
International Journal for Innovation Education and Research          Vol:-7 No-12, 2019

 Nonlinear Behavior of a Suspended Particle in 

Single-Axis Acoustic Levitators 

C. V. Abud

Institute of Mathematics and Technology.  

Federal University of Goiás - UFG, Goiás, Brazil.

M. S. Rodrigues

Department  of  Mining  Engineering,  

Federal  University  of  Goiás  -  UFG,  Goiás, Brazil

T. S. Ramos

Department of Mechatronics and Mechanical Systems Engineering,

University of São Paulo - USP, São Paulo, Brazil

Abstract

The  nonlinear  behavior  of  a  suspended  sphere  in  a  single-axis  acoustic  levitator was  studied.

Spontaneous  oscillations  of  the  sphere  in  this  levitator  were  experimentally  analyzed  recording its

positions using a high speed camera. A mathematical model based on acoustic radiation forces and real

parameters is proposed to describe the dynamics of the sphere movement and its stability. The stability

of the motion was investigated via a Lyapunov exponent diagram. We observed that the axial and radial

movements of small spheres under levitation may present regular stability and  chaotic ones. The

Lyapunov exponent diagram for the model shows a complexity structure sharing different regions of

stability according to the model parameters.
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1. Introduction

Acoustic levitation has emerged as a powerful technique for contactless processing of materials. Due

to its property of being material independent, the acoustic handling technique has been used in a wide

range  of  areas  including  pharmaceutical  processes1,  biology2, manipulation of microcomponents3,

separating lipids in blood4, analytical chemistry studies5, Ramam spectroscopy in red blood cells6 and

scattering of nanoparticles7, among others.

New acoustic devices have been developed to levitate and also manipulate small objects.  In

particular,  the most common type of acoustic levitator,  called single-axis8,  consists  of producing a

standing wave field in the air gap between an ultrasonic transducer and a reflector separated by a
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multiple integer number of a  half wavelength. In such a device, samples much  smaller than the

wavelength may be levitated by acoustic radiation forces, which push the particle towards a pressure

node. At the pressure nodes, it has a minimum acoustic potential energy and the levitation force is zero,

generating an equilibrium position (see Fig. 1). Everywhere else between the reflector and transducer,

levitation forces act in the direction of the nearest  node, and therefore the equilibrium of pressure

nodes may counteract the gravity force. Indeed, the equilibrium position is slightly displaced from the

minimum energy potential due to gravity force.

Recent studies have related that samples in acoustic levitation do not remain static but oscillate in a

particular trajectory around the equilibrium point9,10. Under  low pressure amplitudes, usually located

near the transducer or reflector in a single - axis levitator, the experimental results show that sphere

oscillations can be described by the simple spring- mass system 9. However, this model cannot be

applied for samples levitating at the central  node, because of prominent nonlinear effects in this

region.

In the present paper,  we  are interested in investigating the nonlinear effects of acoustic radiation

forces  in  the  trajectories  described  by  a  small  sphere  levitating  at  the  central  node  position.  The

trajectories in horizontal and vertical directions are obtained through a mathematical model and compared

to experimental data. In addition, a stability diagram based on Lyapunov exponents is investigated and

the results point to a complex frontier between chaotic and periodic motions.   

The paper is organized as follows. Section 2 describes the theoretical determination of radial and

axial radiation force. In Section 3, we introduced some analysis into the experimental data. The results

based on an analytical model for the radial (horizontal) and axial (vertical) movement of a suspended

small sphere are presented in Section 4. Some numerical analysis are proposed in Sec.5. Finally, we

conclude our investigations in Section 6.
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Figure 1: Axial radiation force,   , and radial radiation force,   , acting on a small sphere in a
single-axis levitator.
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2. Fundamental Forces

In the acoustic levitation process of a single-axis levitator, basically two radiation forces act on a

single object. The primary radiation force in the axial direction, , acts in the direction of propagation of

the wave and is the responsible for counteracting the gravity force. The second force is a transversal

component denoted as radial radiation force,  .  This component is two orders of magnitude smaller

than the axial component and arises due to diffraction effects of the transducer energy field, as well as

the geometric imperfections of the reflector. Forces   and   acting on a small sphere in an acoustic

levitator are illustrated in Fig. 1.

 Now, let us revisit the theory of radiation forces that act in a single sphere in acoustic levitation from

an acoustic pressure field in a cylindrical levitator assumed as the standing wave,

(1)

where  is the wavenumber, and  is the angular frequency of the wave. The acoustic pressure amplitude,

, which varies with the radial position, is assumed as a zero-order Bessel function11,12. 

According to Gor'kov 13, the acoustic force on a spherical small particle is given by:

(2)

where:   is the particle volume;   and   are the adiabatic compressibility of the particle and host

medium, respectively.  and  are the temporal-average kinetic and potential energy densities of

the acoustic field, respectively. Quantity  results from the relative motion between the particle and the

surrounding fluid. It is defined for spherical particle very small when compared to the wavelength as,

,  where and   are  the  densities  of  the  particle  and  the  medium,

respectively. 

The temporal average potential density  is defined by,

(3)

where we used the relation to the acoustic pressure, .

Otherwise, the kinetic energy density  is given by

(4)

obtained by assuming the approximation,   and also the relation to the

acoustic pressure, . 

Therefore, the axial component  can be obtained by Eq. (2) combined with Eq. (3) and (4),
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(5)

The axial radiation force is the primary force due to the interaction between the particle and the wave

field.  As  the  axial  force  acts  in  the  normal  direction  to  the  propagation  of  the  acoustic  wave,  its

magnitude can  balance the  force of  gravity,  and therefore levitation  of  the particle  is  possible.  It  is

important to note that Eq. (5) is in accordance with the theory developed by Yosioka and Kawasima14. 

Also according to Eq. (2), the radial force component is given by,

(6)

The axial and radial radiation forces are fundamental forces for the stability of the particle in a

levitation process. In the next section, we will show experimental data for the movement in radial and

axial directions of a suspended particle in a single - axis levitator. 

3. The Experimental data

The data  set  used  in  this  paper  was  obtained by a  single-axis  acoustic  levitator  of  a  20.3  kHz

Langevin  type  transducer  and  reflector.  Both,  the  transducer  and reflector  have  a  concave radiating

surface with a curvature radius of  35mm and  33mm,  respectively. The complete description of this

levitator can be seen in Ref. [15].

In order to determine the displacement of a small sphere in levitation in relation to the equilibrium

position, an image evaluation technique is proposed. The motion of the sphere is recorded by a high-

speed camera, then the displacement to the center is obtained by an algorithm that returns, for each frame

of  the  camera,  the  positions  ( ).  Thus,  a  time  series  is  obtained  for  the  horizontal  and  vertical

movement. Figure 2 shows a time series of positions for both  and  - direction of a 4mm diameter glass

sphere. In addition we calculated the frequencies of the particle oscillation using Fast Fourier Transform

(FFT). The FFT of the sphere oscillations in the  and  directions are shown, respectively, in Fig. 2 (B)

and (D).

International Educative Research Foundation and Publisher © 2019       pg. 93



International Journal for Innovation Education and Research          Vol:-7 No-12, 2019

In Fig. 2 some particularities of each movement can be observed.. The frequency of oscillation in the

- direction is higher than the horizontal one. On the other hand, the  - direction has higher amplitudes.

Indeed, this amplitude variation in the   - direction is attributed to the axisymmetric geometry of the

acoustic levitator. From FFT we note that the  - direction presents a well defined peak at approximately

40 Hz and for the  - direction there is no dominant frequency. It is important to stress that  horizontal

and vertical motion are analyzed separately but the sphere oscillates in both  and  directions at the same

time.

We also constructed the phase plane for both directions  and . Assum ing an

arbitrarily time-delay  in the time series, the phase plane is obtained in a  variable plotting: . When
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Figure  2: (A) and (C) - Time series of the horizontal and vertical movement, respectively,  of glass
sphere in acoustic levitation. Figure (B) and (D) show the fast fourier transform of time series.

Figure 3: Attractor reconstruction of time series showed in Fig. 2 (A) and (C).
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applied to dissipative systems, this technique is called attractor reconstruction 

16.
In panels (A) and (B) of Fig. 3, the attractor reconstruction is shown for the time series (A) and (C)

of  Fig.  2.  The  trajectory  in  the  -direction  seems to  spin  around a  stable  focus  at ,  while  the

trajectory described in the -direction move in an irregular way, preferably visiting the points  and

. From a topological point of view, the attractor of Fig.3 (B) ( -direction) is similar to the attractors

reported in the literature whose behavior is regular. On the other hand, Fig.3 (A) ( -direction) seems to

be a chaotic attractor. To investigate the possible attractors that small spheres in the levitation process may

be subject to, we develop a theoretical model based on acoustic radiation forces in the following section.  

Table 1.  Experimental values for 

Parameters Value Unit

Diameter of the glass sphere

Glass density

Air density

Compressibility of the particle

Compressibility of the air

Air viscosity

4. Mathematical Model

Our main aim is to determine the dynamic of the trajectories of a suspended particle in a single-axis

levitator. Newton´s second law applied in the axial direction gives:

(7)

where the quantity  is the Stokes' drag force on a small sphere of radius .

Considering the Taylor series expansion for   at   until the first nonlinear term, and

introducing an external periodic force, the Eq. (7) is re-written as,

(8)

where,  and 

Using an adimensional time , Eq. (8)  is replaced by,
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(9)

 where,  and .

Thus, Eq. (9) gives the movement of the suspended particle in the axial direction. 

Newton´s second law in the radial direction gives:

(10)

Now, let us consider some approximations. Firstly, since the range of movement of the particle in the

radial  direction  is  small,  we  assume  .  Furthermore,  we  consider  the  Bessel  Function

. The motivation for such a choice is quite simple. Observe that Eq. (6) can

be seen as a resultant of the formula, , where  is the acoustic potential. Choosing  as a

truncated  Bessel  function  ( );   results  in  a  double  well  potential,  which  may

determine two preferential regions, in accordance to the characteristic observed experimentally in panel

(A) of Fig. 3.

Therefore, re-writing Eq. (10) and considering an external periodic force we have,

(11)

where,   and  .

Again, introducing an adimensional time . Therefore, Eq. (11) is replaced by,

(12)

where,  and  .

Equation (12) gives the movement of the suspended sphere in the radial direction. 

It is worth noting that Eq. (9) and Eq. (12) are equivalent equations. i.e., both equations have their

nonlinear nature given by a cubic term, which is characteristic of Duffing equations.

4. Numerical Analysis

The numerical procedure to solve Eq. (9) and (12) was obtained by Runge - Kutta with a time step of

size . To compare it with the experiment, we used as a guide the data presented in Table 1,

which gives the properties of the sample and the medium considered in this research. In Fig. 4 (A) and

(C) we show a typical solution to Eq. (9) ( ,  and ) and Eq. (12) ( ,

 and ), respectively. The attractor of both series is reconstructed in Fig. 4 (B) and
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(D) using the time delay .

Comparing the analytical attractor of Figs. 4 (B) and (D) to their respective experimental attractor of

Fig. 3, we observed a good topological agreement. Therefore, a question arises naturally: if Eq. (9) and

Eq. (12) describe the vertical and horizontal movement of suspended particles, what kind of behavior can

the trajectories assume? And how are the set of parameters related to such behavior?

Both questions can be evaluated by calculating  the Lyapunov exponents onto the space  of the

parameters. Such Lyapunov exponents are standard measures used to discriminate between chaos and

periodicity and, the projection of Lyapunov exponents onto the space of  the  parameters  is  called

Lyapunov diagrams17–19.

To evaluate the Lyapunov diagram for Eq. (12) we fixed   and we divided the space parameter

( ) into a grid of . In our simulation, for each point ( ) of Eq. (12) we computed the

Lyapunov exponent  according to the method described in Ref. [20], starting a fixed arbitrarily initial

condition. We discarded the first   time-steps to reach the final attractor. Finally, each value for the

Lyapunov exponent related to the point ( ) was displayed in a palette of colors as shown in Fig. 5.
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Figure 4:  (A) and (C) Part of numerical solution to Eq. (9) ( ,  and )
and Eq. (12) ( ,  and ), respectively. (B) and (D) Attractor reconstructed
withv  .
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In Fig.  5 it  can be observed that the horizontal  trajectories of a suspended particle may assume

periodic  ( ),   quasi-periodic  ( )  and  chaotic  behavior  ( )  according  to  the  complexity

structures presented in the diagram. In particular, we observe in Fig. 5 that the set parameters, whose

solutions of Eq.(12) behave periodically, are in aggregated periodic windows (yellow area) also known as

shrimps  17. Such structures present a complex frontiers  between chaotic and periodic motions and may

exist in different scales as emphasized in the amplification of the figure.

We stress that the same structures are expected for the axial movement since Eq. (9) is very similar

to Eq. (12).

4. Conclusions

This paper presented the nonlinear characterization of trajectories described by a small sphere in a

single-axis acoustic levitator. The trajectories were obtained experimentally  by  image treatment and

also modeled using the acoustic radiation force theory. The time series generated by experimental data

showed typical topologies of nonlinear systems, as a chaotic attractor in the horizontal movement. Such

behavior  was  confirmed qualitatively  by a mathematical model and numerical simulations.  It was

observed that the existence of chaotic attractors related to the horizontal/vertical movement depends on

an external force and its stability is linked to a complex diagram full of periodic windows (regular

zones) and  chaos. The study of how the nonlinear acoustic forces affects the particle stability

(Lyapunov diagram)  may  help to comprehend  how  to minimize the amplitudes of the spontaneous

oscillations.  We  believe  that  the  experimental  and  numerical  concept  presented  in  this  paper are

important to understand the fundamentals of successful acoustic levitation: sufficient levitation force and

stability.
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Figure  5: Lyapunov diagram of Eq.(12) for a grid of  . Lyapunov exponents are posed in
colors according to the pallete. The picture at right emphasizes a periodic window  in a finer scale with

 and .
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Regarding future studies, two different strategies can be adopted to take into account the amplitude of

spontaneous oscillations in a mathematical model. The first is related to the fact that such oscillations are

due to a time delay between the change of the object position and the acoustic radiation force acting on

the particle. The second modification includes  instabilities of the second harmonic. When the levitator

operates with high pressure amplitudes, part of the energy is transferred from the fundamental frequency

to its harmonics, which can change the sound pressure distribution and the acoustic radiation force that

acts on the particle.
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