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Abstract 

In recent years, there has been growing interest in the study of nonlinear phenomena. This is due to the 

modernization of structures related to the need of using lighter, more resistant and flexible materials. 

Thus, this work aims to study the behavior of a mechanical system with two degrees of freedom with 

nonlinear characteristics in primary resonance. The structure consists of the main system connected to a 

secondary system to act as a Nonlinear Dynamic Vibration Absorber, which partially or fully absorbs the 

vibrational energy of the system. The numerical solutions of the problem are obtained using the Runge-

Kutta methods of the 4th order and approximate analytical solutions are obtained using the Multiple 

Scales Method. Then, the approximation error between the two solutions is analyzed.   

Using the aforementioned perturbation method, the responses for the ordinary differential equations of 

the first order can be determined, which describe the modulation amplitudes and phases. Thus, the 

solution in steady state and the stability are studied using the frequency response. Furthermore, the 

behavior of the main system and the absorber are investigated through numerical simulations, such as 

responses in the time domain, phase planes and Poincaré map; which shows that the system displays 

periodic, quasi-periodic and chaotic movements. The dynamic behavior of the system is analyzed using 

the Lyapunov exponent and the bifurcation diagram is presented to better summarize all the possible 

behaviors as the force amplitude varies. In general, the main characteristics of a dynamic system that 

experiences the chaotic response will be identified.  

Keywords: nonlinear mechanical systems, primary resonances, multiple scales method, Lyapunov 

exponent, Poincaré map, stability analysis and chaos  

  

1 Introduction  

The decrease in vibration levels in the response of a system is vitally important to have a reliable and 

efficient design as these vibrations are undesirable phenomena that may cause damage, failure, and 

sometimes destruction of machines and structures. According to Sayed [1], the vibration analysis of 

mechanical systems can provide information and improve a design in terms of quality, durability and 

productivity.  They considered a two degree of freedom vibration system including quadratic and cubic 

nonlinearities subjected to external and parametric excitation forces and solved it using the multiple scale 
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perturbation method. All possible resonance cases are extracted; however, the stability of the system is 

investigated at one of the worst resonance cases, confirmed numerically, which is the simultaneous 

primary, principal parametric and internal resonance. The system is studied numerically for selected values 

of different parameters. The numerical simulations show that the system exhibits periodic motions and 

chaotic motions, and that the vibration of the main system can be controlled applying a nonlinear absorber.  

Thus, there is growing interest in tools to attenuate unwanted vibrations in various types of systems. One 

of the most effective ways to attenuate unwanted vibrations in a given structure is through Dynamic 

Vibration Absorbers [2]. A classic DVA consists of a mass coupled by means of a spring and a damper to 

a given system, obtaining a new degree of freedom. The system is then tuned to vibrate at higher 

amplitudes, absorbing thereby partially or fully vibratory energy in the coupling point, see [3]. The DVAs 

may have linear or nonlinear characteristics. However, in recent years, there has been increasing interest in 

studying DVAs with nonlinear characteristics, due to their greater robustness when compared to the linear 

absorber, based on the fact that linear DVA operates satisfactorily only in its tuning frequency [4].   

In recent years, more attention has been paid to the study of nonlinear phenomena due to the modernization 

of structures, thus there are various studies concerning different models of continuous systems. [5], [6]. 

However, methods for analyzing nonlinear systems, the opposite of linear, are far less known; some are 

only found partially developed and analysing the equations that model a given problem are difficult to 

apply. Nonlinearities offer greater variability in the solutions. Therefore, it is necessary to formulate 

mechanisms to study and understand the characteristics of nonlinear phenomenon, emphasizing the chaos 

[7], [8].   

One of the particularities of systems which show chaos is the high sensitivity to the initial conditions, that 

is, solutions with near initial conditions have a completely different behavior [9].  

Differential equations that describe vibration systems are usually nonlinear and not always is it possible to 

obtain an analytical solution. However, often an approximate solution can be obtained. One of the most 

efficient ways of handling nonlinear phenomena is the perturbation theory, which is defined by interactive 

methods that has the purpose of obtaining approximate solutions involving a suitable choice of perturbation 

parameters.  The only drawback of the theory is that it provides good results only for small displacements 

[10]. Still with respect to non-linearity, [11] studied the stability on a system of a two degree of freedom 

for various time delayed values to confirm its influence on the attenuation of vibrations.  

Among the perturbation methods is the multiple scales method. The basic idea of this method is to achieve 

the expansion of the solution representing the response as a function of multiple independent variables or 

multiple scales [8]. Due to their wide range of applications, perturbation methods have been used to analyze 

vibration phenomena of various types of problems in engineering. In particular, bifurcation and stability 

problems have been solved by means of perturbation techniques. We will briefly review the state of art 

involving these techniques and how they can be applied in solutions to problems regarding chaotic 

behavior.  

In [12], a numerical method is presented to analyze the bifurcation due to both lateral and torsional 

vibrations in rotating systems. A nonlinear model with three degrees of freedom is obtained from the 

Hamiltonian formulation. Using a standard procedure from classical mechanics, the authors showed that 

the dynamic of the system is described using nonlinear differential equations. From this model and using 
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the linearized matrix of the system, the stability of the equilibrium points and the linear normal modes are 

analyzed. The bifurcation of periodic orbits is investigated using a computing algorithm of the nonlinear 

normal modes adopting the multiple shooting technique and the pseudo Arclight continuation method.   

The Routh-Hurwitz stability criterion is used to investigate the absolute stability of dynamic systems. 

Edward John Routh (1831-1907) established the first criterion for a polynomial to have roots (solutions) 

with a negative real part.  However, Adolf Hurwitz (18591919) classified this as a necessary condition, 

but not sufficient and developed the Hurwitz matrix or H matrix, built through the coefficients of the 

polynomial. Thus, the criterion established that, besides the polynomial having all its positive coefficients, 

all the determinants of the matrix also had to be positive. [7].  

Passive suppression mechanism of the vortex-induced vibration in solids, based on nonlinear elements and 

a nonlinear energy sink are investigated in [13]. A van der Pol oscillator is used to model a load-induced 

flow and in the main frame a structure is coupled that works as a nonlinear energy sink. Based on the 

equations of motion, the analysis performed indicated that the mass and frequency of the nonlinear energy 

sink showed significant effects in reducing the vibration response [13].  

One of the most important criteria among those used to define chaos in dynamic systems is the Lyapunov 

exponent that measures the exponential average rate of divergence or convergence of phase space 

trajectories. Thus, the dynamic behavior of a system can be provided through signs of the Lyapunov 

exponents, which indicate the presence of fixed points, periodic movements, almost periodic and chaos [5]. 

There is also interest in experimentally studying nonlinear phenomena. An interesting study, [14], involves 

the experimental study of resonance of a discrete structure with forced oscillations.   

Chaotic responses in the study of vibrations in beams attached to non-linear springs, which are in turn 

bound to a foundation, are investigated in [15]. In this case, the equations of motion are obtained and used 

to produce the Poincaré section in phase space. Together with the Lyapunov exponent, these techniques 

are used to study the chaotic behavior of the frequency response of the system. Resonance conditions and 

the existence of homoclinic orbits are also analyzed.  

According to [7], another useful procedure for analyzing chaotic behavior is the bifurcation diagram. In 

general, bifurcation is understood as a qualitative shift in the nature of the dynamical system behavior 

because of the variation of the parameters. The bifurcation theory is usually developed in two ways: local 

bifurcations, which treat bifurcations in a limited region of the phase space, and global bifurcations that 

represent a qualitative change in the structure of orbits in a region of phase space.  

  

In [16], the problem of chaotic motion of a nonlinear elastic beam axially compressed and subject to a 

transversal load was considered. The authors assumed that the damping force, as well as the material used 

to manufacture the element were nonlinear in nature. From there, the non-linear governing equation was 

obtained, as well as the corresponding dynamic system using the non-linear Galerkin method. The 

Melnikov's method was used to study the existence of homoclinic orbits. According to the authors, the 

results showed suitable choices of loaded parameters yielding to chaotic behavior of the vibration response.  

[17] studied the nonlinear dynamics of a two-degree-of-freedom vibration system with nonlinear damping 

and nonlinear spring. The bifurcation diagram, the Poincaré map and amplitude–frequency spectrum are 

analyzed to identify the periodic motion, quasiperiodic motion and chaotic motion of the system. It is worth 
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mentioning that according to the authors the numerical simulation shows that the effect of reduction of the 

vibration amplitude can be obtained by properly selecting the values of nonlinear dampers, nonlinear spring 

stiffness and the range of exciting frequency.  

Another very interesting study was that of chaotic dynamics of a Duffing system with softing stiffness, 

subject to periodic external forces with multiple frequencies [18]. The authors pointed out that the 

mechanism that generates chaos is the transversality of homoclinic orbits when considered in the torus. 

Using the concept of stable and unstable manifolds, the authors obtained the Melnikov's function, which in 

turn is used to determine the existence of homoclinic orbits. From the existence of homocinic orbits, the 

authors estimate both the Poincaré map and a parameter region where the chaotic dynamics may occur.   

Chaotic phenomena are a behavior that rise in dynamical systems and their causes are due to many factors 

such as the number of degrees of freedom, the geometry of the problem and movement constraint among 

others. In recent years, the study of chaotic dynamics has attracted the attention of researchers in the field, 

due to its unpredictability in relation to the analysis and the effects that nonlinearities can cause in the 

stability of the system  [19].  

In this paper, our main aim is to study the emergence of chaotic behavior of the dynamic vibration absorber 

subject to nonlinear elements in the stiffness. It is assumed that the system operates in primary resonance. 

From the method of multiple scale techniques [20], an approximate analytical solution is given and 

compared numerically through four Runge Kutta methods [21]. In addition, the Routh-Hurwitz is used to 

establish a parameter region of stability. The chaotic behavior and existence of bifurcation solutions is 

analyzed through Poincaré mapping and Lyapunov exponent methods. The article finishes with a numerical 

analysis using Matlab® software.  

  

2 Modeling a discrete system  

In this section, our main concern is the vibratory system of two degrees of freedom where the concept of 

Nonlinear Dynamic Vibration Absorber (nDVA) is introduced [22]. The main aim of the device (absorber) 

is to attenuate the vibration levels of the main system, as can be seen in Fig. 1.   

  

Figure 1: Discrete mechanical system.  

By applying Newton’s second law in the two masses separately, we have the following set of motion 

equations:  

m1x1 + k1x1 + k1
' x1

3 +c1x1 - k2 (x2 - x1 )- k2
' (x2 - x1 )3 +c2 (x1 - x2 )= fcos( t)  (1)  
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m2 x2 + k2 (x2 - x1 )+k2
' (x2 - x1 )3 +c2 (x2 - x1 ) = 0  

(2)  

 

 

 

 

  

This vibrating system consists of springs (k1
' ,k2

' ) with nonlinear characteristics, which are assumed to be 

sufficiently weak. An external force f(t) = cos( t) excites the main m1 mass.  

We can rewrite Eq. (1) and (2) in the following way:  

 m1 m1 m2 m2 m1 

  

and ε 1 is used to indicate values with a small order of magnitude.   

Table 1 lists the parameter values of the main system and the absorber.   

  

Table 1: Parameter Values of the System  

Symbol  Variable  Value  Unit  

m1  Mass of main system  10  kg  

m2  Absorber mass  0.8  kg  

 k1  Linear stiffness of the main system  44  N m  

k1'  Nonlinear stiffness of the main 

system  

8  N/m3  

k2  Linear absorber stiffness  2  N/m3  

k2'  Nonlinear absorber stiffness  0.5  N/m3  

Linear damping constant of the  

 

 

x1 + ω1
2 x1 + εα1 x1

3 +εξ1 x1εα2 x2 - εα3 (x2 - x1 )3 +εξ2 (x1 - x2 ) = εf cos(Ωt)  
(3)  

x2 + ω2
2(x2 - x1 )+εβ1(x2 - x1 )3 +εξ3(x2 - x1 ) = 0 where  

(4)  

k +k k k' k k' 

ω12 = 1 2 ,ω22 = 2 ,α1 = 1 ,α2 = 2 ,α3 = 2 , m1 m2 m1 m1 m1 
(5)  

 c c c k' f 

ξ1 = 1 ,ξ2 =2 ,ξ3 = 2 ,β1 = 2 , f = 0 ,  (6)  

1 c   

main system   
0.1   m Ns   

2 c   Linear absorber damping constant   0.08   m Ns   
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3 The multiple scales method applied to a nonlinear mechanical system   

In this section, our aim is to use the multiple scale technique according to [23] to uniformly approximate 

the solution of Eqs. (3) and (4). In order to perform the calculation, we will consider the expansion of the 

solution with two terms  

 x1(t.;ε) =x10(T0 ,T1 )+ εx11(T0 ,T1 )                                                         (7)  

x2(t.;ε)=x12(T0 ,T1 )+εx21(T0 ,T1 )                                                            (8)   

where T0 =t and T1 = εt , represent the slow and fast scale, respectively, of the time. As can  

be seen, the expansion is performed until ( ), and x j , j = 1,2, are functions to be determined.  

Taking into account the previous comments and using the chain of rules, the first and second order 

derivatives of x in relation to time should be expressed in terms of partial derivatives, relatively the Tn such 

that,  

dx = D0 +εD1 ,                                                                       (9)  

dt 

= 2 2 ε D0D1,                                             (10)   ddt22
x 

D0 + 

where Dn =  (n = 0,1,...) are differential operators.  

Tn 

Substituting Eqs. (7) and (8) in Eqs. (3) and (4) and separating the terms with power of the same order, we 

obtain the following set of equations:  

 Order 0 :  

(D0
2 + ω1

2 )x10 = 0                                                                     (11)  

 (D0
2 + ω2

2 )x20 = ω2
2 x10                                                              (12)  

• Order 1: 

(−D 022D+0ω(12x10)x−11x=20f)cos( t)−2D0D1x10 − 1D1x10 − 1x103 + 2x20 + 3(x20 − x10)3−  

(13)  

 (D0
2 +ω2

2 )x21 =−2D0 D1x20 +ω2
2 x11 − 1( x20 − x10 )

3 − 3 D0 ( x20 − x10 )                       (14)  

  

The general solutions of Eqs. (11) and (12) can be expressed in the following ways:  
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x10 = Aei 1T0 + cc                                                                              (15)  

x20 = Bei 21T0 + 1 Aei 1T0 + cc                                                                  (16)  

where Γ1 = ω22
2 , A and B are unknown functions of T1 and which can be calculated from  

1 

the elimination of secular terms at the right hand side of the equations. The particular solutions of Eqs. (13) 

and (14) are given by:  

  

x11 = Ceiω1T0 + U1ei ΩT0 + H1e3iω1T0 + H2eiω2T0 + H3e3iω2T0 + H4ei(2ω1 + ω2 )T0 

  + 
H

5ei(2ω1 − ω2 )T0 + 
H

6ei(ω1 + 2ω2 )T0 + 
H

7ei(ω1 − 2ω2 )T0 + cc            (17)  

x21 = Deiω2T0 +U 2ei ΩT0 + H 8eiω1T0 + H 9e3iω1T0 + H10e3iω2T0   + H11ei(2ω1 + ω2 )T0 

          (18)  

+ H12ei(2ω1 − ω2 )T0 + H13ei(ω1 + 2ω2 )T0 + H14ei(ω1 − 2ω2 )T0 + cc where C , D, U j , j = 1,2. 

and Hi = 1, …14, are complex functions in T1.  

The general solution of x1 and x2 until the first order approximation is given by:  

 x1 = x10 + εx11                                                                             (19)  

x2 = x20 +εx21                                                                              (20)  

3.1 Evaluation of the response obtained by the Multiple Scale Method  

The search for precisely approximate solutions of an equation can be performed in two ways: Numerical 

Method (Fourth-Order Runge-Kutta Method) and Analytical Methods (Multiple Scale Method). An 

analytical approach is obtained when a parameter of the problem is small, hence the name [10], [24].  

After the solution has been calculated analytically, it can be observed to what extent the numerical solution 

of the system in question can be approximated   

In order to evaluate the efficiency of the analytical solution through the Multiple Scale Method and the 

numerical solution (fourth order Runge-Kutta), the relation between these two solutions is presented in 

Figure 2 (a) and (b). Considering this, it can be observed that the perturbation method used is satisfactory 

to represent the response of the presented non-linear system.  The values are listed in Table 1, presented 

in the previous section.  



International Journal for Innovation Education and Research            Vol:-8 No-03, 2020 
 

International Educative Research Foundation and Publisher © 2020        pg. 398 

 

Figure 2: main system (a) and absorber (b): numerical solution - equation (3) and (4) and analytical 

solution - equations (19) and (20).  

 

This shows that the general solution obtained by the perturbation method, to the first order approximation 

is sufficiently close to the numerical solution for the nonlinear system, although it presents some 

discrepancy points of the oscillation amplitude. For better accuracy of the analytical solution, generally 

terms of higher orders have to be considered in the expansion [11], [25].  

 

4 Study of the stability in the mechanical system  

The stability of the vibratory system of two degrees of freedom, with damping, is investigated for the 

case of the primary resonance, i.e., in which the frequency of the external excitation Ω is very close to the 

natural frequency ω1, As usual, instead of using the excitation frequency Ω as a parameter, a tuning 

parameter σ is introduced, such that [26]:  

 Ω =ω1 +εσ ,                                                               (21)  

  

Substituting Eq. (21) in Eqs. (13) and (14) and eliminating the secular terms leads to the following 

conditions of solvability:  

  

2iω1D1A = [−ξ1iω1 + α2Γ1 + ξ2iω1(Γ1 −1)]A− 

− 3[α1α3(Γ1 −1)3 ]A2  A+ 6α3(Γ1 −1)ABB + 2f eiσσ1                        (22)  

 2   

ω2 [6α3(Γ1 − 1)2 AAB + (ξ2iω2 + α2 )B + 2iD1ω2B = 

  (ω12 − ω22 )                                                           (23)   

+ 3α3B2B] − 6β1(Γ1 − 1)2 AAB − ξ3iω2B − 3β1B2B 

Expressing the complex functions A and B in polar form, we have: 

1 iθ                                                                             (24)   

  A= ae 2 

 1 iγ                                                                      (25)  
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  B = be 

2 

where, a, b,  and  are real. Substituting Eqs. (24) and (25) in Eqs. (22) and (23) and separating the real 

and imaginary parts, we obtain the following set of solutions:  

  a' = c1a −dsen(η)                                                       (26)  

  aη' = c2a + c3a3 + c4 ab2 − dcos(η)                                     (27)  

 b' = c5b                                                                     (28)   

bγ' = c6b+c7b3 +c8a2b                                                       (29)  

 

where  

 f 1 1 3 3 ],                (30)  

  d = ,c1 = [−ξ1 + ξ2(Γ1 −1)],c2 =− α2Γ1, c3 = [α1 −α3(Γ1 −1) 

 2ω1 2 2ω1 8ω1 

3 1 2 ),c6 =−α2Γ2ω2                                        (31)    

c4 =− α3(Γ1 −1),c5 = (ξ2ω2 Γ2 − ξ3 

 4ω1 2 

  

 3 3 3 2 

  c7 =− α3ω2 Γ2 + β1 ,c8 =− α3(Γ1 −1) ω2 Γ2 + 

 8 8ω2 4 

1 

  

  β1 Γ1 −1)2                     (32) 

where Γ2 = 2 2 , η = θ −σT1, a and θ are the amplitude and phase of the main system, ω1 −ω2 

respectively, b and  are amplitudes and phase of the absorber.  

In order to obtain stationary solutions, we do a' = b' = η' = γ' = 0 in (26) - (29). Thus, the stationary values 

become solutions of an algebraic system of equations:  

  c1a−dsen(η)=0                                               (33)   

(c2 −σ)a + c3a3 −c4ab2 − dcos(η) = 0                                                 (34)  

 c5b =0                                                                               (35)   

c6b +c7b3 +c8 a2b = 0                                                                (36)  

 

Resolving the resulting algebraic equations (33) - (36) produces three possibilities for the fixed points, 

namely:  

Case (1):a  0,b = 0;  

Case (2):a = 0,b  0 and Case (3):a  0,b  0 . in which only the first can happen.  

Thus, considering b=0 and squaring the two sides of each of the Eqs. (33) and (34) and summing them, we 

obtain:  

  

 [(c2 −σ+c3a2)2]a2 +c12a2 =d2                                                            (37)  
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which is the frequency response for the system given in Fig.1.  

It is worth mentioning that the values of a and  are solutions of Eqs. (33) and (34), since the case in which 

b =0is considered.  

Figure 3 shows the variation in a and  in relation to T1 calculated by a numerical integration of equations 

(33) and (34). It can be noted that, in principle a and  exhibit oscillations, but in the steady state it becomes 

constant. 

 

 

 

 

 

 

 

 

Figure 3: Variation in a and η with T1 numerically calculated (25) and (26) to σ =0, b=0 , a(0)=0.01 and 

η(0)=0.01. 

  

In order to analyze the stability, we will use the method by Andronov and Vitt (see [27] and [23]). Thus, 

considering the first order approximate:  

  

a =a0 +a1 

 η=η0 +η1                                                                                       (38)  

b=b0 +b1 

  

where a0 ,η0 andb0 are solutions of the steady state. Substituting Eq. (38) in equations (33)-(36), we have:  

a1
'  a1  

 η1
' 

 = J η1  ,                                                                         (39)  

 b1' b1  

  

where J is the Jacobian matrix given by:  

  

  c1 −(c2 −σ)a0 −c3a0
3 0  

  J = (c2 −σ)+3c3a0 c1 0  .                                 (40)  

  

0 50 100 150 200 250 300 350 400 450 500 
-1.5 

-1 

-0.5 

0 

0.5 

T 
1 

  

  

 

a 
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 a0   0 0 c5  

The eigenvalues of matrix J are given by:  

   λ3 +c9 λ
2 +c10 λ +c11 = 0                                                                     (41)  

  

where c9 ,c10 and c11 are the following constants:  

 c9 =−2c1 −c5                                                                                   (42)  

 c10 =3a04c32 +4a02c2c3 −4a02c3σ+c22 −2c2σ+c12 +2c5c1 +σ 2                            (43)  

c11 =−3c5a04c32 −4c5a02c2c3 +4c5a02c3σ −c5c22 + 2c5c2σ −c5c12 −c5σ2                   (44)  

 

4.1 Saddle-node bifurcation  

The real parts of the eigenvalues of matrix J determines the amplitude of oscillations of the coupled system 

(3) and (4). Thus, if we denote by λci the eigenvalues of matrix J, we see that equation Real(λci)=0 

determines the points at which the solutions bifurcate, [28], [29]. In it, there are three real solutions between 

two points of vertical tangent, which are called limit point bifurcation, known in the literature as saddle-

node bifurcation.  

The saddle-node bifurcation is a nonlinear phenomenon and is related with a nonlinear model of a quadratic 

equation [30]. At the saddle-nodes, the tangency of the frequency response curve is vertical. The locations 

of the jumping points are obtained through differentiation of the  

2 dσ frequency response Eq. (37) with respect to a and considering da2 =0 . Thus, the resulting  

expression is  

  

 (c3a 2 + c2 − )2 + c1
2 + 2a2c3 (c3a 2 + c2 − ) = 0 ,                                       (45)  

in which the solution is given by:  

  σ  =c2 +2c3a
2  c3

2a4 −c1
2 .                                                             (46)   

  

From equations (46), we can obtain an interval σ− σ σ+ in which three real and positive solutions can be 

obtained from Eq. (37).  

  

4.2 Stability analysis  

The stability region of the frequency response curve, Eq. (37), will be determined by Routh-Rurwitz 

criterion. A system is considered stable if all eigenvalues of the Jacobian matrix associated with a particular 

point of balance have a negative real part [10]. In order to apply the Routh-Hurwitz criterion, all coefficients 
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and determinants of Hurwitz matrix (H) must be positive. If one of these values is negative, the Jacobian 

matrix has at least one eigenvalue with a positive real part, making the system unstable [7].  

Thus, considering Eq. (41), matrix H is constructed:  

  

c9 c11 0  

  H = 1 c100  .                                                               (47)   

0 c9 c11  

  

Applying the Routh-Hurwitz criterion in Eq.(41), we obtain the following set of inequalities  c9  0,c10  

0,c11  0,c9c10 − c11  0,c9c10c11 − c11
2  0.                                                   (48)  

  

If the expressions are in accordance with Eq. (48), then all the critical points of the system given by Eqs 

(26) to (29) are stable, otherwise they are unstable.   

  

4.3 Frequency response for the system 

The expression given in Eq.(37) is a nonlinear algebraic equation solved numerically using 

implementations in software MATLAB® and the result is shown in Fig. 4. In this figure, the frequency 

response curve is composed of continuous and dashed lines, which represent the stable and unstable 

solutions, respectively, calculated according to the Routh-Hurwitz criterion.  

 

Figure 4: (a) Amplitude of the main system in case of a primary resonance with f0 =0.2106N, (b)  

Jump Phenomenon.  

  

In Figure 4 (a), we note that the curve shows the jump phenomenon that is one of the outstanding 

characteristics of nonlinear systems. The jumping phenomenon occurs where the steady state behavior 
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- 0.045   

  - 0.045   

  

  - 0.045   

  - 0.045   

changes dramatically due to a transition from one stable solution to another unstable solution when the 

tuning parameter  is varied.  

Figure 4 (b) shows the jump phenomenon. Initially, in point 1, we see that the curve of the input frequency 

 is low. As the frequency  is increased, amplitude a increases until point 2 is reached. If the frequency   

increases, then it undergoes a jump from position 2 to position 3. This part of the response is unstable 

(eigenvalues of the Jacobian matrix have a positive real part). In addition, a change in its amplitude and 

phases can be observed. When the frequency  increases, the amplitude follows curve Section 3 towards 

point 4. On the other hand, in the opposite direction, there is a decrease in the values of the frequency. In 

this figure, the frequency response for the main system was also observed. It has a maximum value of peak 

amplitude in amax = 0.3568m that occurs when = 0.0850 rad /s and presents an unstable region in the 

interval 0.08399  σ  0.08669, as shown in the eigenvalues listed in Table 2. Is worth mentioning that the 

stability region was obtained applying the Routh Hurwitz criterion as described above.  

  

Table 2: Eigenvalues of the system with nonlinear absorber in force f0 = 0.2106N.  

 

0 -0.0137 + 0.05872i  -0.0137 - 0.05872i  

0.08 -0.0137 + 0.014051i  -0.0137 - 0.014051i  

0.08398 -0.0137 - 0.0073204i  -0.0137 + 0.0073204i  -0.045  

0.08399  -0.0137 + 0.007265i  

-0.028148  

-0.0137 - 0.007265i  

0.00062373  

-0.045  

0.08669  -0.0137 +0.01465-0.026818 

 i  

-0.026881  

-0.0137-0.00070583 - 

0.01465 i  

-0.00064263  

-0.045  

 0.08671 -0.0137 + 0.01472-0.028113  i -0.01370.00058928 - 0.01472  i  

0.09 -0.0137 + 0.023129i  -0.0137 - 0.023129i  

 0.1  -0.0137 + 0.03856i  -0.0137 - 0.03856i  -0.045  

  

5 Numerical results and discussion  

To study, numerically, the behavior of the main system and the absorber, the Runge-Kutta fourth-order 

method was applied to Eqs. (3) and (4) with implementations in software Matlab®, according to [31]. In 

order to do this, we rewrite Eqs. (3) and (4) as a system of first order differential equations, given by:  

  

x1 = y1 

σ   
1 λ   

2 λ   
3 λ   
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y1 =− 12 x1 − 1 (x13 )− 1 y1 + 2 x2 

+ 3 (x2 − x1 )3 − 2 (y1 − y2 )+ f cos( t) 

                                                                      (49)  

x2 = y2 

y2 =− 22 ( x2 − x1 )− 1( x2 − x1 )3 

− 3 ( y2 − y1 ) 

  

The responses in the time domain, phase planes and Poincare sections of the main system and absorber, 

varying the parameter of amplitude force are shown in Figures 5 - 7. In this study, we considered the case 

of primary resonance. The simulations were performed eliminating the initial transient part and the values 

of system parameters are listed in Table 1.  

Figure 5: (a) – (b) Response, (c) – (d) phase plan and (e) – (f) sections of Poincaré of the main system  
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and absorber, respectively, in primary resonance Ω 1 and f =0.02. 

  

Figure 6. (a) – (b) Response, (c) – (d) phase plan and (e) – (f) Poincaré section of the main and  

absorber system, respectively, in primary resonance Ω 1 and f = 5 .  

  

 

Figure 7: (a) – (b) Response, (c) – (d) phase plan and (e) – (f) Poincaré section of both the main and  
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absorber system, respectively, in primary resonance Ω 1 and f =15 .  

  

  

In Figure 5, when f = 0.02, note that the graphics of evolution in the time domain, represented by (a) and 

(b), in Figure 5 correspond to the behavior of both the main and secondary system (absorber), respectively, 

which exhibit low-amplitude oscillations around the steady solution.  They are initially irregular, and after 

a period of time, become regular. It can be observed that the closed curves in the phase pictures, Figure 5 

(c) and (d), for both the main system and the absorber system, are characteristic of periodic behavior.  As 

a result of this, the Poincaré sections display points closer to each other, as can be seen in Figure 6 (e) and 

(f):  

For f = 5, Figure 6 (a) and (b), we note a considerable increase in the response amplitudes of both the main 

system and the absorber.  In the phase picture, given by Figure 6 (c) and (d), it can be observed that an 

increase in the oscillation of the system occurs. However, both systems continue to show considerable 

stable behavior, as shown in the Poincaré sections, Figure 6 (e) and (f).  

In Fig. 7 (a) and (b), the responses in the time domain for f = 15 are observed. In these responses, both the 

main system and the absorber have irregular oscillations, that is, there is a well-defined period. On the other 

hand, Figure 7 (c) and 7 (d) show evidence of chaotic behavior. This behavior is obtained by analyzing the 
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Poincaré section of both main and secondary systems (absorber), according to Figure 7 (e) and (f), 

respectively, as their points are irregularly scattered on the phase plane.   

Fig.8 shows the results obtained for the main system and absorber, for f = 25. When compared with f = 15 

in Figure 7, the behavior of the complete system in the case f=25 (Figure 8), is more stable, but still exhibits 

chaotic behavior. Figure 9 shows responses of the system (both main and absorber system) for f = 30. The 

system presents chaotic behavior showing an increase in irregular variation (c) and (d). Fig. 9 (e) and (f) 

for the main and secondary (absorber) systems also show a large number of scattered points in the plane.   
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Figura 8: (a) – (b) Response, (c) – (d) phase plan and (e) – (f) Poincaré section of both the main and 

absorber system respectively, in primary resonance Ω 1 and f = 25.  
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Figura 9: (a) – (b) Response, (c) – (d) phase plan and (e) – (f) Poincaré section for the main system and 

absorber, respectively, in primary resonance Ω 1 and f = 30.  

  

5.1 Lyapunov Exponent  

In this section, we apply the methods of Lyapunov exponents to analyze the existence of both periodic and 

chaotic orbits, [23]. As we can see from system (Eq. 50), the set of equations form a nonautonomous 

system. In order to transform it into an autonomous one, we introduce the new variable z = t, obtained from 

the autonomous system below,  

  

x1 = y1 

y1 =− 12x1 − 1(x1
3)− 1y1 + 2x2 + 3(x2 − x1)3 − 2(y1 − y2)+ f cos( z) 

 

 x2 = y2      (50)   

y2 =− 22( x2 − x1 )− 1( x2 − x1 )3 − 3( y2 − y1 ) 

z=1 

  

From the system of equations (50), we perform the calculation of Lyapunov exponents, using a computer 

program implemented in the Matlab® software. The results are shown in Figure 10 (a) – (f) for the following 

values f = 0.02, (b) f = 5, (c) f = 15, (d) f = 25, (e) f = 30 and (f) f = 40, respectively. The parameter values 

used in the simulations are listed in Table 1, and the initial conditions are considered zero. It is worth 

mentioning that the first two hundred iterations were eliminated to better interpret these exponents.  

We can see from Figures 10 (a) and (b) for f = 0.02 and f = 5, respectively, that the system has periodic 

behavior, since most of their exponents are null, indicating that the paths do not diverge. In the case where  
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f = 15,  f = 25,  f = 30 e f = 40, Figure 10 (c), (d), (e) and (f), respectively, shows that the solutions of the 

system exhibit chaotic behavior, i.e., it presented Lyapunov positive exponents. In these cases, there is a 

separation of paths when they migrate to a certain direction with a passage of time, featuring chaos.  

  

 

( a) Evolution of the Lyapunov exponents for nonlinear system  -    f = 0.02   

( b) Evolution of the Lyapunov exponents for nonlinear system  f = 5   

( c) Evolution of the Lyapunov exponents for nonlinear system   -   f = 15   

( d) Evolution of the Lyapunov exponents for nonlinear system   -   f = 25   

( e) Evolution of the Lyapunov exponents for nonlinear system  -     f = 30   

( f) Evolution of the Lyapunov exponents for nonlinear system   -   f = 40   
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Figure 10. Evolution of the Lyapunov exponents of the system with nonlinear absorber (f = 0.02, 5, 15, 

25, 30, 40)  

  

The responses in the time domain phase Portrait phase and the Poincaré sections showed the presence of 

chaotic behavior in the dynamics system, verified by the analysis of the signs of Exponents Lyapunov, as 

presented in Table 3.  

  

Table 3 – Signs of Lyapunov Exponents  

Driving amplitude 

f  

 Signs of Lyapunov  

Exponents   

0.02  –  –  –  –  

5  –  –  –  –  

15  +  +  –  –  

25  +  –  –  –  

30  +  +  –  –  

 40  +  +  –  –  

 

  

Figure 11 shows the global behavior of the system (Eq.49). As we can see the system undergoes 

bifurcations [32] for frequency values between (10 – 20), (28 – 32), (36 – 50) for both the main and 

secondary system.   

 

  Figure 11: A bifurcation diagram for (a) main system and (b) absorber   
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In the bifurcation diagram for the primary system (Figure 11 (a)), it can be observed that for 0<f<10.5, 

there are regions where parameter f  is associated with a finite number of points. It can be observed in this 

figure that for f values given by 10.5 <f <20, the system is modified to a regime of unstable solutions and 

in this case it can be seen that there is a bifurcation of the solution. However, for the interval 20 <f <26, the 

system exhibits a stable behavior, but again the system presents a region of solution instabilities by 

increasing the magnitude of the force in the region that comprises the interval 26 <f <50.   

Figure 11 (b) shows that the absorber has a very similar behavior to the main system, which values 0 < f < 

9 and 20 < f < 26 the parameter f is associated with a finite number of points, and for 9 < f < 20 and 26 < 

f < 50 the regions have shown clouds of points, indicating where the chaotic behavior occurs.  

  

6 Conclusion  

In this paper, we investigated the behavior of a nonlinear system with a nonlinear absorber in primary 

resonance, discussing the characteristics of the theory of mechanical vibration as a nonlinear system. As 

shown in the numerical simulations, it can be observed that the Multiple Scale Method satisfactorily 

describes the behavior of the coupled system.  

For the primary resonance case, the amplitude of frequency response of the main system, with force f0 = 

0.2106N, corresponds to a curve which exhibits the jumping phenomena, which consists of a curve where 

in one direction the system has stability and in another the system exhibits instability behavior. The region 

of stability of the solutions is determined by Routh-Rurwitz criterion, which is efficient analysis from both 

stability and instability behavior.  

We pointed out that the interval of 0.08399  σ 0.08669 comprises a region in which the Routh-Hurwitz 

criterion is not satisfied and therefore, it is called an unstable region. This is due to the fact that the one of 

eigenvalues of the equations has a positive real part.  

Numerical results are presented in different ways: time domain responses, in phase portrait form, Poincare 

sections and Lyapunov exponents. The computational simulations were performed through computer 

programs in MATLAB® software.  The time domain responses show trajectories, initially irregular, 

becoming regular when time goes to infinity. Analyzing the phase portraits, it is evident that the system 

presents an unstable (chaotic) irregular behavior. The Poincare sections have irregular oscillations with a 

number of periods, which are not defined.  

The stability of the system in question is verified by means of two important criteria of nonlinear dynamics, 

namely Routh-Hurwitz criterion and an analysis of Lyapunov exponents. The theory of the Lyapunov 

exponent is also a useful tool in the stability analysis, since the simulations showed the existence of a 

positive exponent, ensuring the existence of chaos. In addition, the simulations indicated the existence of 

a zero exponent, which according to theory, ensures the existence of a periodic response. Therefore, both 

Routh-Hurwitz criterion and Lyapunov exponents provided good results regarding the stability of dynamic 

systems.   

  



International Journal for Innovation Education and Research            Vol:-8 No-03, 2020 
 

International Educative Research Foundation and Publisher © 2020        pg. 413 

Acknowledgements  

The authors are grateful to the Goiás State Agency FAPEG for the financial support to their research 

activities, the Coordination for the Improvement of Higher Education Personnel –  

CAPES and CNPq (grant #439126/2018−5) for the continued support to their research work.   

  

7 References 

[1] Sayed, M.; Hamed, Y. S., Amer, Y. A.: Vibration Reduction and Stability of Non-Linear  

System Subjected to External and Parametric Excitation Forces under a Non-Linear Absorber.  IJCMS: 

International Journal of Contemporary Mathematical Sciences, 22, 1051– 1070, (2011).  

[2] Rade, D. A. and Steffen, V. Jr.: Dynamic Vibration Absorber. Encyclopedia of Vibration, Academic 

Press, ISBN 0-12-227085-1, 9-26 (2011).  

[3] Koronev, B. G., Reznikov, L. M.: Dynamic Vibration Absorbers: Theory and Technical Applications. 

John Wiley and Sons Ltd., Chichester, UK, (1993).  

[4] Borges, R. A., de Lima A.M.G., Steffen Jr, V.: Robust optimal design of a nonlinear dynamic vibration 

absorber combining sensitivity analysis, Shock and Vibration 17, 507-520, (2010).  

[5] Awrejcewicz, J., Krysko, A. V., Zagniboroda, N. A., Dobriyan, V. V., Krysko, V. A.: On the general 

theory of chaotic dynamics of flexible curvilinear Euler–Bernoulli beams, Nonlinear Dynamics 79,11 

– 79, (2015).  

[6] Thiery, F., Aidanpää, J. O.: Nonlinear vibrations of a misaligned bladed Jeffcott rotor, Nonlinear 

Dynamics 86, 1807 – 1821, (2016).  

[7] Thomsen, J. J. Vibration and Stability Advanced Theory, Analysis, and Tools. SpringerVerlag, 2nd 

Edition, (2003).  

[8] Awrejcewicz, J., Krysko, V. A.: Chaos in Structural Mechanics, Springer-Verlag Berlin Heidelberg, 

(2008).  

[9] Vadasz, P., Equivalent initial conditions for compatibility between analytical and computational 

solutions of convection in porous media, International Journal of Non-Linear Mechanics 36, 197-208 

(2001).  

[10] Nayfeh, A, H.: Perturbation Methods. John Wiley and Sons, New York, (2004).  

[11] Rabelo M. Silva, L., Borges, R.A., Gonçalves, R. Henrique, M., Computational and Numerical 

Analysis of a Nonlinear Mechanical System with Bounded Delay, International Journal of Non-Linear 

Mechanics 91, (2018), 36-57.  

[12] Lee, K. H., Han, H. S., Park, S., Bifurcation analysis of coupled lateral/torsional vibrations of rotor 

systems, Journal Sound and Vibration 386, (2017), 372 – 389.  

[13] Srinil N and Zanganeh H 2012 Modelling of coupled cross-flow/in-line vortex-induced vibrations 

using double Duffing and van der Pol oscillators, Ocean Engineering., 53, 83-97 [14] Nayfeh, A. H., 

Balachandran, Experimental Investigation of Resonantly Forced Oscillations of a Two-Degree-of-

Freedom Structure, International Journal of Non-Linear Mechanics 25, 199-209, (1990).  



International Journal for Innovation Education and Research            Vol:-8 No-03, 2020 
 

International Educative Research Foundation and Publisher © 2020        pg. 414 

[15] Norouzi H., Younesian D., Chaotic vibrations of beams on nonlinear elastic foundations subjected to 

reciprocating loads, 69, 121-128, (2015).  

[16] (zhang) Peng, Z. K., Meng, G., Lang, Z. Q., Zhang, W. M., Chu, F. L., Study of the efects of a cubic 

nonlinear damping on vibrations isolations using harmonic balance method. International Journal of 

Non-Linear Mechanics, 47, 1073-1080, (2012).  

[17] Zhua, Zhengb and Fu (2004) - - ZHUA; ZHENGB and FU: Analysis of Non-Linear  

Dynamics of a Two-Degree-of-Freedom Vibration System with Non-Linear Damping and NonLinear 

Spring. Journal of Sound and Vibration, Vol. 271, n. 1-2, 15 – 24 (2004).  

[18] J.J. Lou, Q.W. He, S.J. Zhu, Chaos in the softening Duffing system under multi-frequency periodic 

forces, Applied Math. Mech. 25 (12) (2004), 1421–1427.  

[19] M.H. Ghayesh, Stability characteristics of an axially accelerating string supported by an elastic 

foundation, Mech. Mach. Theory 44 (10) (2009) 1964–1979.   

[20] Kevorkian, J. K., Cole, J. D., Multiple Scale and Singular Perturbation Methods, Springer, (1996).  

[21] Burden, R. L., Faires, J. D., Numerical Analysis, Brooks/Cole, Cengage Learning, Ninth Edition, 

(2011).  

[22] Borges, R. A.; Lobato, F S. ; Steffen, V. . Application of Three Bioinspired Optimization Methods 

for the Design of a Nonlinear Mechanical System. Mathematical Problems in Engineering (Print), v. 

2013, p. 1-12, 2013.   

[23] Nayfeh, A., Mook, D., Marshall, L., Non-linear Coupling of Pitch and Roll Modes in Ship Motions, 

J. Hydronautic 7,145-152, (1973).  

[24] Kahn, P.B.,Mathematical Methods for Scientists and Engineers: Linear and Nonlinear Systems, Jphn 

Wiley & Sons, New York, (2004).  

[25] Nayfeh, A.H., Balachandran, B., Applied Nonlinear Dynamics: Analytical, Computation and 

Experimental Methods. John Wiley and Sons, N.Y., (1995).  

[26] Batista, M., On stability of elastic rod planar equilibrium configurations, International Jornal of Solids 

and Structures 72,144-152, (2015).  

[27] Saberi, L., Nahvi, H., Vibration Analysis of a Nonlinear System with a Nonlinear Absorber under the 

Primary and Super-harmonic Resonances, International Journal of Engineering, vol. 27, no. 3, 499-

508, (2014).  

[28] Elnaggar, A.M.; and Khalil, K. M.: The Response of Nonlinear Controlled System under an External 

Excitation via Time Delay State Feedback. Journal of King Saud UniversityEngineering Sciences. 

Online publication, (2014).  

[29] Chen G., Hill D. J., Yu X., Bifurcation Control – Theory and Applications, Springer, (2003).  

[30] Feng, Z. C., Sethna  P. R., Global bifurcation and chaos in parametrically forced system with one-

one resonance, Dynamics and Stability of Systems, 5, 201-225, (1990).  

[31] Yang, W. Y., CAO, W.; CHUNG, T. S. and MORRIS, J. (2005): Applied Numerical Methods Using 

Matlab®. John Wiley and Sons, Inc., Hoboken NJ.  

[32] Lynch, S. Dynamical Systems with Applications using MATLAB. Manchester: Birkhäuser Science, 

2014.   




