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Abstract 

In this paper, we mainly consider the theory and analysis of Decision under uncertainty which is making 

the foundations of all finance and portfolio theories. Decision makers face choices among a number of 

risky alternatives which is represented by lotteries. This paper develops alternative theories for choices 

under risk which expected utility theory which is derived from reasonable axioms about rational behavior 

in risky environment. An alternative theory of choice is developed, in which value is assigned to gains and 

losses rather than to final assets. All risky alternatives can be summarized by two numbers – mean u and 

variance   called Mean-Variance Theory (MVT). This implies that typical mean-variance utility 

function v which is increasing in  and decreasing in .The results show that, investors 

have different mean variance utility functions but the main results regarding optimal portfolio of risky 

assets do not depend on the specific utility functions of investors.  

  

Keywords: Uncertainty, decision, aversion, lotteries   

 

JEL Classification: ECON 851  

 

1. Introduction  

Financial literature widely discusses the investment decisions of companies. This field has seen a surge of 

research with both theoretical and experimental advances. The study of the relationship between the 

decision under uncertainly and investment level is the most common way of analyzing the problems of 

over- and under risk. However, the study of Decision Theory under Uncertainty risk Mean-Variance 

Approach in financial distress is a topic that still requires more in-depth study. According to previous study, 

it identifies the existence of financial constraints as a key variable. This Implies that almost every decision 

we ever make in our lives, involves uncertainty. Uncertainty is then meant to represent “non probabilized” 

uncertainty –situations in which the decision makers is not given a probabilistic information about the 

external events that might affect the outcome of a decision–, as opposed to risk which is “probabilized” 

uncertainty. We assume that decision maker faces a choice among a number of risky alternatives which is 

represented by lotteries.  

We will thus concentrate on situations in which to provide the application of decision theory to the problem 

of investment and making under uncertainty to the financial markets. The main contribution of this work 

is to find whether there is a conclusive correlation between the decision makings under uncertainty in the 

context of the financial, and to conduct a Mean-Variance Portfolio Analysis on over risky returns. In our 
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research we present decisions under uncertainty, where Choice under uncertainty characterized as the 

maximization of expected utility. We develop the notion of MeanVariance Theory (MVT) as one 

representation of preference over risky.   

The paper proceeds as follows. We start with a rather didactic section in which we present some definition 

lotteries to decision under uncertainly following some example.  

In the three sections coming we develop alternative theories for choices under risk: Expected Utility 

Theory, Mean-Variance Theory, and Prospect Theory. We then discuss in Section 6 Mean Variance 

Portfolio Analysis and Capital Asset Pricing Model (CAPM) to end this section.  

  

2. Theory 

This survey is concerned with introduction to some of the most important definitions and examples used 

within the decision Theory under Uncertainty.  

Almost every decision we ever make in our lives, involves uncertainty, i.e. the outcome of our choices 

cannot be predicted with absolute certainty. These decisions include not only financial investment choices, 

but career choices, marriage, and college major. Decision theory under uncertainty makes the foundations 

of all finance and portfolio theories. We assume that decision maker faces a choice among a number of 

risky alternatives. Each risky alternative may result in one of a number of possible outcomes, but which 

outcome will actually occur is uncertain at the time of decision making. We represent these risky 

alternatives by lotteries.  

Definitions and examples  

These definitions that we are going to tell, we help us understand the notion of lotteries and how it uses by 

following examples to explain the development alternative theories for choices under risk. By contrast, 

uncertainty represents a situation in which no probabilistic information is available to the decision maker. 

What is a lottery?  

A lottery is a probability distribution defined on a set of payoffs. It can be discrete, in which case it is 

described by the list of payoffs x1; x2; :::; xN and the probabilities of these payoffs p1; p2; :::; pN. The 

number of outcomes in a discrete lottery can be finite N < 1, or infinite. A lottery can also be continuous, 

in which case the set of payoffs is usually a subset of real numbers     (x  R) and the distribution is 

described with a probability density function (pdf)  f(x) or the cumulative distribution function (cdf) F(x)

.                            

Lotteries can also be a mix of discrete and continuous, but we will not deal with such lotteries in this thesis. 

We use the notation   to denote the space of all possible lotteries.  

Just like in the case of any probability distribution of a random variable, we require that  

[Discrete]  :    pi ≥ 0     

[Continuous] :   

Just like with any random variables, we might want to compute the mean and variance of a lottery, and also 

the covariance between any two lotteries.  
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In general, lotteries can have any kind of abstract outcomes, not only monetary payoffs. For example, when 

you play basketball, you can win, loose, end with overtime or have an injury. These outcomes are not stated 

in monetary terms. For simplicity of analysis, we assume that these outcomes can be represented in terms 

of money, so a win is for example equivalent to +$500, and a loss is equivalent to -$400.   

Moreover, money lotteries are all we need for the study of financial decisions, where outcomes are naturally 

represented with monetary returns. Also note that sure outcomes can also be viewed as lotteries that have 

one outcome occurring with probability 1.  

Example 1:  A discrete lottery A, with two outcomes, $1000 and $500, each achieved with equal 

probabilities.  

A =   

The expected value and the variance of this lottery are:  

E (A) = 1000 0.5 + 500  0.5 = $750  

Var (A) = (1000 -750)2 0.5 + (500 -750)2 0.5 = 62.500  

This example is not supposed to be realistic but to show how to determine The expected value and the 

variance of discrete lottery.  

Let consider A; B   be lotteries and   [0; 1]. Then C = λA + (1- λ) B denotes a compound lottery 

where with probability   the lottery A is played and with probability (1-  ) the lottery B is played. If the 

lotteries are discrete, then the probability of outcome i in C is     , and when the 

lotteries are continuous, the probability density of C is fC (x) =  fA (x) + (1- ) fB (x).  

To be clear of our example the main challenge of decision theory is to define preference over lotteries that 

will allow comparison of different lotteries. For example, consider a  

lottery D, which pays $750 with probability 1. Which lottery is better, A or D? This question is equivalent 

to asking "would you be willing to pay $750 for lottery A? More generally, how much are you willing to 

pay for lottery A? This is the fundamental question of asset pricing. Most people will say that they would 

pay less than $750 for lottery A.  

 In general, most people are not willing to pay the mean of a lottery to buy that lottery.  

This suggests that things other than the mean of a lottery are also important. Nevertheless, until recently 

(mid-20th century), the only theory of preferences over risky alternatives was the mean theory - i.e. the 

value of a lottery is given by its mean payoff. The next example illustrates the first challenge to the mean 

theory. It is known as the "St. Petersburg Paradox", analyzed by the Swiss mathematician Daniel Bernoulli 

in 1738. Let take another example.  

 

Example 2: We consider the lottery A, based on the following gamble.                           

A fair coin is tossed repeatedly, until "tails" first appears. This ends the game. Let the number of times the 

coin is tossed until "tails" appears be k. The lottery pays $2k-1. Thus, if you toss the coin once, and "tails" 

appear, then you are paid 21-1 =1. If it takes 5 tosses until the coin shows "tails", then you are paid 25-1 = 24 
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= $16. Thus, the possible payoffs of this lottery are 2k-1, k = 1; 2; …, and the probabilities are (1/2) k, k = 

1; 2;…  The expected value of this lottery is:  E (A) =  =  

        Once again, the question is, how much are you willing to pay  

for this lottery? Despite the fact that the expected payoff of this lottery is  , there is not a single person 

who would pay $  to play this lottery.   

In fact, most people are willing to pay no more than a few dollars to play this lottery. Indeed, this game can 

give you a high payoff of more than a million dollars, if you toss the coin 21 times before "tails" first 

appears (your payoff in this case is 220 = $1 048  

576). But this happens with very low probability = 0.000000476837, or once in more than 2 million 

plays. Example 2 (St. Petersburg Paradox) demonstrates once again that, in general, the value of a lottery 

is not equal to the expected value of its payoff. Nevertheless, until middle of the 20th century, the expected 

value was the well-accepted  

theory  of  decisions  under  risk.                            

In the next three sections we develop alternative theories for choices under risk: (i) Expected Utility Theory, 

(ii) Mean-Variance Theory (MVT), and (iii) Prospect Theory. We start with the main-stream theory in 

economics - the Expected Utility Theory (EUT).   

  

3. Expected Utility Theory (EUT)  

Expected utility theory has dominated the analysis of decision making under risk.  

According to the last examples, the motivation for the development of EUT is Example 2 (St. Petersburg 

Paradox). Bernoulli realized that twice the money is not always "twice as good". If a person has only a 

small amount of money, say $1000, then doubling it increases his utility by more than say doubling the 

wealth of someone who has 10 million dollars. Put in another way, the marginal utility from money is 

diminishing - the more money you have, the smaller is the gain from additional $1. This idea of diminishing 

marginal utility from money is equivalent to risk aversion in EUT, and will be formalized later. For now, 

Bernoulli’s intuition is that instead of computing the expected payoff of a lottery, we need to compute the 

expected utility of a lottery. The strength of EUT is that it is not only intuitively appealing, but can be 

derived from more fundamental axioms about preferences.  

 

3.1. Axiomatic foundations of Expected Utility Theory  

Savage (1954) book is still considered today to be one of the major achievements in decision theory. With 

a scarcity of input, he delivers the classic subjective expected utility representation of preferences. Savage 

thus ties together the idea of subjective probability advocated by Ramsey and de Finetti with the idea of 

expected utility derived (with given probabilities) by von Neumann and Morgenstern.   

The starting point for any decision theory under risk is lotteries, and the assumption that people have some 

preferences over the space of all lotteries. We assume that there exists a weak preference relation   on L, 

such that for two lotteries A, B , the notation A B means that "lottery A is at least as good as lottery 
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B". From the weak preference relation, we can derive the strict preference relation and the indifference 

relation as follows. The strict preference relation  on L means that A  B if A  B but not B A. We 

read A~ B as "lottery A is strictly better than lottery B". The indifference relation~ on L means A ~ B if A 

  B and B A. We read A ~ B as "lottery A is as good as (or equivalent to) lottery B".  

Next, we make some assumptions (axioms) about the preference relation , that will allow representing it 

with a utility functional and enable practical usage. We describe Savage’s core axioms. The most important 

one is often referred to as the “sure thing principle”.  

A preference relation on  is called rational if it satisfies the following two axioms:  

A1. Completeness: A preference relation  on  is complete if for any two lotteries A, B  

, either A B or B  A or both. Completeness means that the decision maker is able to choose among 

risky alternatives.  

A2. Transitivity: A preference relation on  is transitive if for any three lotteries A, B, C  

,  we  have  A B  and  B C  →  A C                            

The transitivity assumption is a natural consistency of preferences. We can show that if transitivity is 

violated for some individual, i.e. his preferences are A B and B C and C  

 A, then we can easily extract all his wealth by offering him to trade B for C, A for B, C for A, and repeat 

many times, and each time he gets C for A he pays some amount (because C is strictly better than A).  

The next assumption is technical, and is needed in order to ensure representation of preferences with utility.  

A3. Continuity: The weak preference relation on  is continuous if for any lotteries A,  

B, C  with A  B C, there exists a probability p  [0; 1] such that   B ~ pA + (1 - p) C   

The right hand side is the compound lottery, where with probability p lottery A is played and with 

probability 1 - p lottery C is played. Here the term continuity means that any lottery "in between" two other 

lotteries (here B is in between A and C) is equivalent to some mixture of the two lotteries. What it also 

means is that there are no "jumps" in preferences due to small changes in probabilities.  

For example, suppose that A is "basketball game with friends", and B is "staying at home", and C is a "knee 

injury", and I prefer playing basketball over staying at home: A  B. Then, when I add a small enough 

probability of a knee injury to the basketball game, I would not suddenly change my mind and decide to 

stay at home. That is, B does not become better than pA + (1- p)C for small enough (1- p). This axiom is 

reasonable because most people do go out to work, shopping, movies, despite the small risk of getting into 

accident.  

Let  on  be a weak preference relation on the space of lotteries. If  satisfies the axioms A1, A2 and 

A3, then there exists a continuous utility functional U:  → R such that U (A) ≥ U (B) if and only if A B 

for any lotteries A, B . This also implies that, for any lotteries, U (A) > U (B) if and only if A  B and 

U (A) = U (B) if and only if A~B.  

We say that a utility functional U:  → R has expected utility form if there exists a utility function u : R 

→ R, such that for every lottery L ,    U (L) = E [u (x)]  

In words, the utility of a lottery is equal to the expected utility of its payoffs. Specifically, for discrete 

lottery      

U (L) = E [u (x)] =   
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and for continuous lottery (with pdf f (x))  

U (L) = E [u (x)] =   

The utility function u is sometimes called "von Neumann-Morgenstern" (vNM) utility function, after the 

mathematician John von Neumann (1903 .1957) and the economist Oskar Morgenstern (1902 - 1977) who 

provided the axiomatic foundations for the EUT. These two are also the founders of Game Theory. We can 

conclude by this tendency the advantage of EUT is that it is derived from reasonable axioms about rational 

behavior in risky environment. Observe that a key advantage of the EUT is that in order to know the 

preferences over risky alternatives, all we need to know is the preferences over sure outcomes, given by 

the vNM utility function u: R → R. In all applications, we make the standard assumption that u is increasing, 

which means that more money is better (formally monotonicity assumption).  

A4. Independence of irrelevant alternatives. A, B  two lotteries with A B, and let     

(0;1]. Then for any lottery C , it must be     λ A + (1- λ) C  λB + (1- λ) C  

The independence axiom means that the ranking of two lotteries does not change if you mix each of them 

with a third lottery. Preferences that satisfy the independence axiom, in addition to completeness, 

transitivity and continuity, can be represented with expected utility form.  

The certainty equivalent (CE) of a lottery L is the non-random payoff CE which is equivalent to playing 

the lottery: CE ~ L. If preferences can be represented by expected utility, then certainty equivalent is 

defined by u (CE) = E [u (x)].  

Suppose that the preference relation  has expected utility representation with vNM utility function 

u, then, v (x) = a + bu (x) is another vNM utility function representing the same preferences as u.  

We need to show that for any two lotteries A, B . To do that we need to know first   

EA [u (x)] ≥ EB [u (x)] ↔ EA [v (x)] ≥ EB [v (x)]  

Where the subscripts A and B indicate that we are computing the expected values using the probability 

distributions A and B. Note that we can write:  

EA [v (x)] = EA [a + bu (x)] = a + bEA [u (x)]      first  

EB [v (x)] = EB [a + bu (x)] = a + bEB [u (x)]    second   

Subtracting the second from the first:  

EA [v (x)] - EB [v (x)] = b {EA [u (x)]- EB [u (x)]}  

All expectations are numbers, and since b > 0 we have:  

EA [v (x)] - EB [v (x)] ≥ 0 ↔ EA [u (x)] - EB [u (x)] ≥ 0  

  

3.2. Risk Aversion  

We have seen in example 1 a lottery that pays $1000 or $500 with equal probabilities,  

A =   

The expected value of this lottery was found to be E (A) = $750, and we mentioned that most people would 

not pay $750 for this lottery. In general, most people prefer the mean of a lottery for sure, over the lottery 

itself. This behavior is called risk aversion.  
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We call a person risk-averse if he prefers the expected value of every lottery L  over the lottery itself, 

i.e. E (L)  L. If preferences over lotteries can be represented with expected utility form, then risk aversion 

means u [E (x)] > E [u (x)].  

A person is risk-seeking if he prefers every lottery over its expected value, L›E (L). A person is risk-neutral 

if he is indifferent between lotteries and their expected return, L ~ E (L). Once again, if preferences over 

lotteries can be represented with expected utility form, then risk-seeking means E [u (x)] > u [E (x)], and 

risk-neutral means u [E (x)] = E [u (x)]. Let ;ore detail, a person described by EUT is:  

(i) risk-averse if and only if his vNM utility function u is strictly concave, (ii) risk-seeking if and only if 

his vNM utility function u is strictly convex,  

(iii) risk-neutral if and only if his vNM utility function u is linear.  

This is simple principle to understand. We need to show that u [E (x)] > E [u (x)] for any lottery, any 

tangent line to the graph of a strictly concave function, lies above the graph of the function. Figure1.1 

illustrates this graphically. In particular, the figure shows a tangent line g (x) at the point ( ; u ( )), where 

 E (x) is the mean of a lottery.  

 

Figure1: Strictly concave u and a tangent line at ( , u ( ))  

The equation of the tangent line is g (x) = u ( ) + u’ ( ) (x ), and since it lies above u (x) for all x with 

the exception of x = , we have                      g (x) > u (x)  

u ( ) + u’ ( ) (x ) > u (x)  

Taking expectation              u ( ) + u’ ( ) [E(x) )]> E[u (x)   u ( ) + u’ ( ) [ )] > E[u 

(x)]  and finally we obtain    u [E (x)] > E [u (x)].  

 

3.3. Measuring risk aversion  

We have established that risk-averse individuals, whose preferences can be represented with expected 

utility functional, must have concave vNM utility function u. Some question is asking here according to 

this section which utility functions are suitable? Different individuals might have different degree of risk 

aversion, so how do we capture these differences with the utility function? The next definition introduces 

two ways of measuring the degree of risk aversion.   

Given a twice differentiable vNM utility function u: R → R.,  
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The Arrow-Pratt coefficient of absolute risk aversion at x is defined  

ARA: =   

The Arrow-Pratt coefficient of relative risk aversion at x is defined  

RRA: =   

Intuitively, the "more concave" the utility function is, the greater should be the degree of risk aversion. 

Therefore, both measures have the second derivative, which is supposed to capture the degree of concavity. 

The minus in front makes both measures positive numbers (since the second derivative is negative for 

strictly concave functions).  

The both have  in the denominator to eliminate the effect of multiplication by a positive constant. 

The different between two measures is the absolute risk aversion is relevant for choices involving absolute 

gains and losses from current wealth, while the relative risk aversion is relevant for choices involving 

percentage (or fractional) gains or losses of current wealth.  

What we need to know here is the Arrow-Pratt measures of degree of risk aversion allow us to establish 

whether one individual is more risk-averse than another individual. That is, individual 2 is more risk averse 

than individual 1 if for every x we have ARA2 (x) > ARA1 (x) or RRA2 (x) > RRA1 (x) for x > 0. There are 

several other, equivalent ways, of making the same comparison across individuals. As we know about risk-

averse, another risk called risk premium RP is important to know in this section.  

A risk premium RP for a given lottery is the amount that an individual is willing to pay out of the expected 

payoff in order to avoid playing the lottery, and instead receives its mean with certainty:                     

u [E (x) - RP] = E [u (x) ]  

 Notice that on the left side we have utility from certainty equivalent. That is, the risk premium is just the 

difference between the mean of a lottery and its certainty equivalent, i.e. RP = E (x) - CE. Therefore, an 

individual is more risk-averse if the risk premium he is willing to pay for avoiding any lottery is higher.  

Yet another equivalent way to compare individuals according to their degree of riskaversion is by letting 

the more risk-averse vNM utility function be "more concave". In other words, the vNM utility function u2 

is more risk averse than u1 if u2 is obtained through an increasing and concave transformation of u1. u2 (x) 

= ʋ (u1 (x)) for some increasing and concave function ʋ(.).  

The different definitions of risk aversion and of more risk aversion help us prove some testable predictions 

about the behavior of risk-averse individuals. For example, even risk averse individuals will invest some 

of their wealth in risky assets, provided that the return of the risky assets is high enough. However, the 

amount invested in risky assets is smaller for more risk-averse individuals.  

 

4. Mean-Variance Theory  

According to the previous section expected utility theory has several advantages. First, it is derived from 

precise axioms about human behavior, so users of the theory know exactly what assumptions about 
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preferences make the EUT valid. Second, the expected utility theory helped us understand why people are 

usually unwilling to pay for a lottery the expected value of its payoffs - a behavior known as risk aversion. 

EUT explains why people buy insurance, while at the same time invest in risky assets. We have seen 

applications of EUT to optimal investment and demand for insurance. Notice however that in choosing 

optimal investment in risky asset, we assumed that the entire distribution of returns is known.  

In a more realistic setting, of choosing optimal portfolio with many risky assets, we would need to know 

(or estimate) the joint distribution of all asset returns - a monumental task.  

This is why in 1952 Harry Markowitz introduced a theory of portfolio selection based on the simplifying 

assumption that all risky alternatives can be summarized by two numbers – mean u and variance  - the 

Mean-Variance Theory (MVT).  

In the next section we will learn the details of Markowitz portfolio selection theory, but in this section we 

discuss the assumptions behind the mean-variance analysis. In particular, how good is the key assumption 

of the MVT, that in evaluating risky alternatives people only care about the mean and variance of the 

returns? We also ask, under what assumptions the MVT is as valid as the EUT.  

We say that a utility functional u:  → R has mean-variance form if there exists a utility function u: R  R+ 

→ R, such that for every lottery L U (L) = u ( ) Where   

  = E (L) and   = Var (L), and such u is called the mean-variance utility function. Equivalently, the 

mean-variance utility function can be written as u (  , ), i.e. as a function of mean and standard deviation, 

instead of variance.  

In other words, the utility derived from any lottery depends only on the mean and variance of that lottery. 

Notice the notation u: R R+ → R which means that the meanvariance utility function u maps elements 

from the two dimensional Euclidian space into real numbers.  

The second dimension is restricted to non-negative real numbers because variance cannot be negative. 

Thus, the mean-variance utility function maps vectors ( ) into numbers. The mean-variance utility 

function is therefore very different from the vNM utility function that maps single numbers (quantities of 

money or payoffs) into real numbers. But there are some similarities between the mean-variance utility 

functions and the vNM utility functions. Similar to monotonicity (more is better) of the vNM utility 

function u, which requires that it is an increasing function, the mean-variance utility is assumed to be 

increasing in the mean . A lottery with higher mean is better, ceteris paribus (for the same variance). We 

will always assume that u is strictly monotone.  

Using mean-variance utility, one can define risk aversion in the standard way, just like in EUT, where risk-

averse individual is one who prefers the mean of any lottery over the lottery itself. A mean-variance utility 

function u:R R+ →R is called risk-averse if u( , )  u (  , ) for all  and all  >  Similarly, an 

individual is risk-seeking if  → u ( , )  u (  , )  while risk-neutrality means that      u ( , )  

 u (  , ) .  

The next definition is a bit stronger assumption than risk aversion.  

A mean-variance utility function u:R R+ →R is called variance-averse if u( , )  u(  , ) for all  

and all  <   . It is strictly variance-averse if  <  → u ( , )   u (  , ).  

The applications of the mean-variance theory are vast, especially to the portfolio analysis.  
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We now turn to the critique of the mean-variance theory.  

 

4.1. Critique of the mean-variance theory  

One problem that is very obvious is that the mean-variance theory cannot always be applied to all lotteries. 

Mean-variance representation is not grounded in such axioms, and it is not immediately clear what kind of 

preferences can be represented with mean variance utility.  

 

Figure 2: Mean-variance indifference curves.  

 

4.2. Validity of the mean-variance theory  

We discuss three cases when the mean-variance theory arises as a special case of the expected utility theory:  

1. Quadratic vNM utility function:  

Let  be a preference relation on  which can be described by expected utility with vNM utility function 

u. If u is quadratic, then there exists a mean-variance utility function v (  ,) which also describes .  

2. Normally distributed payoffs:  

Let  be a preference relation on  which can be described by expected utility with vNM utility function 

u. Suppose that payoffs are normally distributed, i.e. x ~ N ( ), with pdf  

  

Then, there exists a mean-variance utility function v ( ) which describes  for all normal lotteries.  

 

3. Small risks  

Suppose that you have initial wealth w, to which we add a small risk z, with E(z)=0 and  

Var (z) = , so the total wealth is random: w + z. We can always make the assumption that  = 0, because 

if the risk was y with , we could write the resulting wealth as w   y , and then redefine 
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the initial wealth as w  and the mean-zero risk z = y . Therefore, the mean and variance of the final 

wealth are:  

E (w + z) = w + E (z) = w =   

Var (w + z) = Var (z) =   

To summarize, in this section we introduced the widely used in practice Mean-Variance Theory. Its main 

advantage is simplicity, and the main drawback is that it violates the First Order Stochastic Dominance. 

However, we have shown that under certain special cases, the MVT is equivalent to the EUT: (i) when 

vNM is quadratic, (ii) when payoffs have normal distribution or any distribution completely determined by 

mean and variance, (iii) when risks are small.  

 

5. Prospect Theory  

Recall that Expected Utility Theory is grounded in axioms of what is considered rational behavior. In that 

sense, the EUT is prescriptive - it prescribes how people should (or supposed to) behave when choosing 

among risky alternatives. But does the EUT do a good job describing how people actually behave? In many 

situations the EUT does describe actual behavior pretty well. Nevertheless, there are plenty of experimental 

and real world examples where the EUT fails. The development of Prospect Theory (Daniel Kahneman 

and Amos Tversky 1979), and the Cumulative Prospect Theory (Daniel Kahneman and Amos Tversky 

1992) is an attempt to improve on the EUT in order to explain actual behavior with risky alternatives. Thus, 

Prospect Theory is descriptive attempts to describe actual behavior.  

 

5.1. Motivation  

The key ingredients of the different version of Prospect Theory are: framing, and probability weighting. 

Framing refers to the way the particular choices are formulated (framed), and the reference for gains and 

losses. Probability weighting is the observed tendency of people to consistently inflate low probabilities, 

and deflate high probabilities.  

Example 3 (Framing).  

Imagine that your country is preparing for the outbreak of a deadly virus, which is expected to kill 600 if 

no cure is found. You need to choose between two programs: A, B. With program A, 200 people will be 

saved. With program B there is a 1/3 probability of saving all 600 people, and 2/3 probability of not saving 

anyone.  

Thus, when the choice is framed in terms of numbers of people saved, the two  

alternatives are:                 

The majority (72%) of doctors who participated in this experiment chose A over B. This is indeed what the 

EUT predicts that risk-averse individuals should choose. The mean of B is 200, so risk-averse individuals 

should prefer the mean of this lottery (i.e. program A) over the lottery itself. In a different experiment, with 

another group of doctors, the participants had to choose between programs C and D. If program C is 

adopted, 400 people will die with certainty, and if program D is adopted, there is 1/3 probability that nobody 

will die, and 2/3 probability that 600 will die.  

Thus, framed in terms of people dead, the two alternatives are:  
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The majority of doctors who participated in this experiment (78%) chose D over C. Here the EUT predicts 

that risk-averse individuals should again choose the mean of a lottery over the lottery. The mean of D is

, so the EUT predicts that risk-averse individuals will choose C over D, which is the opposite from 

what the majority of participants chose. Thus, it seemed like the participants in this experiment were risk-

seeking.  

Notice that A is the same as C, while B is exactly the same program as D. The difference is in the way 

these programs are framed. A and B are framed in terms of lives saved (gains) and C and D are framed in 

terms of numbers of dead (losses). Thus, Kahneman and Tversky modified the original vNM utility 

function so that it is consistent with riskaverse behavior for gains (concave), and risk-seeking behavior for 

losses (convex).  

 

Figure 3 describes such utility function, which we call value function, and denote by v:R →R As in EUT, 

we will always assume that the value function v is monotone increasing.     

 

Figure 3: Prospect theory value function.  

Notice that the vNM utility function u:R →R in EUT, was not restricted to be concave or convex, and it 

potentially could have the shape of the Prospect Theory value function in figure 1.3. However, the EUT is 

usually applied to final wealth, which is usually positive.  

The prospect theory however abstracts from wealth, and focuses on gains and losses. But nevertheless, the 

above value function seems more like a refinement of the EUT, rather than an altogether new theory.  

To summarize there are many versions of Prospect Theory (PT) today, but they all share the properties of 

(i) framing, and (ii) probability weighting.  

 Original Prospect Theory 1979.  

For any lottery A , with outcomes x1 < x2 <… < xn and probabilities P1; P2;.. ; Pn, and given the 

individual’s value function v: R →R and his weighting function w: [0; 1] → [0; 1], the Prospect Theory 

utility from the lottery A is given by  

  

  

  

  



International Journal for Innovation Education and Research      Vol:-7 No-10, 2019 

International Educative Research Foundation and Publisher © 2019    pg. 701 

PT   

This looks similar to EUT, except that the vNM utility function u is replaced by the prospect theory value 

function v, and instead of the actual probabilities of outcomes , the individual uses the weights .  

Therefore, the original prospect theory was modified, and in 1992 Kahneman and Tversky developed the 

so called Cumulative Prospect Theory (CPT).  

 Cumulative Prospect Theory 1992.  

For any lottery A , with outcomes x1 < x2 <… < xn and probabilities P1; P2;.. ; Pn, and given the 

individual’s value function v: R →R and his weighting function w: [0; 1] → [0; 1], the Cumulative 

Prospect Theory utility from the lottery A is given by  

CPT   

This seems like a very similar definition to the original Prospect Theory, and indeed in many cases the 

resulting utility from a lottery is very similar (PT (A) is similar to CPT (A)). The prospect theory (PT or 

CPT) is more general than the EUT, and seem to be able to resolve some inconsistencies of EUT with 

empirical and experimental evidence. The disadvantage of the CPT is its complexity, which makes it 

difficult to apply in practice.   

The next section presents the modern portfolio theory, which is based on the assumption that people choose 

among risky alternative according to the MVT, i.e. all we need to compare lotteries or financial assets is 

the mean and variance of their returns.  

  

6. Mean Variance Portfolio Analysis and Capital Asset Pricing Model (CAPM)  

We begin our analysis with simplifying assumptions. There are only two periods, and preferences over 

risky returns are represented with Mean-Variance Theory (MVT).That is, we assume that the mean-

variance utility function is v (  , ), where  is the mean return and is the variance of the return.  

6.1. Mean-Variance Portfolio Analysis  

Suppose that there are n assets indexed by i = 1, 2 …n. The price of an asset i in the first period is  and 

in the second period the asset pays dividend  and has the price . Thus, the total value of the asset in the 

second period is . The gross return on the asset is , and the net return is

.  

In our analysis we focus primarily on the net returns, since most of the examples we will encounter present 

data on net returns. From the point of view of the investor, who makes portfolio decisions in the first period, 

the return on a given asset, , is a random variable, with mean (expected value) and variance.   

Let [Mean]      

[Variance]   

And [Standard deviation]   
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The standard deviation (or variance) tells us how volatile the asset returns are. An asset that guarantees a 

particular return  with certainty, is called a risk-free asset, and we have  , and . 

For any two assets, i and j, we will also be interested in the degree of comovement of their returns (  and

), which is measured with covariance or correlation:   [Covariance]   or    

[Correlation]  

.  

We can see almost terms and formulas we use in this survey are from statistic. The mean and variance (or 

standard deviation) is the only two features of any asset (or portfolio of assets) that investors care about. 

Thus, any asset can be represented as a point in the mean-variance space, as figure illustrates.  

  

 

Figure 4: Mean-variance space.  

 

The figure shows 4 assets: a risk-free asset with mean return of 2% and variance of zero, a risky asset with 

mean return of 3% and standard deviation of 5%, and another risky asset with mean return of 7% and 

standard deviation of 7%.The mean returns, variances and covariances are usually estimated based on 

historical data. Although figure 4 is called the mean-variance space, we prefer to use  (standard 

deviation) on the x-axis instead of (variance), because standard deviations have the same units as the 

data, while the units of variance are the original units squared.  

 

6.1.1. Portfolios with two risky assets  

Suppose an investor divides some amount of his wealth, w, between two assets i and j, such that a fraction 

 [0; 1] is invested in i and the rest 1  is invested in j. The net return on a portfolio is:                           

  

Since the returns and  are random variables, the return on the portfolio  is also a random variable. 

Thus, any portfolio composed of risky assets can be viewed as just another risky asset, with random return

, and with mean and variance as follows:  
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The mean return on the portfolio depends on the mean returns of the com-posing assets  and ), as 

well as the asset shares  and . Thus, the mean return is a weighted average of the mean returns on 

individual assets. The variance of the portfolio return depends on the variances of returns of the composing 

assets  and  on the asset shares  and  and on the covariance (or correlation) of the asset 

returns.  

Therefore, even an investor who cares only about mean and variance of his portfolio (MVT investor), will 

still need information about the correlations of assets in his portfolio.  

We assume that asset returns are exogenous to investors, and investors can only choose the portfolio share 

(or portfolio weight) of each asset,  [0; 1], (and ) in this case. By varying  [0; 1], the investors 

can create infinitely many portfolios, even if there are only two assets available. The set of all possible 

portfolios can be presented graphically, in the mean-variance space, as the mean-variance opportunity set.  

For any two assets with returns  and  , the mean-variance opportunity set, is the set of all mean and 

standard deviations of returns on portfolios created from investing a share  [0; 1]in asset i and share 

 in asset j. Mathematically, the mean-variance opportunity set is defined as follows:  

OSij   

 

 

  

 

 

 

  Asset i  Asset j  

  3%  7%  

  5%  7%  

  0   
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Two assets                            

Figure 5: Mean-variance opportunity set for two assets.  

Each point on the graph represents a portfolio created with a particular .  

For example, the point (3%, 5%) is created from , which means that the portfolio consists entirely of 

asset i. Similarly, the point (7%, 7%) is the portfolio corresponding to , which means that the entire 

investment is in asset j. All the other points on the graph represent portfolios with , i.e. portfolios 

containing positive shares of both assets. What we need to know here is the standard deviation ("risk") of 

asset i is 5%, and when combined with a more risky asset j, with standard deviation of 7%, we are able to 

create a portfolio with around 4% standard deviation! This is a stunning feature, which is called the 

diversification effect. This terms means the reduction in portfolio risk (variance) that results from 

combining assets with certain statistical (probabilistic) features. For example:  

"You are invested equally in a company that produces suntan lotion and a company that produces 

umbrellas. If the summer turns out to be sunny, the first company does well and the second poorly. In 

contrast, if the summer turns out to be rainy, the first company does poorly and the second does well. In 

other words, their returns are negatively correlated. By investing in both of them, instead of only one of 

them, obviously you reduce your portfolio risk a lot. Let see what happen with n risky assets.  

  

6.1.2. Portfolios with n risky assets  

Suppose there are n > 2 risky assets with random returns  and  

the portfolio shares (weights) of some fund allocated to these assets. The  

shares must add up to 1, which is like a "budget constraint":          

The return on a portfolio with given shares is   

  

As before, the return on a portfolio is random, and has mean and variance  
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Recall that variance of a random variable can be defined as the covariance of that random variable with 

itself. Therefore, the double summation terms for i = j captures the individual variance terms of every 

return , multiplied by .  

The notation becomes much easier if we express the above in matrix form. Moreover, matrix notation 

makes programming with Mat lab straightforward. The means of all asset returns can be expressed with 

the n-by-1 vector   

  

The covariance matrix of all individual assets is n-by-n matrix ∑:  

  

Thus, the ijth element is  , and the elements on the diagonal are the individual variances.  

We introduce two more notations: the vector of portfolio weights and a vector of 1-s: 

     ,         

With these notations, we can write the budget constraint  as:  

  

The portfolio mean is:      And the portfolio variance as:   

With more than 2 assets, the mean-variance opportunity set is not a curve, we have seen that combining 

two assets in a portfolio, creates an opportunity set which is a curve. Even with 3 assets, one can create 

portfolios with pairs of assets, and that will give three curves. But in addition to pairs, any portfolio 

consisting of two assets can be considered as another asset, which can be combined with individual assets 

in yet new portfolios. This is why the opportunity set is connected, i.e. does not have "holes".  
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Figure 6: Mean-variance opportunity set, n > 2 assets.  

 

Imagine that you choose portfolios that give you minimum variance of return for any level of mean return. 

These portfolios would be on the left boundary of the opportunity set, and are called the minimum-variance 

frontier. However, only the increasing part of the minimum-variance frontier constitutes the efficient 

frontier, because any portfolio below thee efficient frontier is dominated by some portfolio on the efficient 

frontier.  

In other words, for any portfolio under the efficient frontier, there is another portfolio on the efficient 

frontier which has higher return and lower variance. Any investor should choose portfolios on the efficient 

frontier only.  

To summarize, in this section we illustrated the shape of the mean-variance opportunity set, and concluded 

that any MVT investor, with monotone and variance averse utility function, will choose a portfolio on the 

efficient frontier only. However, we will show in the next section, that investors can in general do much 

better than the efficient frontier, if there exists a risk-free asset. In reality, there are such assets, for example 

government bonds or treasury bills that have a guaranteed return over one period.  

 

6.1.3. Adding a risk-free asset  

Suppose that in addition to the n risky assets with random returns , we also have a risk-free asset 

with guaranteed return .   

Let the portfolio share in the risk-free asset be , and the shares in other risky assets be as before

. The "budget constraint" on the weights is    

  

Notice that the sum of weights on risky assets is . Let see an example:  

The portfolio , consists of 40% investment in risk-free asset,  

and 10%, 20% and 30% investment in risky assets 1, 2 and 3. Thus, 60% of the portfolio is invested in 

risky assets. If we refer to the portfolio of the risky assets as a separate portfolio, then the weights have to 

add up to 100%, and this is achieved by dividing  by the sum of its weights:  

 

Efficient frontier   
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Consider a portfolio which combines a fraction  invested in the risk-free asset with  invested in 

some portfolio p consisting of the other n risky assets only. Notice that if < 0, the investor borrows money 

at the risk-free return. The return on this new portfolio is:  

  

With mean and variance:  

          And                   

Thus, combinations of the risk-free asset with any other portfolio of risky assets are located on the line that 

connects the risk free asset and this other portfolio p.  

 

Figure 5: Capital Market Line (CML)  

 

We see on figure 5 that the best investment opportunities are created when we combine the risk-free asset 

with the tangent portfolio on the efficiency frontier (portfolio T).  

The line that connects the risk-free portfolio with the tangent portfolio is called the  

Capital Market Line (CML). The slope of the capital market line is called the Sharpe ratio ( , and is 

equal  

  

The Sharpe ratio gives the tradeoff between risk and return, i.e. the excess return that investors can get over 

the risk-free asset, for every additional unit of risk (the standard deviation). For example, suppose that  

= 7%,   = 2%,  = 10%. Then, the Sharpe ratio is  

 , This means that an increase in risk of a portfolio (standard deviation) by 1% 

is compensated with a 0.5% higher expected return.  

Notice that with the risk-free asset, investors have better set of portfolios to choose from (CML) than the 

efficient frontier, because the CML lies above the efficient frontier, and coincides with the efficient frontier 

only at the tangent portfolio. All investors will therefore choose some portfolios on the CML.  

  

T   

CML   
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Those who desire less risk, will invest a greater proportion of their wealth in the riskfree asset (  is 

greater). These conservative investors will choose portfolios on the CML that are close to . In other words, 

all investors should choose portfolios on the Capital Market Line.  

In order to make optimal investment choices, we now need to find the tangent portfolio (which is the same 

as finding the Capital Market Line).  

As you can see, finding the optimal portfolios analytically (the CML) is a tedious task, even with only two 

risky assets. With more than 3 risky assets, it is a mission impossible, and requires the use of computer 

optimization software.  

  

6.2. Capital Asset Pricing Model (CAPM)  

In the previous section we derived optimal portfolios for investors whose preferences are described by 

Mean-Variance Theory (MVT). Without a risk-free asset, we showed that investors will choose portfolios 

from the efficient frontier of the opportunity set.  

Under the assumption that there is a risk-free asset, and that investors can borrow and lend at the risk-free 

rate . We showed that all MVT investors will choose portfolios from the Capital Market Line (CML) 

which is the highest slope line connecting the riskfree asset with the mean-variance opportunity set. Thus, 

the CML is the set of optimal portfolios such that any investor with MVT preferences will choose from. 

The implication is that all investors hold the same portfolio of risky assets, called the tangent portfolio T, 

and the only difference between investors is the fraction invested in riskfree asset versus the fraction 

invested in the tangent portfolio T.  

Since all investors hold the same portfolio of risky assets, shares of risky assets in the tangent 

portfolio are common to all investors. For example, if IBM stock represents 0.1% of investor A portfolio 

of risky assets, it also represents 0.1% of investor B portfolio of risky assets. Suppose there are I investors. 

The market share of asset i, out of the total market value of all risky assets is:  

  

Where  is investor j wealth (money) invested in the market for risky assets (say the stock market), and 

= W is the total value of all the risky-assets. Therefore, since all the investors hold all the risky 

assets, the individual share of asset i in the tangent portfolio is also the market share of asset i, and the 

tangent portfolio T in equilibrium is also the Market portfolio M. Thus, in this section we will refer to the 

tangent portfolio as the market portfolio.  

6.2.1 Deriving the CAPM  

The starting point is the result that all investors hold the same market portfolio M of risky assets (which is 

the same as the tangent portfolio T).  The market portfolio contains positive shares of all existing assets.  

Next we examine the effect of slightly changing the share of some security i. Consider mixing a small 

fraction  of some security i with  of the market portfolio.  
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Figure 6: Market portfolio mixed with asset i.  

When the i-curve coincides with the market portfolio. For , the combination is between 

M and i. Values of  mean that we are selling some of the existing holdings of asset i in the market 

portfolio.  

The return on portfolios that combine  of asset i and  of the market portfolio is:  

  

With mean and variance:  

      And            

  

6.2.2. CAPM in practice  

We studied optimal portfolio selection under the assumption that all investors care about is the mean and 

variance of the return to their investment. In other words, we assumed that preferences are described by the 

Mean-Variance Theory (MVT). This is not the same as assuming that there is only one investor, or that all 

investors are identical.  

In our examples we assumed that the mean-variance utility of individual i is:        

  

Thus, there could be unlimited number of investors, which differ by their varianceaversion (or risk 

aversion) parameter . Despite the differences in preferences among individual investors, we arrived at a 

striking conclusion - the Two-Fund Separation Theorem, which implies that all investors will invest in two 

funds only: the risk-free asset and market portfolio. The only difference between investors’ portfolios is 

the fraction of their financial wealth invested in the risk-free asset, , more variance-averse investors will 

hold a larger portion of their financial wealth in the risk-free asset. But nevertheless, all investors will hold 

the same market portfolio of risky assets - M.  

Moreover, we showed that all assets (and all portfolios for that matter), must lie on the same Security 

Market Line. As follow this equation:              

The expected excess return on asset i (or any portfolio) is proportional to its Beta:  

  

M   

CML   

i   
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The term  is the expected excess returns on asset i, and  is the  

predicted excess return by the CAMP (SML). Asset i has mean return higher than the one predicted by the 

SML (positive Alpha), while asset j has mean return lower than the predicted by SML (negative Alpha).  

 

Figure 7: The Alpha of an asset (or portfolio).  

Our first instinct tells us that positive Alpha of an asset (or portfolio) is an indicator that the asset 

outperformed the market, and had average return above what the theory (CAPM) predicts.   

Similarly, a negative Alpha indicates that an asset (or portfolio) underperforming, and delivering returns 

below the levels required by its Beta risk. A very appealing (but dangerous!) investment strategy of buying 

assets with positive Alpha and short selling assets with negative Alpha.  

One explanation for observing non-zero Alphas is that different investors tend to specialize in different 

subsets of assets. If a hedge fund specializes in particular industries, its tangent portfolio will consist of 

that industry’s securities.   

The derivation of the CAPM shows that if the tangent portfolio consists of a group of assets, then all the 

assets that make up the tangent portfolio, or any combination of these assets, must have Alpha of zero.  

The practical implication of this is that all investors need to choose whether to actively manage their 

portfolio (be active investors) or be passive. Active investors will choose their own tangent portfolio, while 

passive investors will simply invest in some mutual fund (index fund). One needs to remember that  and 

∑ are not given, and active investors must estimate the mean returns and covariance’s based on historical 

data, and sometimes make predictions based on firm-specific factors, industry-specific factors and 

macroeconomic forecasts. Thus, being active investor entails a cost, and it can be shown theoretically that 

only the most efficient and informed investors will be active in equilibrium.  

  

7. Conclusion 

This paper presents the theory of decision under uncertainty which develop alternative theories for choices 

under risk. To summarize, the prospect theory (PT or CPT) is more general than the EUT, and seem to be 

  

M   

SML   

1   
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able to resolve some inconsistencies of EUT with empirical and experimental evidence. The disadvantage 

of the CPT is its complexity, which makes it difficult to apply in practice. Of the three theories, the CPT is 

by far the most complicated, while the MVT is the simplest.  

The result show the modern portfolio theory, which is based on the assumption that people choose among 

risky alternative according to the MVT. All we need to compare lotteries or financial assets is the mean 

and variance of their returns.  
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