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Abstract 

An initiation to scientific research project was proposed for two undergraduate students in Environmental 

Engineering, with the porpuse of studing a generalization of the hypotrochoid and epitrochoid curves.  

The GeoGebra software is the facilitator of the team of two professors and the students. The difficulties of 

the mathematical proofs become, in the environment of the dynamic geometry, exercises of construction 

of curves that, arranged in sequence, determined the generalization of the well-known hypotrochoid curve, 

result that is the detailed in this work. From this first discovery, the transition to epitrochoid curves or more 

general curve,s becomes an iterative application and an applicattion of mathematical induction. This study   

has demonstrated the importance of the computational tool, specially for its contribution in the 

visualization of theoretical results as well as for its simplicity in coding. 
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1. Introduction 

The research on a generalization of the hypotrochoid and epitrochoid curves [1] began to be carried out as 

part of a scientific initiation project, in which two undergraduate students in Environmental Engineering 

were encouraged to research the subject. It began with a bibliographic and intenet search, where the 

students found materials of a dynamic visualization that could be possible to reproduce using the software 

GeoGebra [2]. Motivated by these images, the first step in the research was to study the classical 

hypotrochoid curve and its implementation in GeoGebra. This process facilitated the discovery of a more 

general formula, starting the dynamic with three circles, from which the students began to create detailed  

routines that had not yet been presented in the literature.  

The students began understanding the dynamics of the construction of the hypotrochoid in the most simple 

way, not appealing for rigoruous mathematical definitions. They understood that the hypotrochoid is a 

curve described by a point P, the pole, attached to a given circumference C1, that rolls without slipping, 

along a second circumference C0, that is fixed, as shown in Figure 1. The segment with extremes in the 

center of C1 and the pole, we denote by d.  

In history, according to Zbynek et al [3], the hipocycloide, which is a hipotrocoide where d is equal to the 

radius of the moving circumference, dates back to the Greeks, who used them to explain the retrograde 

motion of the planets. In the mid-1570s, the mathematician Girolamo Cardano (1501) described 

hypocycloid applications in high-speed printing press technology. In 1674, the Danish astronomer Ole 

Roemer began a systematic investigation of cycloid curves in connection with mechanical gears. Other 

mathematicians who studied these curves were, among others, Laurent La Hire (1606-1656), Gérard 

Desargues (1591-1661), Isaac Newton (1642-1726) and Leonhard Euler (1707-1783). 

 

 

Figure 1. Hypotrochoid at time zero 
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Figure 2. Hypotrochoid at time T≠0. 

 

In 1800 the hipocicloide began to be studied for train gears in engineering. Many rotary machines 

traditionally use this type of curves; let us remember the hydraulic motors, clocks and timing devices, the 

Wankel motor, rotary pump piston, speed reducers, among others. Wankel's spinning engine was invented 

by the German engineer Felix Wankel, who received his first patent for the engine in 1929. Currently, the 

engine is used in automobiles, and the applications of these curves are still an active area of research. 

This study is organize as follows: In section 1, the hypotrochoid general formula is obtained mathematically, 

discovery from the continuously feedback by the simulations in GeoGebra. In section 2, it is explained in 

detail the construction in GeoGebra of the first result of generalization of the hypotrochoid of three circles 

and a pole. Finalizing the study with simulations in GeoGebra and the final considerations. 

We emphasize that all the figures of this work were obtained in GeoGebra by the authors. 

 

2. Mathematical proof with GeoGebra's assistance: generalized hypotrochoid formula 

This section starts with the first generalization of the hypotrochoid curve considering three circumferences: 

a fixed, C0, of center O, a moving circumference, C1, with center in O1, tangent to C0 that, at the first instant 

time, the angle MOA, denoted by MOA, with vertex in O is spinning without slipping counterclockwise 

(see Figure 2); a third circumference, C2,  of center O2,  tangent to C1 spinning  clockwise AO1B. 

Finally, the pole P belonging to the ray starting in O2 and determining the angle  BO2P with the ray with 

origin in O1, considered in clockwise sense. As hypothesis for this construction, it is considering the 

equality of the angles MOA, AO1B and BO2P, with the objective of preserving the dynamic of the 

classical hypotrochoid, described in the introduction. 

Starting with the proof , let us denote OA = R, O1A = r1, O2B = r2, and O2P = d. Observing  Figure 2,  
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being OE the x-coordinate of O1, and OF the x-coordinate of O2, we have that the x-coordinate of P, denoted 

by X(P), verifies 

X(P) = OG = OE + EF + FG.                                             (1) 

 

Figure 2: Three circles hypotrochoid  

The elements of the proof of the calculation of the X(P). 

 

In the follow, we calculate the length of each segment in the right side of Equation (1) in function of the 

anglese MOA, AO1B and BO2P.   Indeed,  

    OE = x-coordinate of O1 = OO1 cos(MOA) = (R - r1) cos(MOA). (2) 

Notice that HO1A is equal to MOA, being angle between paralels O1H and edge Ox. Besides 

 HO1O2  = AO1B– AO1H =AO1B –MOA, (3) 

that, along with the trigonometric relations of the triangle O2O1H, nos fornece a conclusão: 

EF = O1H = O1O2 cos(HO1O2) = (r1 - r2) cos(AO1B – MOA) (4) 

On the other hand, we have   
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 BO2I = O2O1H (5) 

In the right-angle triangle O2IP, using the trigonometric relations and Equation (6), it is obtained  

O2I = O2 Pcos(PO2I) = d cos(AO1 B  – MOA + PO2B ). (7) 

Consequently, the equality of the segments FG and O2I is guaranteed. Therefore, using the Equations (1), 

(2) (4) and (7), we obtain that   

X(P)= (R - r1) cos(MOA) + (r1 - r2) cos(AO1 B - MOA) + d cos(AO1 B - MOA + PO2B) (8) 

From the dynamic proposed for this generalized hypotrochoid, we also have that 

R. arc MOA = r1.arc AO1B = r2. arc BO2P, 

Where arc MOA denoted the arc of a circle containing the points M and A. Denoting x = arc MOA, we 

conclude   

arc AO1B = x .R/r1 and  arc BO2P, =x .R/r2.    (9) 

Substituting this last expression in Equation (8), we get 

X(P) = (R - r1) cos(x) + (r1 - r2) cos((R /r1 - 1) x) + d cos( (R/r1 + R/r2 - 1) x)   (10) 

To calculate que the y-coordinate of P, and observing Figure 3, we have that que s = |y-coordinate P|, 

s = OK + KL,  and (11) 

OK =| O2 = JK – JO.     (12) 

On the other hand, we have that O1O2S = BO2I, that together with Equations (3) and (5), yield  

O1O2S = BO2I = O2O1 H =  AO1B - MOA . (13) 

By the trigonometric relations in the right-angle triangle O1SO2, and using Equation (13), it is obtained 

SO1 = O1O2 sin(O1O2S) = (r1 – r2) sin(AO1 B – MOA).                     (14) 

As we also have SO1 = JK, then, by Equation (14), we conclude  

JK = (r1 – r2) sin(AO1 B– MOA). (15) 

Besides, By the trigonometric relations in the right-angle triangle OO1E, we have 

O1E= OO1 sin (MOA) = (R-r1) sin(MOA), (16) 

that together with the equality O1E = JO, and Equation (16) give us the expression  
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OJ = (R-r1) sin(MOA).                                                         (17) 

Observing in the right-angle triangle O2QP we get the expression 

    O2Q = O2P sin(QPO2).  (18) 

The equality of the angles  IO2P and  O2PQ in the rectangle O2IPQ, along with Equations (6) and (18), 

inference that 

KL = O2Q = O2P sin(QPO2) = O2P sin(IO2P )= O2P sin(AO1B – MOA + PO2B) (19) 

Using Equations (11) and (12), we obtain that  que o módulo daordenada de P é igual à medida de JK – 

JO + KL e, consequentemente, de (15), (17) and (19), verifies  

X(P) = (r1 – r2) sin(AO1 B– MOA) – (R – r1) sin(MOA) + O2P sin(AO1B –MOA PO2B).                          (20) 

Analogously, denoting x = arc MOA and using the equalities obtained in Equation (9), we can rewrite 

Equation (20) as follows: 

s = (r1 – r2) sin((R /r1 – 1)x) - (R-r1)sin(x) + d. sin( (R/r1 + R/r2- 1) x)                   (21) 

Observe that, from Figure 3, the y-coordinate of P, which we denote by Y(P) is negative, from where we 

conclude 

Y(P)=(R - r1) sin(x) - (r1 – r2) sin((R /r1 – 1) x) - d.sin( (R/r1 + R/r2 - 1) x)                  (22) 

 

Figure 3: Three circles hypotrochoid  
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The elements of the proof of the calculation of the X(P). 

 

 

A similar proof could be done for the case of the epitrochoid that yields in the results of Equations (23) and 

(24): 

 

X(P) = (R + r1)cos(x) + (r1 + r2) cos((R /r1 + 1) x) + d.cos ( (R/r1 + R/r2 + 1) x), (23) 

Y(P) = (R +  r1)sin(x) - (r1 + r2) sin((R /r1 + 1) x) - d.sin( (R/r1 + R/r2 + 1) x). (24) 

The formulas given by Equations (10), (22), (23) and (24) can be generalized for n circumferences, using 

the same dynamic by applying a mathematical induction method to obtain 

X(P )= (R - r1) cos(x) + (r1 - r2) cos((R /r1 – 1) x)  

+ (r2  – r3) cos((R /r1 + R /r2  – 1) x)  +... 

+ (rn-1 – rn) cos((R /r1 + R /r2 +...+ R /rn-1 – 1) x) 

+ d cos( (R/r1 + R/r2 +...+ R/rn - 1) x),  

    

(25) 

X(P)=(R-r1)sin(x) - (r1–r2) sin((R /r1 – 1)x) 

-(r2  – r3) sin((R /r1 + R /r2  – 1) x) -... 

- (rn-1 –rn) sin((R /r1 + R /r2 + ...+ R /rn-1– 1)x) - d sin( (R/r1 + R/r2 +...+ R/rn – 1) x). 

(26) 

Simulations built in the GeoGebra environment which curves follow the trajectory of the points with 

coordinator of Equations (10) and (22), are shown in Section 2 for n=2 and n=3. 

 

3. First construction in GeoGebra 

For the construction of the simulations in the GeoGebra environment, first is defined a slider T that 

represents the time control of the dynamic of the generalized hypotrochoid curve. The time T is measure in 

a way that the trajectory of the pole P designs a complete curve just once. In this construction, the slider T 

takes values between 0 and 2π. Equations (10) and (22) of the x-coordinator of P, are use in three stages: 

1. Introduzing  the functions  

a(x)= R cos(x), 

b(x) =R sin(x), 

to obtain the coordinators of the center O of the fixed circumference C0, substituting x for the value 

of the slider T, preciously defined.  

2. In the input bar also are typed the following functions:  
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c(x)=(R - r1) cos(x) + (r1 - r2) cos((R / r1 - 1) x), 

d(x) =(R - r1) sin(x) - (r1 - r2) sin((R / r1 - 1) x), 

to obtain the coordinators of center O1 of the mobile circumference C1, substituting x for the value 

of the slider T. 

3. The O2 coordinators of the circumference center C2, are obtained through the formulas  

e(x)= (R - r1) cos(x) + (r1– r2) cos((R / r1 - 1) x) + d cos((R / r1 + R / r2 - 1) x) 

f(x) = (R - r1) sin(x) - (r1 - r2) sin((R / r1 - 1) x) – d sin((R / r1 + R / r2 - 1) x), 

replacing x for the slider T values. 

Therefore, determining the P coordinators as in Equation we get at instant T=0, for the corresponding values 

R = 20, r1 = 5, r2 = 1 and d = 5, the curve shown in Figure 4. When T = 2, the curve trajectory is shown in 

Figure 5. 

 

Figure 4: The generalized hypotrochoid curve of three circles. 

First construction in GeoGebra. The slider T (time) at point 0. 



International Journal for Innovation Education and Research      Vol:-6 No-10, 2018 

International Educative Research Foundation and Publisher © 2018    pg. 250 

 

Figure 5: The generalized hypotrochoid curve of three circles. 

The slider T in the same simulation of Figure 4 with T=2. 

When T = 2π, the curve complete trajectory is shown in Figure 6. 

 

Figure 6: The generalized hypotrochoid curve of three circles. 

The completion of the Figure 4 simulation of with the slider T at point 2π. 

 

Many other simulations were performed with different values of R, r1, r2 and d. A more complex complete 

trajectory of the generalized hypotrochoid, is shown in Figure 7 the values R=20, r1=8, r2=1 and d=3 apply 
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at T=0. In Figure 8, the same curve is shown at T=4π. 

 

Figure 7: The generalized hypotrochoid curve of three circles. 

Another construction in GeoGebra with the slider T at T=0. 

 0. 

Figure 8: The generalized hypotrochoid curve of three circles. 

The completion of the Figure 7 simulation with T=4π. 
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5. Conclusion 

An explanatory research is carried out, trying to understand the cause of the dynamics of a classic curve, 

the hypotrochoid. It is also common to find explanatory research to support a descriptive research [4]. It is 

also sought to advance the results of the researches found, and rigorously demonstrate the findings.We seek 

to understand and describe the generalized mechanics of a curve. The task of finding a formula to 

mathematically base the discovery, is also facilitated by GeoGebra.The implementation and visualization 

in its environment were elements that contributed strongly to prove the theoretical results involved in 

obtaining the formulas.The time dynamics modeled with a slider, creates the fascinating images and the 

idealized movement being visualized through this tool. 

It is important to note that, this study confirmed that this type of investigative process exceeded the 

expectations of students of scientific initiation, and that, according to them, has increasingly reinforced the 

importance of using GeoGebra as a facilitator for the enhancement of creativity through implementation of 

routines and visualization. And as a way of confirming rigorous mathematical demonstrations. 
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