighboring cloud of quadrature points by 

 ) (2.7) 

where ni is number of quadrature points, wi is the collocation weight for the local directional flux ∇u·νhi = 

(ui−u0) along the radial direction νhi toward location of ui. Based on the adopted set of compact quadrature 

points, the quadrature approximation of (2.4) about the centroid becomes 

 , (2.8) 

where κ(u0) is an averaging value of κ(u) about the centroid. The resulting residual is described as 
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= 0 (2.9)  EQh(u) =

Qh 

where the weights are constrained for a consistent numerical approximations such that 

 . (2.10) 

 ∂Qh Qh 

Clearly, the framework as described in (2.8) allows for regular and non-regular distribution of quadrature 

points locally about each centroid adaptively. 

For a more accurate modeling of the local equation error (2.9) using a generalized weighted quadrature 

description in 2 for instance, we adopt a natural local multivariate Taylor expansion for u about each 

centroid (x0,y0) by 

  (2.11) 

where φ is sufficiently smooth and locally defined everywhere such that 

φ(x0,y0) = u(x0,y0) 

 ∂mφ ∂mu 

∂xi∂yj (x0,y0) = ∂xi∂yj (x0,y0). 

Consequently, we define the local source term expansion by 

  (2.12) 

where Δκ is the local differential operator description of (2.1) with unique characteristics of the equation 

[21] such that 

 

In this way, any grid functions of φ and the source term f about each centroid may be determined and 

utilized to describe the approximations the integral fluxes in (2.4) in the form of (2.8). Thus, the grid point 

spacings may not necessarily need to be uniform and can be adaptively determined locally. As a result, any 

desired quadrature points about the centroid may be utilized or included in the approximation of the flux 

integrals to discretize (2.4) locally. The radial fluxes towards the neighboring quadrature points describe 

their relative dependencies locally on the total flux within the computational domain and therefore weighted 

accordingly. 

To enable effective higher-order accuracies, the Cauchy-Kovalevskayaprocedure [20] is applied to replace 

higher order derivatives of the local solution expansion φ in (2.11) and (2.12) by lower-order derivatives 

of the local source term f so that higher-order rates of change in u can be efficiently explained by local 

source term variations. Thus, we replace coefficients such φxxxx,φxxxy, φxyyy, etc in (2.11) and (2.13) by φxxyy, 

etc in order to more accurately represent local directional fluxes according to the physics behind (2.1) in 

the local expansions. Thus, the source term derivatives fx, fy, fyy, fxx, etc are introduced into (2.11) through 

higher-order derivatives of the equation (2.13) given as 
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. 

As indicated by (2.7), the local diffusive flux about each centroid mesh point (x0,y0) within the 

computational domain is described by a generalized weighted quadrature of all local compact fluxes by 

 ) (2.14) 

where ni is the desired number of quadrature points, and wi is the quadrature weight for the local directional 

flux (φi − φ0). The number of quadrature points forming the desired local distribution is part of the available 

degrees of freedom, which may be increased to improve local accuracy by incorporating sub-grid-scale 

points and nonlocal fluxes [3]. 

Thus, the local equation error expansion EQh about each centroid grid point is described as the differencing 

of the weighted quadrature approximations of the flux integrals by 

, (2.15)  EQh =

Qh 

where the weights are constrained by 

 = 1 (2.16) 

such that the differential and integral operator properties of the equations are preserved about each centroid. 

This error expansion measures the sum of the discrepancies of the separate possible approximations flux 

integrals using subsets of the quadrature points as in traditional finite difference approximations of (2.1). 

Thus, the formulation (2.4) offers a more complete accounting of local fluxes than traditional finite 

difference approximations which is a parameterized version of this framework. 

To obtain the specifics the discretization for (2.1), the discrete minimax approach is utilized to determine 

the quadrature weights to annihilate the leading terms of the error expansion. That is, the weights wi and vi 

are determined to annihilate the leading terms of the multivariate error expansion of (2.5) and to further 

regulate the growth of the residual error through efficient collocations of the local source terms fi and the 

solutions φi. The eventual order p of the approximation depends on the degrees of freedom available to 

discretize the equation (2.4) locally. 

One advantage here is that for various innovative ways [22,30] to incorporate local micro scale properties 

into the numerical model, our comprehensive approach is naturally efficient in determining the right 

sampling and collocations of the source required for effective and robust higher-order accuracy. 
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3. Finite Volume Discretization for Poisson’s Equation in 3D 

We formulate the equation error expansion (2.9) about each grid point using local compact cloud of 27 grid 

points within the three-dimensional computational domain. The corresponding control volume Qh, for a 

uniformly partitioned computational domain is illustrated in Figure 3.1 where the centroid grid-point 

function φ0, is surrounded by 26 mesh points distributed at three radial distances of  and  from 

the centroid. 

 

Fig. 3.1. A compact cloud of neighboring grid-point distribution about each Centroid 

As discussed above, we use the multivariate Taylor expansion φ(x0 + α,y0 + τ,z0 + ν) defined in the form of 

(2.11) for the local expansion of the solution about each centroid. In a likewise manner, the local source 

term is formulated on the local stencil by a corresponding multivariate expansion as described by 3D 

versions of (2.11), (2.12) and (2.13). Thus, the compact stencil grid point approximations are well defined 

for φi and their corresponding source terms fi everywhere about the centroid. 

For a regular uniform discretization of size h, we define and evaluate the local compact cloud of grid-point 

approximations of φi about the centroid by 

 

as well as the source term evaluations {fi}i=0,2,...,26. The equation error expansion about the centroid is then 

constituted as 

 

where equal quadrature weights are adopted for grid points at equal radial distances from the centroid. By 

substituting {φi}i=0,2,...,26 and {fi}i=0,2,...,26 into threedimensional version of (2.15), the terms of the error 

expansion of (3.2) are assembled in the form 
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  (3.2) 

where 

U2 = 1 − w1 − 4w7 − 4w19 

 1 1 1 

 F2 = β1 + 4β7 + 4β19 − w1 − w7 − w19 

 12 3 3 

 1 1 4 

 U4 = w1 − w7 − w19. 

 6 3 3 

By annihilating the leading coefficients U2, F2 and U4 of the error (3.2), the quadrature weights for the 

stiffness matrix H of the discretization are transformed as functions of w19 by 

 4 8 

w0 = 2 + h2w19 h 

 1 4 

w1 = −3h2 − h2w19 

1 2 w7 = − 2 + h2w19 (3.3) 

6h 

where w0 is the weight of centroid value φ0. Consequently, the quadrature weights for the mass matrix Q 

are transformed as functions of β7 and β19 by 

1 

β0 =  + 12β7 + 16β19 

2 

1 

 β1 =  − 4β7 − 4β19 (3.4) 

12 

and the leading terms of the local residual error Rφ0, are transformed as 

 

where 

 1 1 5 

L6 = β7 + β19 − 12 6 12096 
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 5 1 

 L7 = − w19 + β19. 

 6048 12 

As indicated in [13], diagonal dominance of H requires W19 to be chosen to satisfy 

  (3.6) 

for which the solution is found to be 

 . (3.7) 

Clearly, there are several possible ways to choose {w7,w19,β7,β19} for a fourthorder accuracy. In the next 

section, we discuss the optimization of such choices for higher-order convergence robustness of the 

discretization. 

 

4. Residual Error Optimization for Robust Higher-order Accurate Convergence 

For a uniform distribution of quadrature grid points as illustrated in Figure 3.1, higher-order accurate 

computational performances of the resulting schemes depend on the structure and convergence properties 

of the local residual error. That is, analysis of computational performances are focused on the asymptotic 

nature of the associated local residual errors for the equation error expansions which are of the form 

 

where the leading coefficients Ei and Fi are functions of the quadrature weights as described in (3.5). Thus, 

with the introduction of higher-order derivatives of f, the residual of the equation error expansion is 

reconstituted to describe errors in approximating the local manifold of the solution along the directions of 

local quadrature points. 

Now, the point-wise equation error residuals for the Poisson equation and its higher-order derivatives are 

of the form 

L(φ0) = φxx + φyy + φzz + f = 0 

 ∂p ∂p 

 ∂xi∂yj∂zk L(φ0) = ∂xi∂yj∂zk {φxx + φyy + φzz + f} = 0(4.2) 

where p = 1,2,3,··· and i + j + k = p. Notice that the coefficients of higher-order derivatives of φ and f have 

same signs. For the resulting discretization to produce robust higher-order computational convergence 

rates, the computational errors must diminish monotonically. After incorporating higher-order derivatives 

of the equation, the residual error terms assume the form of (4.2). Therefore, robust higher-order 

computational convergence requires that the coefficients of the higher-order derivatives of both φ and f 

within the leading terms of the residual error (4.1) maintain similar signs as described in (4.2). Thus, the 

weights β7, β19 and w19 as in the leading term of the residual error expansion (3.5) should be chosen such 

that 

 , and 0 (4.3) 
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to render the leading term of the residual error decreasing monotonically as resolution is refined. 

 

5. Laplacian Eigenvalue Approximations 

To computationally evaluate the higher-order accurate convergence of the resulting schemes, consider the 

associated eigenvalue problem for the three-dimensional Laplacian 

−Δu = λu, in ∈ Ω (5.1) 

u = 0, on ∈ Γ (5.2) 

where Ω is the unit cube [0 1] × [0 1] × [0 1]. As discussed above, the equation error for (5.1) about the 

centroid of each control volume Qh ∈ Ω as described in (2.6) is 

 . (5.3) 

The finite dimensional representation of (5.3) by utilizing the local uniform cloud of quadrature points on 

the control volume shown in Figure 3.1 may be described as 

 HΦ − ΛQΦ = ERφ0 (5.4) 

where Φ is a column vector of the discrete representation of the eigenfunctions on Ω which are locally 

supported by the quadrature points on the control volumes and Λ as the matrix of associated eigenvalue 

estimates. The mass and stiffness for the discretizations are Q and H respectively, and E is a column vector 

of ones. As described by the discrete approximation (5.4), the robustness of the resulting numerical schemes 

for higher-order accuracy depends on the convergence properties of the local residual error Rφ0 in 

convergence analyses. The eigenvalue estimates, Λ and the associated eigenfunctions Φ are a function of 

the geometry of the domain and the boundary conditions [8]. Therefore, the accuracy of the estimates Φ 

and Λ are a direct reflection of the level of effectiveness of the discretization method in sufficiently 

approximating the equation on the geometry of the domain [18]. Thus, the effectiveness of the 

discretization for higher-order accuracies may be evaluated through the convergence properties of the local 

residual error RQ0 as described in (3.5). 

The parameters w19, β7, and β19 are free for a fourth-order accuracy and so various strategies may be adopted 

to further optimize the discretization for convergence robustness. Since the local residual error RQ0 serves 

as the local source term for the discrete error equation associated with the discretization, our strategy for 

robustness is to effectively ensure that RQ0 is more uniformly diminishing by choosing the parameters to 

avoid fluctuations about zero. The computational profiles of various choices of w19, β7, and β19 for higher-

order accurate convergence are discussed for the solution of (5.4) by the eigs function in Matlab. 

 

6. Numerical Errors for Different Local Stencil Supports 

In this Section, we discuss numerical results for the eigenvalue estimates associated with the different 

choices of the local computational supports for the stiffness and mass matrix pair in the discrete equation 

(5.4). That is, we examine the computations errors in estimating the eigenvalues of the unit cube associated 

with the possible choices of the parameters w19, β7, and β19 in (5.4). 
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6.1. Nineteen-by-Seven-Point Local Stencil Support for H × Q. First, the traditional finite 

difference scheme [19,25,27], is recovered with w19 = 0, β7 = 0, and β19 = 0 in (3.5) and uses a 19×7 

point local support for H×Q and the associated local residual error is given as 

 

Clearly, condition (4.3) fails with both O(h4) and O(h6) terms having both positive and negative signs. The 

computational error profile illustrated by Figure 6.1 

shows considerable inconsistent accuracy performances for the eigenvalues due to nonsystematic 

cancelations of error terms for all eigenfunctions. Furthermore, since the local support for Q is a 7-point 

stencil while that of H is a 19−point stencil, some eigenfunctions are 

poorly and inconsistently represented. Hence the differing shapes of 

the eigenfunctions along different directions affect the accuracies of 

their approximations 

differently. 

6.2. Nineteen-by-

Nineteen-Point Local 

Stencil Support for H × Q. 

On the other hand, in 

utilizing a 19−point local support for both the mass 

matrix Q and the stiffness matrix H by choosing = 0, and β19 = 0 in (3.5), seems 

geometrically logical. A 

direct obvious choice of 

 from (5.4) shows a 

more uniform convergence 

profile as shown in Figure 

6.2 than with β7 = 0 

illustrated in Figure 6.1. 

First 75 eigenvalues of the cube [0 1]×[0 1]×[0 1] 

× 

 β β hfor 

The computational errors for the eigenvalues as displayed in Figure 6.1 are clearly lower than those in 

Figure 6.2 for the 7−point and 19−point stencil mass matrices respectively. However, in Figure 6.2, the 

errors grow more uniform with the level of complexity of eigenfunctions demonstrating a more robust 

higher-order convergence and consistent accuracies. That is, the 19-point stencil mass matrix Q with 

Fig. 6.1. 

Computational errorsfirst the 75 

eigenvalues of the unit cube|λ − λestimate| 

for 

with 19 × 7 point local support, 

Fig. 6.2. 

Computational errors |λ − λestimate| 

for first the 75 eigenvalues of unit 

the cube with 19 19 point local 

support, 
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has a leading error expansion term with same signs for the higher-order derivatives as described in 

(4.2) ensuring a monotonic convergence than for the 7−point stencil mass matrix with β7 = 0. 

Furthermore, the mass matrix Q with  provides an improved uniform fourth-order accuracies than 

with  as demonstrated between Figures 6.2 and 6.3. With , the mixed partial derivatives of 

the source term f is eliminated from the O(h4) term and the size of the leading error term gets polluted by 

O(h6) term for some eigenfunctions. 

A convergence analysis through resolution refinement for the 19−point stencil mass matrix Q with  

is shown from Figure 6.3 with h = 1/10 to Figure 6.4 with h = 1/20 which fails to show much local 

improvements in the error profile. Thus, the 19−point stencil for both the mass and stiffness matrices in 3D 

is not sufficient and effective enough in generating local accuracy improvements as resolution is refined. 

 

 0 10 20 30 40 50 60 70 80 

First 75 eigenvalues of the cube [0 1]×[0 1]×[0 1]First 75 eigenvalues of the cube [0 1]×[0 1]×[0 1] 

 Fig. 6.3. Fig. 6.4. 

Computational errors|λ − λestimate| for Computational errors |λ − λestimate| for first the 75 eigenvalues of 

unit the cube first the 75 eigenvalues of unit the cube with 19 × 19 point local support, w19 = 0, with 19 × 

19 point local support, w19 = 0, 

 = 0 with  = 0 with  

6.3. Twenty-Seven Point Stencil. Next, we examine the case for a 27−point stencil local support for the 

discretization. Since the parameters w19, β7, and β19 are free for a fourth-order accuracy as indicated by the 

residual error (3.5), our strategy for robustness and consistent higher-order accurate convergence is to 

ensure that the residual error is uniformly diminishing by reducing the size and fluctuations of the residual 

error as much as possible as resolution is refined. Therefore, we exercise the choices for w19, β7, and β19 to 

control leading coefficients in both the O(h4) and O(h6) terms to minimize associated local error 

pollution. First, we utilize w19 to eliminate ∂x2∂∂y6f
2∂z2 in the 6) term and then utilize β19 to eliminate 

∂x2
∂
∂y

6u
2∂z2 term in O(h4) O(h 

term such that 

64 

w0 = −6w1 − 12w7 − 8w19 = − 15h2 

7 

w1 = −(1 + 4w7 + 4w19) = 15h2 

 1 1 

w7 = −( 6 + 2w19) = 10h2 
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 5 1 

 w19 = −12β19 − = 2 (6.2) 

 504 30h 

502 

β0 = 1 − 6β1 − 12β7 − 8β19 =  + 12β7 

which transforms the error as 

 

For a higher-order accurate method, the objective here is to achieve a robust discretization scheme by 

ensuring stability and steady higher-order accurate convergence. For stability, β7 should be selected to 

ensure diagonal dominance of the mass matrix Q such that 

 |β , (6.5) 

the solution is determined as 

 . (6.6) 

For a steady and a robust higher-order accurate convergence, the choice of β7 should be made to render the 

error (6.4) uniformly diminishing with same signs for the source term derivatives in the O(h4) term such 

that 

  (6.7) 

which leads to a 27−point compact discretization for the equations. 

In terms of local support, the 27−point compact stencil for both the mass and stiffness matrices provides 

for a complete representation of the eigenfunctions as demonstrated in a comparison of error convergence 

profiles in Figures 6.5 and 6.6. 

As evident from Figure 6.5, resolution refinement fails to improve on local accuracies for larger 

eigenvalues with the 19 × 19 discretization. On the other hand, the 27 × 27 discretization shows much 

improvement in local accuracy as illustrated in in Figure 6.6. 

Clearly, the 27−point compact local support for both the stiffness and mass matrices provide for a uniform 

higher-order accurate convergence rates for the eigenvalue calculations as well as consistent local 

improvements in accuracies as resolution is refined which is suitable for effective numerical modeling of 

physical phenomena. 

945 

 1 571 

β1 =  − 4β7 − 4β19 =  − 4β7 
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150th to 300th eigenvalues of the cube [0 1]×[0 1]×[0 1] 

 

150th to 300th eigenvalues of the cube [0 1]×[0 1]×[0 1] 

Fig. 6.5. 

Computational errors |λ − λestimate| for the 150th to 300th eigenvalues of unit the cube with 19 × 19 point 

local support, , with and  for the top and bottom graphs 

respectively. 

 

150th to 300th eigenvalues of the cube [0 1]×[0 1]×[0 1] 

 

150th to 300th eigenvalues of the cube [0 1]×[0 1]×[0 1] 

Fig. 6.6. 

Computational errors |λ − λestimate| for the 150th to 300th eigenvalues of unit the cube with 27 × 27 point 

local support, ,  with  and  for the top and bottom 

graphs respectively. 

 

7. Sixth-Order Accuracy 
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Since the O(h4) term in the local residual error only involves derivatives of the source term, the right 

sampling of the numerical source term at sub-grid scale points on the computational stencil may be utilized 

to achieve sixthorder accuracy. If the fourth-order derivatives of the source term are readily available then 

the sixth-order accuracy may be achieved by determining β7 to annihilate the O(h4) term in the residual 

error by 

 . (7.1) 

On the other hand, since 

F  

 fxxxxxx + fyyyyyy + fzzzzzz 6 + O(h8) (7.2) 

+h 

5760 

where 

 ,and 

, 

sixth-order convergence can be achieved by first choosing 

  (7.3) 

and then adding (7.2) to the discretization such that 

 

Thus, the sixth-order discrete representation of the equations may be described as 

 HΦ = QF − FQh, (7.5) 

where the stiffness matrix H is composed by (6.2) and the mass matrix is composed by (6.3) with  

and FQh given in (7.2). Similar sixth-order computational experiments have been demonstrated in [13]. 

 

8. Conclusion 

We have demonstrated the effectiveness of the finite volume discretization approach in developing efficient 

higher-order accurate schemes for the three-dimensional Poisson’s equation based on the equation error 

method. Using a more balanced integral form of the equation to formulate the local error expansion 

provides for an efficient framework for a more complete local flux modeling on the computational domain 

that ensures local accuracies as well as uniform higher-order accurate convergence of the resulting 

schemes. In particular, using the 27−point stencil local support for both the mass and stiffness matrices in 

the discrete equation achieves robust higher-order accurate convergence, and very suitable for large scale 

eigenvalue problem in 3D due to local accuracy improvements for finer resolutions. Though, both the 19− 
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point and 27−point local supports yield fourth-order accurate schemes, the 27−point support yields a much 

better local accuracy as demonstrated through the eigenvalue estimates. 
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