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Abstract 

In this study, two bioinspired computation (BIC) techniques are discussed and applied to the project and 
synthesis of multilayer frequency selective surfaces (FSS) within the microwave band, specifically for C, X 
and Ku bands. The proposed BIC techniques consist of combining an general regression neural network to 
a genetic algorithm and a cuckoo search algorithm, respectively. The objective is to find the optimal values 
of separation between the investigated FSS. Numerical analysis of the electromagnetic properties of the 
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device is made possible with the finite integration method and validated through the finite element 
method, utilizing both softwares CST Microwave Studio and Ansys HFSS respectively. Thus, the BIC-
optimized devices presents good phase / angular stability for angles 10°, 20°, 30° and 40°, as well as being 
polarization independent. The cutoff frequencies to control the operating frequency range of the FSS, 
referring to transmission coefficient in decibels (dB), were obtained at a threshold of –10dB. Numerical 
results denote good accordance with measured data. 
 
Keywords: hybrid optimization methods; FSS; GRNN; MOGA; MOCS. 
 

1. Introduction 

Bioinspired computation (BIC) consists of a new computer science paradigm inspired by certain behaviors 
of living beings. These ideas, extracted from natural systems, is already being successfully utilized for the 
development of technological tools capable of solving high-complexity general problems in engineering 
and industry [1–2]. 
This theme possesses a multidisciplinar character and an abundance of applications. The growing interest 
of researchers within the electromagnetism community is due to BIC’s adaptability, as well as its self-
organization tendencies and tolerance to random defects [2–4]. Examples of widely applied, sucessful 
algorithms are the classic genetic algorithm (GA), artifical neural networks (ANN) and particle swarm 
optimization (PSO) [5]. 
With the intent of combining the main advantages of these classic algortihms researchers are proposing 
new meta-heuristic techniques, aiming to both accelerate project development or enhance the 
characteristics of projected devices such as: gain, bandwidth, antenna radiation diagrams or physical 
parameters for the synthesis of antennas or frequency selective surfaces (FSS). Hence, hybrid optimization 
solutions are developed – among which the cuckoo search (CS) algorithm proposed by Yang and Deb 
deserves to be highlighted [6]. 
By exploring the potential of these computational tools, researchers plan ANNs to work paired to 
optimization algorithms, thus creating the so-called hybrid methods [3, 4, 7–9]. That is, after training with 
numerically calculated electromagnetic (EM) data, the ANN generates a search space denominated as the 
region of interest (ROI), in which optimization algorithms look for the best solutions, i.e. the ones that can 
attend to a designated objective function (or cost function). This process allows greater flexibility and 
robustness to the project, warranting more precise results and, in some cases, substantially minimizing the 
demanded processing time for EM properties calculations. Such qualities are the main cause for the 
employment of these techniques in microwave applications [10]. 
In the states of art there is a vast literature with the most diversified projects of FSSs for application in 
microwaves. In [11], e.g., the authors proposed a three-layer broadband FSS for applications in that system, 
however, many iterations were necessary to achieve satisfactory geometric shapes in each of the three 
layers, and thus to achieve operation in broadband, the BIC could have helped. 
In this context, the authors in [12] proposed a double-sided broadband FSS - approximately 4GHz - for 
operation in the X band. However, the design of the structure is too complex, due to the geometric shape 
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of the unit cell that resembles a fractal, the substrate of the device is made of filaments that form a metallic 
grid and no optimization process has been proposed to enable the optimization of the design steps. 
As at [13] a wide-band frequency FSS based on double-layered hexagonal unit cell was presented. The 
project also requires several interactions until the desired geometric shape is achieved in each of the unit 
cell of the layers, making it difficult to reproduce the filter by people interested in the work, and no 
automatic optimization process is presented to overcome this difficulty. 
The proposed geometry of the FSS presented in [14] consists of a square loop and a triangle conductor 
which are etched to a single layer dielectric substrate, for X and Ku bands applications. Several geometric 
parameters had to be adjusted in the project to achieve a satisfactory result, which can generate excessive 
time for the calculation of the EM properties of the device, as well as high effort because it is a trial-and-
error method. 
FSS can be employed, for example, to make the antenna reflector more efficient [15–20]: reducing 
reflections and undesirable radiations; by adjust the wave polarization and propagation, as well as 
bandwidth control; and allowing the simultaneous application of more than one source in the same reflector. 
As previously explored, although discussed works presents satisfactory results, there are some difficulties 
to be overcome if anyperson interested in the project wishes to reproduce it, either by the complexity of the 
geometries of the unit cells presented, or by the high number of iterations required. A viable solution would 
be to introduce some automatic process to obtain the desired parameters – e.g., through some computational 
intelligence technique or by the use of BIC optimization techniques – i.e., the trial and error method would 
be easily overcome, which would result in a drastic reduction in the time required for the project conclusion, 
as well as would avoide failures that may occur throughout the process because once the calculations of 
the EM properties of the device, these would feed the processing applied for data processing and the 
geometric parameters would be calculated according to the objectives configured in the cost function, as 
desired in the project. 
With this in mind, two multiobjective hybrid BIC techniques are presented in this study for the design and 
synthesis of a of a multilayer FSS of simplified geometry unit cell and low-cost manufacturing. The 
objectives for the optimization process are the control of lower and upper cutoff frequencies that limit the 
operational bandwidth of the devices, which are in turn set to the reference threshold of –10 dB. A reduction 
of optimization and processing time of calculated EM data is also desired. Furthermore, after the 
optimization and synthesis of said FSSs, angular stability tests have been executed for angles: 10°, 20° and 
30° and 40°, as well as proof of independence of incident wave polarization. It has been verified that the 
devices herein presented denote good angular stability and polarization indepedence. 
This paper is structured as such: Section 2 discusses details about the design of the FSSs. Section 3 details 
the employed BIC techniques. In Section 4, the hybrid method proposed by the authors is further discussed. 
Section 5 displays the study’s results and in Section 6 conclusions are discoursed. 
 

2. Patch-type FSS Design 

Frequency selective frequencies (FSSs) are planar and periodical structures composed by metallic 
components of either slot or patch type, capable of reflecting (bandstop) or transmitting (bandpass) 
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eletromagnetic waves in frequencies that are proximate to the device’s resonance [21]. These periodic 
arrays behave similarly to radiofrequency circuit filters [22]. The influence exerted by physical parameters 
such as the substrate’s depth, permittivity and isotropic behavior is observed in the bandwidth and 
resonance characteristics of an FSS [23, 24]. 
In this study the design of a double-layer FSS separated by an air gap is discussed, in which the first layer’s 
unit cell conductors are triangular loops and the second layer ones are solid lozenges, inspired by the usage 
presented in [7] and [3] respectively. A schematic of the structure is displayed in Figure 1. 
In computational simulations, the FSS have been considered as printed in glass epoxy substrate (FR-4), 
possessing relativity permissivity of 
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3. Bioinspired Computing 

Bioinspired computing (BIC) is an important tool in Computer Science, in which techniques based on 
Biology and behavior of living beings are then transcipted into coding. Such techniques have been 
successfully modeled over the years, being capable of solving complex general problems related to 
optimization in engineering and industry [5]. 
The proposed hybrid technique, applied to optimize the devices shown in this study, includes a general 
regression neural network (GRNN) [25] combined with the multiobjective genetic algorithm (MOGA) [8] 
and the multiobjective cuckoo search (MOCS) [26]. The FSSs have been designed to possess simplified 
and low-cost geometries, in order to obtain two bandstop filters: the first filter is applied to the X band (8 
– 12 GHz) and the second one to C and Ku bands (4 – 8 GHz and 12 – 18 GHz, respectively). 
The following sections present greater detail on BIC techniques developed in this paper. 
 

Despite being remodeled in 1991 by B. Specht [25] to realize general regressions (be it linear or non-linear), 
the concept of a GRNN was first introduced in 1964 by Nadaraya [27] and Watson [28]. It is a type of 
Radial Base Neural Network (RBNN), based on non-parametric estimation and advantageous in needing 
only a small part of the database to conduct the network’s training. Likewise, it has the capacity to rapidly 
converge to a satisfactory data function, making retropropagation unnecessary – also turning itself into a 
useful tool for system performance prediction and / or comparison [7]. 
Figure 2 presents the developed network’s schematic. 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Configuração da GRNN utilizada. 
 
A GRNN has been created herein carrying five inputs and two outputs, according to the specifications for 
the formation of the ROI. That said, the network recognizes the patterns of the samples inserted into their 
inputs at the moment of the training. Thus, the number of intermediate layer (also called “hidden layer”) 
neurons varies according to the number of data utilized at the learning phase. 
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The inputs and outputs of the GRNN can be represented by vectors, keeping in mind that the outputs differ 
according to the filter that is analyzed. Therefore, the entrances for both filters are to be represented as: 

                              (1) 
in which D is the distance between plates, T1 is the periodicity of plate 1, T2 is the periodicity of plate 2, 
W1 is the unit cell conductor dimension on plate 1 and W2 is the unit cell conductor dimension on plate 2. 
For the first filter, the output is represented by: 

                                 (2) 
where LCF is the lower cutoff frequency and UCF stands for the upper cutoff frequency in filter 1. 
For the second filter, the output is: 

                                 (3) 
where UCF1 is the upper cutoff frequency for band 1 and LCF2 is the lower cutoff frequency for band 2 in 
filter 2. 

Genetic algorithms (GAs) are natural selection and genetic-based search procedures, with 
applicability in general optimization problems and, particularly, in automatic learning. This aalgorithm was 
introduced by Holland [29] in 1975 and popularized by his pupil Goldberg [30] in 1989. They follow the 
principles of “survival of the fittest” and natural selectivity as declared in 1859 by the biologist and 
physiologist Charles Darwin in his book “The Origin of the Species”. Holland was the first researcher to 
utilize the concepts of selection, crossover and mutation in the study of artifical adaptive systems [29]. 

GAs belong to the stochastic, natural selection algorithm category [31, 32], operating with a 
population of candidate solutions to satisfy mono or multiobjective criteria. These solutions go through 
operator with the intent of keeping the populational variability and are analyzed by selections that evaluate 
the better-adapted individuals in a given environment – that is, the problem’s search space [33, 34]. 

In this work, the implemented technique is based on the non-dominated sorting genetic algorithm II 
(NSGA II), as it differs from its counterparts by the manner in which the fittest cromossome is selected. 
During the selection stage, the algorithm classifies the total population in fronts, according to the degree of 
dominance, and the individuals who reside in the first front are considered the best solutions of that 
generation, while the ones at the last front are considered the worst [35]. 

According to this premise, it is possible to find results that are better suited to the problem in question. 
Some important aspects in multiobjective problem-solving are: 

• Divide the population in different levels (or fronts) with the aid of a dominance criterion; 
• The front individuals are better than the ones in front + 1; 

In this manner, the algorithm classifies the total population in different quality categories by employing a 
dominance criterion, permitting the priorization of those amongst the better classified. NSGA II’s operation 
is peculiar for possessing two important mechanisms in the selection process, which are: 1) non-dominated 
sorting (NDS) and 2) crowding distance (CD). 
The concept of dominance is given by  and , which are considered same-population individuals, however 

 dominates  in case  does not have any objectives with an inferior quality than . That way, initially, 
there is a non-classified population that shall go through an attribution process with a dominance degree 
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given to each individual in relation to all of the others in the total population. After this step, they are placed 
in fronts, and the best individuals are allocated in the first front, as previously said.  
After going through the NDS process, the population is to be classified by the density operator, that is, the 
CD mechanism, aiming to order each individual in relation to its distance to other neighbor dots within the 
same front (for each objective). Hence, the more distant to the central dot the greater is the probability of 
being chosen, allowing for better scattering of results along the front and avoiding solution clustering over 
the same dot. The next steps are the crossover and mutation processes, which are identical to a conventional 
GA. 

Figure 3 presents a multiobjective GA operation flowchart. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Operation flowchart of a multiobjective GA. 

One of the most recent nature-inspired metaheuristic algorithms, the Cuckoo Search (CS) is part of the 
swarm intelligence algorithm group and was first proposed by Yang and Deb in 2009 [6]. Its applications 
aim at solving multimodal problems, and its biological inspiration is based on an interesting and aggressive 
characteristic of reproduction of some species of cuckoos – the so-called nest parasitism. 
There are two basic types of parasitism: intraspecific nesting, cooperative reproduction and nest acquisition. 
Generally, cuckoos choose a nest where the host Bird has already deposited its own eggs. Given that the 
cuckoo’s eggs hatch faster, once the parasite hatchling leaves the eggshell it instinctively throws the other 
eggs away from the nest, thus augmenting its participation in the quantity of nourishment provided by the 
host bird. In addition, some hatchlings can also imitate the call pattern of the host to gain access to feeding. 
Sometimes, optimization problems involve more than a single objective. Therefore, by utilizing the 
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multiobjective cuckoo search (MOCS) in multiple  objectives, there is a need to alter the first and last 
rules of the original CS code in order to incorporate multiobjective operation [36]: 

• Each cuckoo lays eggs at a time, putting them in a randomly chosen nest. The  egg corresponds 
to the solution of the -th objective; 
• The best nests with high-quality eggs (solutions) are chosen to be carried on into future iterations; 
• The number of available nests is constant and the host bird may discover an “alien” cuckoo egg 
with a probability of   [0,1]. In this case, the host bird can get rid of the egg or abandon de nest 
altogether to build another one in a new spot. 

For the last rule, it is presumed that instead of a fraction  of nests be abandoned, they are outright 
substituted by novel nests (containing new random solutions in another place within the search space). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Multiobjective cuckoo search (MOCS) algorithm flowchart. 
 

Figure 4 presents a flowchart covering the functioning principles of MOCS. The algorithm is composed, 
structurally, by two main operations. One is a direct search based on Lévy Flights [6], and the second is a 
random search based on the host bird’s probability of finding in its nest an “alien” egg. Just as in other 
metaheuristic populational algorithms, MOCS utilizes population elitism in order to find an optimal 
solution to the outputs – in this case, each nest is considered a different solution. 
 

4. Hybrid Optimization Technique 

The objective of the implemented optimization algorithms is to minimize the cost function and synthesize 
the proposed filters, and can be defined as [4, 7—9]: 

                               (4) 
in which  and  represent the difference between results given by the GRNN and the values 
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specified at the cost function. 
 
The ideal solution is to find values that would turn the variables of the cost function into zero or very 
proximate to it. However, in non-convex problems, the function’s values may not converge to a null figure. 
Therefore, a Pareto front is created containing non-dominated solutions, generating a set of solutions that 
are not strictly dominated in each iteration. 
For the relation of dominance, if   e R when R is a region of viable solutions that, e.g.,  
dominates if  is considered partially greater or greater than , that is: 

                           (5) 
and 

                           (6) 
In case no R exerts dominance over , so  is assumed to be the optimal Pareto solution. Figure 
5 presents the relation of dominance, for one iteration, of both filters investigated in this study. The asterisk 
markers are the best responses that satisfy the objectives for each filter along the Pareto front during the 
algorithm’s execution. Furthermore, the red circular markers represent the worst (dominated) solution and 
the green ones denote the best solutions (non-dominated). 
 
 
 
 
 
 
 
 
 

(a) Filter 1.                                 (b) Filter 2. 
Figure 5. The Pareto front. 

 
After calculations of the EM properties of the structures by the FIT complete-wave technique, by varying 
the structural parameters of proposed devices (see Table 1), the hybrid techniques GRNN+MOGA and 
GRNN+MOCS have been applied to substitute the necessity of new computation simulations and, thus, 
minimizing computational cost. Along the simulations, it is possible to perceive that little variations in the 
parameters of the FSS result in greater in the frequency response, so rending necessary a greater refinement 
in parameter variation, elevating the computational costs even more. 
With this impasse in mind, the optimal values localized at the Pareto front are assumed as reference points 
to the creation of a new dataset, utilizing a lesser step size of each of the analyzed parameters. Thus, it is 
possible to make mappings at the ROI only taking into consideration values that can fulfill the specified 
objectives for each filter – and this is purpose of the proposed optimization algorithms. 
Table 2 present optimal values for both filters according to the developed hybrid techniques. 
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Table 2. Structural parameters for the multilayer FSS 
 

 
Cutoff frequency values for the control of bandwidth have been obtained at the threshold of -10dB. 
Numerical validation of results has been made by FEM calculations, with the aid of software Ansoft HFSS. 
Percentual deviation, relative to FIT-calculated results compared to FEM-calculated ones, are defined as 
such: 

                         (7) 

in which  is the value of the simulation-returned objective according to optimized parameters,  is 
the objective value and are the analyzed objectives. 
Figure 6 shows fitness evolution in the sythesis process through multiobjective GA for filter 1. Along the 
iterations, the cost function value gradually diminishes, in which the dotted line represents the fitness 
average for the the cromossome population and the solid line represents the average of best individual 
solutions. A population of 100 chromossomes had been considered, and the number of elite chromossomes 
was limited to a fraction of 0.25 of the Pareto front. A total of 102 iterations and, approximately, 110.076 
seconds were necessary for optimization convergence. 
 
 
 
 
 
 
 
 
 
 

Figure 6. Fitness evolution of the multilayer FSS synthetic process for filter 1 via MOGA. 
 
Figure 7 displays fitness evolution of the synthesis through multiobjective GA for filter 2. In this case, it 
has been considered a population of 75 cromossomes, and the number of elite cromossomes has also been 
limited to a fraction of 0.25 of the Pareto front, for a total of 322 iterations and 306.796 seconds for the 
code to converge. 
 
 

Filter Hybrid Technique 
Parameters 

D T1 T2 W1 W2 

1 
GRNN – AG Multi 3.3804 12.8741 13.7894 9.7615 12.8668 

GRNN – MOCS 2.5 13.8160 14.3130 9.5108 13.3630 

2 
GRNN – AG Multi 2.5 14.7502 12.1658 13.3905 9.2197 

GRNN – MOCS 2.5719 14.1448 12.2795 13.8515 9.1425 
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Figure 7. Fitness evolution of the multilayer FSS synthetic process for filter 2 via MOGA. 
 

Figure 8 shows fitness evolution this time through MOCS for filter 1. A set of 100 nests and probability  
= 0.25 has been utilized, with scalar vector The code has converged in around 500 iterations and 
approximately 1181.159 seconds. 

 
 
 
 
 
 
 
 
 
 

Figure 8. Fitness evolution of the multilayer FSS synthetic process for filter 1 via MOCS. 
Figure 9 shows fitness evolution this time through MOCS for filter 2. A set of 100 nests and probability  
= 0.75 has been utilized, with scalar vector The code has converged in around 500 iterations and 
approximately 1198.346 seconds. 
 
 
 
 
 
 
 
 
 

 
Figure 9. Fitness evolution of the multilayer FSS synthetic process for filter 2 via MOCS. 
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5. Results 

For filter 1, the proposed GRNN contains 5 first-layer entrances, an intermediate layer containing 768 
neurons and 2 exit nodes representing the lower and upper cutoff frequencies. Table 3 displays the structural 
parameters, as well as input data for the learning and training of the GRNN. 
 

Table 3. Structural parameters for filter 1 
Parameters Values 

Distance between plates, D (mm) [2, 2.5, 3, 3.5] 
Periodicity of plate 1, T1 = Tx1 = Ty1 (mm) [12.5, 13, 13.5, 14] 
Periodicity of plate 2, T2 = Tx2 = Ty2 (mm) [14.5, 15, 15.5] 
Conductor element dimensions on plate 1, W1 = Wx1 = Wy1 (mm) [9, 9.5, 10, 10.5] 
Conductor element dimensions on plate 2, W2 = Wx2 = Wy2 (mm) [12.5, 13, 13.5, 14] 

 
Figure 10 presents results for the transmission coefficient calculated via FIT and FEM utilized for result 
validity. The applied hybrid technique consists of a GRNN+MOGA configuration. The obtained optimal 
parameters are D = 3.0682 mm; T1 = 13.7336 mm; T2 = 15.3977 mm; W1 = 9.92 mm and W2 = 13.7594 
mm. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 10. Transmission coefficient of the multilayer FSS for filter 1 via MOGA. 
 
The objectives for the filter were set as 1: 1) lower cutoff frequency at 8 GHz, and 2) upper cutoff frequency 
at 12 GHz. With this, the frequencies belonging to the X band are rejected and the transmission of the 
frequencies belonging to the band C (4 - 8 GHz) is made possible, as well as the Ku band (12 -18 GHz). 
When analyzing the results presented in Figure 10, it is observed that the values obtained in relation to the 
lower cutoff frequency and the upper cutoff frequency are, respectively, 8,005 GHz and 12,023 GHz for 
results calculated by FIT, which represents a relative error in relation to the configured objectives in the 
BIC code of about 0.25%. Then, when verifying results calculated by FEM, the values obtained for the 
lower frequency and the upper cutoff frequency were, respectively, 8,095 GHz and 12.09 GHz, which 
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corresponds to a relative error of 1.94% regarding the objectives of BIC. 
Figure 11 presents the results for the transmission coefficient referring to the multilayer FSS corresponding 
to filter 1. These results were calculated from the optimal structural parameters returned by the hybrid 
technique GRNN + MOCS, consisting of the following values: D = 3.2433 mm, T1 = 13,893 mm, T2 = 
15.2829 mm, W1 = 9.9828 mm, and W2 = 13.5089 mm. 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 11. Transmission Coefficient for Multilayer FSS of filter 1 via MOCS. 
 

When analyzing the results presented in Figure 11, it is observed that the values obtained in relation to the 
lower cutoff frequency and the upper cutoff frequency are, respectively, 7,971 GHz and 12,091 GHz for 
results calculated from FIT, in which represents a relative error in relation to the objectives configured in 
the BIC code of around 1.12%. Then, when verifying the result calculated by the FEM method, the values 
obtained for the lower cutoff frequency and the upper cutoff frequency were, respectively, 8,075 GHz and 
12.15 GHz, which corresponds to a relative error of 2.19% in relation to the objectives of BIC. 
Regarding filter 2, the developed GRNN contains 5 inputs in the first layer, an intermediate layer containing 
216 neurons and two output nodes referring to the upper cutoff frequency of the first band and the lower 
cutoff frequency of the second band, which sets up the device as dual-band. Table 4 presents the structural 
parameters and values for filter 2, which were inserted unto the GRNN training and learning entries. 

 
Table 4. Parâmetros Estruturais das FSS Multicamadas para o Filtro 2 

Parâmetros Valores 
Distância entre as placas, D (mm) [1.5, 2, 2.5, 3] 
Periodicidade da placa 1, T1 = Tx1 = Ty1 (mm) [14, 14.5] 
Periodicidade da placa 2, T2 = Tx2 = Ty2 (mm) [11.5, 12, 12.5] 
Dimensões do elemento condutor da placa 1, W1 = Wx1 = Wy1 (mm) [12.5, 13, 13.5] 
Dimensões do elemento condutor da placa 2, W2 = Wx2 = Wy2 (mm) [8.5, 9, 9.5] 

 
Figure 12 denotes the results for the transmission coefficient calculated via FIT versus calculated via FEM. 
For this optimization the hybrid technique GRNN + MOGA was used, considering the multilayer FSS 
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referring to filter 2. The optimal structural parameters obtained were D = 2.1068 mm, T1 = 14.4721 mm, 
T2 = 12.2558 mm, W1 = 13.1044 mm, and W2 = 8.9673 mm. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 12. Transmission Coefficient for Multilayer FSS of filter 2 via MOGA. 
 

The objectives or filter 2 are to tune the upper cutoff frequency for the first operating band at 8 GHz, and 
the lower cutoff frequency for the second operating band at 12 GHz. With this, the X band is transmitted 
and the C and Ku bands are blocked, which also characterizes the device as dual-band. 
Still according to Figure 12, it is observed that the values obtained concerning the lower cutoff frequency 
and the upper cutoff frequency are, respectively, 7,995 GHz and 11,961 GHz for the result calculated from 
the FIT, which represents a relative error in relation to the objectives configured in the BIC code of about 
0.39%. Then, when verifying the result calculated by FEM, the values obtained for the lower cutoff 
frequency and the higher cutoff frequency were, respectively, 8.02 GHz and 12.1 GHz, corresponding to a 
relative error of 1.08% to the objectives of BIC. 
Figure 13 presents the results for the transmission coefficient calculated via FIT versus the calculated via 
FEM, when considering the optimal structural parameters returned by the hybrid technique GRNN + 
MOCS for the multilayer FSS referring to filter 2. The optimal parameters obtained were D = 1.7845 mm, 
T1 = 14.5 mm, T2 = 12.3419 mm, W1 = 12.9119 mm, and W2 = 8.785 mm. 
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Figure 13. Transmission Coefficient for the Multilayer FSS of filter 2 via MOCS. 
 
When analyzing the results presented in Figure 13, it can be noted that the values obtained in relation to 
the lower cutoff frequency and the upper cutoff frequency are, respectively, 7,983 GHz and 12,026 GHz, 
for the result calculated from FIT, the which represents a relative error in relation to the objectives 
configured in the BIC code of about 0.43%. Then, when verifying the result calculated by FEM, values for 
the lower cutoff frequency and the upper cutoff frequency were, respectively, 8,025 GHz and 12.15 GHz, 
which is equal to a relative error of 1,562% in relation to the objectives of BIC. 
A characteristic that must be taken into account when analyzing FSS, be it single layer or multilayer, is the 
angular stability of the device, given that this aspect allows the analysis of the capacity that the FSS has to 
operate effectively in the filtering of electromagnetic waves with oblique incidence coming from multiple 
paths. However, an evaluation of FSS response for the two main types of polarization, horizontal and 
vertical, should be considered. 
The angular phase stability calculated from FIT is shown in Figure 13 for both filters optimized via MOGA. 
These results were considered because this technique has shown a higher degree of precision in meeting 
the project’s objectives. 
 
 
 
 
 
 
 
 
 

(a) Filter 1 – TM polarization.             (b) Filter 1 – TE polarization. 
 
 
 
 
 
 
 
 
 

(c) Filter 2 – TM polarization.             (d) Filter 2 – TE polarization. 
Figure 14. Angular stability of filters 1 and 2 for horizontal and vertical polarizations. 

 
Figures 14 (a) and (c) show the calculated results for filter 1, while Figures 14 (b) and (d) show the 
calculated results for filter 2. When analyzing these results, it is verified that the behavior of the devices 
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remains unchanged regardless of the incident wave polarization, confirming that the multilayer FSS are 
independent of the incident wave polarization. According to the consensus found in the literature, the 
proposed FSS is characterized as having an independent polarization. 
With regard to angular stability, specifically in Figures 14 (a) and 14 (b), it is noteworthy that for the 
incidence angle of 40º the lower and upper cutoff frequencies have a deviation of approximately 160 MHz 
and 75 MHz, respectively, in relation to the normal incidence angle. As the application of filter 1 consists 
of a rejection of X band frequencies, these values of deviation in the cutoff frequencies meet the prerequisite 
of a maximum deviation of 2% in relation to the normal incidence wave. This ensures that the device 
operates with good angular phase stability for waves with an oblique incidence of up to 40º. 
For Figures 14 (c) and 14 (d), when analyzing the critical angle of incidence of 40º, the lower and upper 
cutoff frequencies for the first rejection band show deviations of about 147 and 140 MHz, respectively, in 
normal incidence angle. However, it is observed that the frequencies belonging to the Ku band (12–18 GHz) 
suffer greater distortions when subjected to different angles of wave incidence, which can be justified by 
the wavelength being shorter for this band – which makes it more sensitive to these variations and fatally 
contributes to the formation of reflected waves between filter plates with phases that cancel each other out, 
thereby distorting the frequency response of the device. However, for the first rejection band, the deviation 
values at the cutoff frequencies meet the prerequisite for a maximum deviation of 2% with respect to the 
normal incidence wave. 
 
Table 5 presents a summary of the synthesis process of the filters designed in this work. 
 

Table 5. Summary of obtained data 
Filter 1 

Hybrid 
Technique 

Iteration 
Count 

Convergence 
Time (in 
seconds) 

Numerical 
Tecnhique 

Objectives 
Error 
(%) 

Angular 
Stability 

LCF1 
(8 GHz) 

UCF1 
(12 GHz) 

GRNN + 
MOGA 

102 110.037 
FIT 8.005 12.023 0.254 

Up to 40º 
FEM 8.095 12.09 1.937 

GRNN + 
MOCS 

500 1181.159 
FIT 7.971 12.091 1.121 

FEM 8.075 12.15 2.187 
Filtro 2 

Hybrid 
Technique 

Iteration 
Count 

Convergence 
Time (in 
seconds) 

Numerical 
Technique 

Objectives 
Error 
(%) 

Angular 
Stability 

LCF1 
(8 GHz) 

UCF2 
(12 GHz) 

GRNN + 
MOGA 

322 306.796 
FIT 7.995 11.961 0.387 

Up to 40º 
FEM 8.02 12.11 1.083 

GRNN + 
MOCS 

500 1198.396 
FIT 7.983 12.026 0.429 

FEM 8.025 12.15 1.562 
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6. Conclusion 

This study discussed two BIC techniques that combine GRNN with the optimization algorithms MOGA 
and MOCS, respectively, applied in the design of multilayer FSSs. The calculation of the electromagnetic 
properties of the proposed devices was performed using the FIT numerical technique, and the 
computational results were validated by the FEM numerical technique. 
The hybrid techniques proved to be fast and accurate. However, when confronted, the technique that 
combines GRNN + MOGA proved to be superior to GRNN + MOCS. The precision and speed in the 
convergence of MOGA can be attributed to the fact that the code’s heuristic process is metapopulation, 
which makes the optimization process intuitive, especially when the number of parameters to be optimized 
is relatively large, since operations that occur during the optimization guarantee high variability among the 
possible solutions for the objective function of the problem. 
The proposed devices were also subjected to independent polarization tests of incident-wave in TE and TM, 
as well as an angular phase stability test for both filters. Both multilayer FSSs were independent of the 
incident-wave polarization. However, only filter 1 showed good angular stability up to the critical angle of 
40º for the entire operating range of the filter. Whereas filter 2, which has a dual-band filtering operation, 
proves stable up to the critical angle of 40º for the first filtering band in band C, however, the results for 
the frequencies of the second operating band, band Ku, were not satisfactory regarding the deviation 
criterion employed of about 2% in relation to the normal incidence in the plane of the structure. The 
geometries of the unit cells that make up the multilayer FSSs were chosen due to the geometric simplicity 
and the ease of reproducing the models, as shown in Figure 1. 
Finally, it is noteworthy that in the state of the art GRNN-type networks, as well as hybrid techniques, had 
only been employed in the single layer FSS optimization process – this being another contribution of this 
study, i.e., the applicability of the proposed hybrid techniques in the design and synthesis of an asymmetric 
multilayer FSSs. 
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	Abstract
	In this study, two bioinspired computation (BIC) techniques are discussed and applied to the project and synthesis of multilayer frequency selective surfaces (FSS) within the microwave band, specifically for C, X and Ku bands. The proposed BIC techniques consist of combining an general regression neural network to a genetic algorithm and a cuckoo search algorithm, respectively. The objective is to find the optimal values of separation between the investigated FSS. Numerical analysis of the electromagnetic properties of the device is made possible with the finite integration method and validated through the finite element method, utilizing both softwares CST Microwave Studio and Ansys HFSS respectively. Thus, the BIC-optimized devices presents good phase / angular stability for angles 10°, 20°, 30° and 40°, as well as being polarization independent. The cutoff frequencies to control the operating frequency range of the FSS, referring to transmission coefficient in decibels (dB), were obtained at a threshold of –10dB. Numerical results denote good accordance with measured data.
	Keywords: hybrid optimization methods; FSS; GRNN; MOGA; MOCS.
	1. Introduction
	Bioinspired computation (BIC) consists of a new computer science paradigm inspired by certain behaviors of living beings. These ideas, extracted from natural systems, is already being successfully utilized for the development of technological tools capable of solving high-complexity general problems in engineering and industry [1–2].
	This theme possesses a multidisciplinar character and an abundance of applications. The growing interest of researchers within the electromagnetism community is due to BIC’s adaptability, as well as its self-organization tendencies and tolerance to random defects [2–4]. Examples of widely applied, sucessful algorithms are the classic genetic algorithm (GA), artifical neural networks (ANN) and particle swarm optimization (PSO) [5].
	With the intent of combining the main advantages of these classic algortihms researchers are proposing new meta-heuristic techniques, aiming to both accelerate project development or enhance the characteristics of projected devices such as: gain, bandwidth, antenna radiation diagrams or physical parameters for the synthesis of antennas or frequency selective surfaces (FSS). Hence, hybrid optimization solutions are developed – among which the cuckoo search (CS) algorithm proposed by Yang and Deb deserves to be highlighted [6].
	By exploring the potential of these computational tools, researchers plan ANNs to work paired to optimization algorithms, thus creating the so-called hybrid methods [3, 4, 7–9]. That is, after training with numerically calculated electromagnetic (EM) data, the ANN generates a search space denominated as the region of interest (ROI), in which optimization algorithms look for the best solutions, i.e. the ones that can attend to a designated objective function (or cost function). This process allows greater flexibility and robustness to the project, warranting more precise results and, in some cases, substantially minimizing the demanded processing time for EM properties calculations. Such qualities are the main cause for the employment of these techniques in microwave applications [10].
	In the states of art there is a vast literature with the most diversified projects of FSSs for application in microwaves. In [11], e.g., the authors proposed a three-layer broadband FSS for applications in that system, however, many iterations were necessary to achieve satisfactory geometric shapes in each of the three layers, and thus to achieve operation in broadband, the BIC could have helped.
	In this context, the authors in [12] proposed a double-sided broadband FSS - approximately 4GHz - for operation in the X band. However, the design of the structure is too complex, due to the geometric shape of the unit cell that resembles a fractal, the substrate of the device is made of filaments that form a metallic grid and no optimization process has been proposed to enable the optimization of the design steps.
	As at [13] a wide-band frequency FSS based on double-layered hexagonal unit cell was presented. The project also requires several interactions until the desired geometric shape is achieved in each of the unit cell of the layers, making it difficult to reproduce the filter by people interested in the work, and no automatic optimization process is presented to overcome this difficulty.
	The proposed geometry of the FSS presented in [14] consists of a square loop and a triangle conductor which are etched to a single layer dielectric substrate, for X and Ku bands applications. Several geometric parameters had to be adjusted in the project to achieve a satisfactory result, which can generate excessive time for the calculation of the EM properties of the device, as well as high effort because it is a trial-and-error method.
	FSS can be employed, for example, to make the antenna reflector more efficient [15–20]: reducing reflections and undesirable radiations; by adjust the wave polarization and propagation, as well as bandwidth control; and allowing the simultaneous application of more than one source in the same reflector.
	As previously explored, although discussed works presents satisfactory results, there are some difficulties to be overcome if anyperson interested in the project wishes to reproduce it, either by the complexity of the geometries of the unit cells presented, or by the high number of iterations required. A viable solution would be to introduce some automatic process to obtain the desired parameters – e.g., through some computational intelligence technique or by the use of BIC optimization techniques – i.e., the trial and error method would be easily overcome, which would result in a drastic reduction in the time required for the project conclusion, as well as would avoide failures that may occur throughout the process because once the calculations of the EM properties of the device, these would feed the processing applied for data processing and the geometric parameters would be calculated according to the objectives configured in the cost function, as desired in the project.
	With this in mind, two multiobjective hybrid BIC techniques are presented in this study for the design and synthesis of a of a multilayer FSS of simplified geometry unit cell and low-cost manufacturing. The objectives for the optimization process are the control of lower and upper cutoff frequencies that limit the operational bandwidth of the devices, which are in turn set to the reference threshold of –10 dB. A reduction of optimization and processing time of calculated EM data is also desired. Furthermore, after the optimization and synthesis of said FSSs, angular stability tests have been executed for angles: 10°, 20° and 30° and 40°, as well as proof of independence of incident wave polarization. It has been verified that the devices herein presented denote good angular stability and polarization indepedence.
	This paper is structured as such: Section 2 discusses details about the design of the FSSs. Section 3 details the employed BIC techniques. In Section 4, the hybrid method proposed by the authors is further discussed. Section 5 displays the study’s results and in Section 6 conclusions are discoursed.
	2. Patch-type FSS Design
	Frequency selective frequencies (FSSs) are planar and periodical structures composed by metallic components of either slot or patch type, capable of reflecting (bandstop) or transmitting (bandpass) eletromagnetic waves in frequencies that are proximate to the device’s resonance [21]. These periodic arrays behave similarly to radiofrequency circuit filters [22]. The influence exerted by physical parameters such as the substrate’s depth, permittivity and isotropic behavior is observed in the bandwidth and resonance characteristics of an FSS [23, 24].
	In this study the design of a double-layer FSS separated by an air gap is discussed, in which the first layer’s unit cell conductors are triangular loops and the second layer ones are solid lozenges, inspired by the usage presented in [7] and [3] respectively. A schematic of the structure is displayed in Figure 1.
	In computational simulations, the FSS have been considered as printed in glass epoxy substrate (FR-4), possessing relativity permissivity of Ԑr = 4.4, a loss tangent of tan δ = 0.02 and dielectric depth of h = 1.57mm.
	Figure 1. Multilayer FSS schematic. (a) 1st layer: triangular loops; (b) 2nd layer: solid lozenge; and (c) multilayer configuration (in cascade).
	Table 1 presents better details regarding the structural parameters of the project.
	Table 1. Structural parameters of the FSS
	Parâmetros
	Valores
	Distance between plates, D (mm)
	[2.5, 5, 7.5, 10]
	Plate 1 periodicity, T1 = Tx1 = Ty1 (mm)
	[12, 13, 14, 15]
	Plate 2 periodicity, T2 = Tx2 = Ty2 (mm)
	[12, 13, 14, 15]
	Conductive element dimensions in plate 1, W1 = Wx1 =Wy1 (mm)
	9 to (T1 – 1)
	Conductive element dimensions in plate 2, W1 = Wx1 =Wy1 (mm)
	9 to (T2 – 1)
	For constructing the training set that feeds the developed ANN, the periodicity of unit cell in each plate (T1 and T2) has been varied, as well as the conductive element dimensions (W1 and W2) and the distance between said plates (D). For each alteration made in the unit cells of the structures, calculations have been conducted utilizing the finite integration technique (FIT) with the aid of CST Microwave Studio. These data were inserted in the ANN’s input layer in order to enhance its training, learning and the creation of the ROI, so that the BIC optimization algorithms are allowed to search the best solutions, i.e. those that are proximate to the objectives desired in this project.
	3. Bioinspired Computing
	Bioinspired computing (BIC) is an important tool in Computer Science, in which techniques based on Biology and behavior of living beings are then transcipted into coding. Such techniques have been successfully modeled over the years, being capable of solving complex general problems related to optimization in engineering and industry [5].
	The proposed hybrid technique, applied to optimize the devices shown in this study, includes a general regression neural network (GRNN) [25] combined with the multiobjective genetic algorithm (MOGA) [8] and the multiobjective cuckoo search (MOCS) [26]. The FSSs have been designed to possess simplified and low-cost geometries, in order to obtain two bandstop filters: the first filter is applied to the X band (8 – 12 GHz) and the second one to C and Ku bands (4 – 8 GHz and 12 – 18 GHz, respectively).
	The following sections present greater detail on BIC techniques developed in this paper.
	3.1 General Regression Neural Network
	Despite being remodeled in 1991 by B. Specht [25] to realize general regressions (be it linear or non-linear), the concept of a GRNN was first introduced in 1964 by Nadaraya [27] and Watson [28]. It is a type of Radial Base Neural Network (RBNN), based on non-parametric estimation and advantageous in needing only a small part of the database to conduct the network’s training. Likewise, it has the capacity to rapidly converge to a satisfactory data function, making retropropagation unnecessary – also turning itself into a useful tool for system performance prediction and / or comparison [7].
	Figure 2 presents the developed network’s schematic.
	Figure 2. Configuração da GRNN utilizada.
	A GRNN has been created herein carrying five inputs and two outputs, according to the specifications for the formation of the ROI. That said, the network recognizes the patterns of the samples inserted into their inputs at the moment of the training. Thus, the number of intermediate layer (also called “hidden layer”) neurons varies according to the number of data utilized at the learning phase.
	The inputs and outputs of the GRNN can be represented by vectors, keeping in mind that the outputs differ according to the filter that is analyzed. Therefore, the entrances for both filters are to be represented as:
	𝑥=[𝐷, 𝑇1, 𝑇2, 𝑊1, 𝑊2]                              (1)
	in which D is the distance between plates, T1 is the periodicity of plate 1, T2 is the periodicity of plate 2, W1 is the unit cell conductor dimension on plate 1 and W2 is the unit cell conductor dimension on plate 2.
	For the first filter, the output is represented by:
	𝑦1=[𝐿𝐶𝐹, 𝑈𝐶𝐹]                                 (2)
	where LCF is the lower cutoff frequency and UCF stands for the upper cutoff frequency in filter 1.
	For the second filter, the output is:
	𝑦2=[𝑈𝐶𝐹1, 𝐿𝐶𝐹2]                                 (3)
	where UCF1 is the upper cutoff frequency for band 1 and LCF2 is the lower cutoff frequency for band 2 in filter 2.
	3.2 Multiobjective Genetic Algorithm
	Genetic algorithms (GAs) are natural selection and genetic-based search procedures, with applicability in general optimization problems and, particularly, in automatic learning. This aalgorithm was introduced by Holland [29] in 1975 and popularized by his pupil Goldberg [30] in 1989. They follow the principles of “survival of the fittest” and natural selectivity as declared in 1859 by the biologist and physiologist Charles Darwin in his book “The Origin of the Species”. Holland was the first researcher to utilize the concepts of selection, crossover and mutation in the study of artifical adaptive systems [29].
	GAs belong to the stochastic, natural selection algorithm category [31, 32], operating with a population of candidate solutions to satisfy mono or multiobjective criteria. These solutions go through operator with the intent of keeping the populational variability and are analyzed by selections that evaluate the better-adapted individuals in a given environment – that is, the problem’s search space [33, 34].
	In this work, the implemented technique is based on the non-dominated sorting genetic algorithm II (NSGA II), as it differs from its counterparts by the manner in which the fittest cromossome is selected. During the selection stage, the algorithm classifies the total population in fronts, according to the degree of dominance, and the individuals who reside in the first front are considered the best solutions of that generation, while the ones at the last front are considered the worst [35].
	According to this premise, it is possible to find results that are better suited to the problem in question. Some important aspects in multiobjective problem-solving are:
	• Divide the population in different levels (or fronts) with the aid of a dominance criterion;
	• The n front individuals are better than the ones in front n + 1;
	In this manner, the algorithm classifies the total population in different quality categories by employing a dominance criterion, permitting the priorization of those amongst the better classified. NSGA II’s operation is peculiar for possessing two important mechanisms in the selection process, which are: 1) non-dominated sorting (NDS) and 2) crowding distance (CD).
	The concept of dominance is given by p and q, which are considered same-population individuals, however p dominates q in case p does not have any objectives with an inferior quality than q. That way, initially, there is a non-classified population that shall go through an attribution process with a dominance degree given to each individual in relation to all of the others in the total population. After this step, they are placed in fronts, and the best individuals are allocated in the first front, as previously said. 
	After going through the NDS process, the population is to be classified by the density operator, that is, the CD mechanism, aiming to order each individual in relation to its distance to other neighbor dots within the same front (for each objective). Hence, the more distant to the central dot the greater is the probability of being chosen, allowing for better scattering of results along the front and avoiding solution clustering over the same dot. The next steps are the crossover and mutation processes, which are identical to a conventional GA.
	Figure 3 presents a multiobjective GA operation flowchart.
	Figure 3. Operation flowchart of a multiobjective GA.
	3.3 Multiobjective Cuckoo Search Algorithm
	One of the most recent nature-inspired metaheuristic algorithms, the Cuckoo Search (CS) is part of the swarm intelligence algorithm group and was first proposed by Yang and Deb in 2009 [6]. Its applications aim at solving multimodal problems, and its biological inspiration is based on an interesting and aggressive characteristic of reproduction of some species of cuckoos – the so-called nest parasitism.
	There are two basic types of parasitism: intraspecific nesting, cooperative reproduction and nest acquisition. Generally, cuckoos choose a nest where the host Bird has already deposited its own eggs. Given that the cuckoo’s eggs hatch faster, once the parasite hatchling leaves the eggshell it instinctively throws the other eggs away from the nest, thus augmenting its participation in the quantity of nourishment provided by the host bird. In addition, some hatchlings can also imitate the call pattern of the host to gain access to feeding.
	Sometimes, optimization problems involve more than a single objective. Therefore, by utilizing the multiobjective cuckoo search (MOCS) in multiple n objectives, there is a need to alter the first and last rules of the original CS code in order to incorporate multiobjective operation [36]:
	• Each cuckoo lays k eggs at a time, putting them in a randomly chosen nest. The k egg corresponds to the solution of the k-th objective;
	• The best nests with high-quality eggs (solutions) are chosen to be carried on into future iterations;
	• The number of available nests is constant and the host bird may discover an “alien” cuckoo egg with a probability of pa ∈ [0,1]. In this case, the host bird can get rid of the egg or abandon de nest altogether to build another one in a new spot.
	For the last rule, it is presumed that instead of a fraction pa of n nests be abandoned, they are outright substituted by novel nests (containing new random solutions in another place within the search space).
	Figure 4. Multiobjective cuckoo search (MOCS) algorithm flowchart.
	Figure 4 presents a flowchart covering the functioning principles of MOCS. The algorithm is composed, structurally, by two main operations. One is a direct search based on Lévy Flights [6], and the second is a random search based on the host bird’s probability of finding in its nest an “alien” egg. Just as in other metaheuristic populational algorithms, MOCS utilizes population elitism in order to find an optimal solution to the outputs – in this case, each nest is considered a different solution.
	4. Hybrid Optimization Technique
	The objective of the implemented optimization algorithms is to minimize the cost function and synthesize the proposed filters, and can be defined as [4, 7—9]:
	𝐹𝑥=[𝑓1𝑥, 𝑓2(𝑥)]                               (4)
	in which 𝑓1𝑥 and 𝑓2𝑥 represent the difference between results given by the GRNN and the values specified at the cost function.
	The ideal solution is to find values that would turn the variables of the cost function into zero or very proximate to it. However, in non-convex problems, the function’s values may not converge to a null figure. Therefore, a Pareto front is created containing non-dominated solutions, generating a set of solutions that are not strictly dominated in each iteration.
	For the relation of dominance, if 𝑥1 e 𝑥2 ∈ R when R is a region of viable solutions that, e.g., 𝑥2 dominates 𝑥1, if 𝑓𝑖𝑥2 is considered partially greater or greater than  𝑓𝑖𝑥1, that is:
	𝑓𝑖𝑥1 ≤ 𝑓𝑖𝑥2 ∀ 𝑖=1, 2, …, 𝑛                           (5)
	and
	𝑓𝑖𝑥1 ≤ 𝑓𝑖𝑥2 ∃ 𝑖=1, 2, …, 𝑛                           (6)
	In case no 𝑥𝑖 ∈ R exerts dominance over 𝑥2, so 𝑥2 is assumed to be the optimal Pareto solution. Figure 5 presents the relation of dominance, for one iteration, of both filters investigated in this study. The asterisk markers are the best responses that satisfy the objectives for each filter along the Pareto front during the algorithm’s execution. Furthermore, the red circular markers represent the worst (dominated) solution and the green ones denote the best solutions (non-dominated).
	(a) Filter 1.                                 (b) Filter 2.
	Figure 5. The Pareto front.
	After calculations of the EM properties of the structures by the FIT complete-wave technique, by varying the structural parameters of proposed devices (see Table 1), the hybrid techniques GRNN+MOGA and GRNN+MOCS have been applied to substitute the necessity of new computation simulations and, thus, minimizing computational cost. Along the simulations, it is possible to perceive that little variations in the parameters of the FSS result in greater in the frequency response, so rending necessary a greater refinement in parameter variation, elevating the computational costs even more.
	With this impasse in mind, the optimal values localized at the Pareto front are assumed as reference points to the creation of a new dataset, utilizing a lesser step size of each of the analyzed parameters. Thus, it is possible to make mappings at the ROI only taking into consideration values that can fulfill the specified objectives for each filter – and this is purpose of the proposed optimization algorithms.
	Table 2 present optimal values for both filters according to the developed hybrid techniques.
	Table 2. Structural parameters for the multilayer FSS
	Cutoff frequency values for the control of bandwidth have been obtained at the threshold of -10dB. Numerical validation of results has been made by FEM calculations, with the aid of software Ansoft HFSS. Percentual deviation, relative to FIT-calculated results compared to FEM-calculated ones, are defined as such:
	𝑒𝑟𝑟𝑜%= 𝑖=12𝑉𝑜𝑡𝑖,𝑖−𝑉𝑝𝑟𝑜,𝑖𝑉𝑝𝑟𝑜,𝑖×100                         (7)
	in which Voti is the value of the simulation-returned objective according to optimized parameters, Vpro is the objective value and i are the analyzed objectives.
	Figure 6 shows fitness evolution in the sythesis process through multiobjective GA for filter 1. Along the iterations, the cost function value gradually diminishes, in which the dotted line represents the fitness average for the the cromossome population and the solid line represents the average of best individual solutions. A population of 100 chromossomes had been considered, and the number of elite chromossomes was limited to a fraction of 0.25 of the Pareto front. A total of 102 iterations and, approximately, 110.076 seconds were necessary for optimization convergence.
	Figure 6. Fitness evolution of the multilayer FSS synthetic process for filter 1 via MOGA.
	Figure 7 displays fitness evolution of the synthesis through multiobjective GA for filter 2. In this case, it has been considered a population of 75 cromossomes, and the number of elite cromossomes has also been limited to a fraction of 0.25 of the Pareto front, for a total of 322 iterations and 306.796 seconds for the code to converge.
	Figure 7. Fitness evolution of the multilayer FSS synthetic process for filter 2 via MOGA.
	Figure 8 shows fitness evolution this time through MOCS for filter 1. A set of 100 nests and probability pa = 0.25 has been utilized, with scalar vector β = 1.5. The code has converged in around 500 iterations and approximately 1181.159 seconds.
	Figure 8. Fitness evolution of the multilayer FSS synthetic process for filter 1 via MOCS.
	Figure 9 shows fitness evolution this time through MOCS for filter 2. A set of 100 nests and probability pa = 0.75 has been utilized, with scalar vector β = 1.5. The code has converged in around 500 iterations and approximately 1198.346 seconds.
	Figure 9. Fitness evolution of the multilayer FSS synthetic process for filter 2 via MOCS.
	5. Results
	For filter 1, the proposed GRNN contains 5 first-layer entrances, an intermediate layer containing 768 neurons and 2 exit nodes representing the lower and upper cutoff frequencies. Table 3 displays the structural parameters, as well as input data for the learning and training of the GRNN.
	Table 3. Structural parameters for filter 1
	Figure 10 presents results for the transmission coefficient calculated via FIT and FEM utilized for result validity. The applied hybrid technique consists of a GRNN+MOGA configuration. The obtained optimal parameters are D = 3.0682 mm; T1 = 13.7336 mm; T2 = 15.3977 mm; W1 = 9.92 mm and W2 = 13.7594 mm.
	Figure 10. Transmission coefficient of the multilayer FSS for filter 1 via MOGA.
	The objectives for the filter were set as 1: 1) lower cutoff frequency at 8 GHz, and 2) upper cutoff frequency at 12 GHz. With this, the frequencies belonging to the X band are rejected and the transmission of the frequencies belonging to the band C (4 - 8 GHz) is made possible, as well as the Ku band (12 -18 GHz).
	When analyzing the results presented in Figure 10, it is observed that the values obtained in relation to the lower cutoff frequency and the upper cutoff frequency are, respectively, 8,005 GHz and 12,023 GHz for results calculated by FIT, which represents a relative error in relation to the configured objectives in the BIC code of about 0.25%. Then, when verifying results calculated by FEM, the values obtained for the lower frequency and the upper cutoff frequency were, respectively, 8,095 GHz and 12.09 GHz, which corresponds to a relative error of 1.94% regarding the objectives of BIC.
	Figure 11 presents the results for the transmission coefficient referring to the multilayer FSS corresponding to filter 1. These results were calculated from the optimal structural parameters returned by the hybrid technique GRNN + MOCS, consisting of the following values: D = 3.2433 mm, T1 = 13,893 mm, T2 = 15.2829 mm, W1 = 9.9828 mm, and W2 = 13.5089 mm.
	Figure 11. Transmission Coefficient for Multilayer FSS of filter 1 via MOCS.
	When analyzing the results presented in Figure 11, it is observed that the values obtained in relation to the lower cutoff frequency and the upper cutoff frequency are, respectively, 7,971 GHz and 12,091 GHz for results calculated from FIT, in which represents a relative error in relation to the objectives configured in the BIC code of around 1.12%. Then, when verifying the result calculated by the FEM method, the values obtained for the lower cutoff frequency and the upper cutoff frequency were, respectively, 8,075 GHz and 12.15 GHz, which corresponds to a relative error of 2.19% in relation to the objectives of BIC.
	Regarding filter 2, the developed GRNN contains 5 inputs in the first layer, an intermediate layer containing 216 neurons and two output nodes referring to the upper cutoff frequency of the first band and the lower cutoff frequency of the second band, which sets up the device as dual-band. Table 4 presents the structural parameters and values for filter 2, which were inserted unto the GRNN training and learning entries.
	Table 4. Parâmetros Estruturais das FSS Multicamadas para o Filtro 2
	Figure 12 denotes the results for the transmission coefficient calculated via FIT versus calculated via FEM. For this optimization the hybrid technique GRNN + MOGA was used, considering the multilayer FSS referring to filter 2. The optimal structural parameters obtained were D = 2.1068 mm, T1 = 14.4721 mm, T2 = 12.2558 mm, W1 = 13.1044 mm, and W2 = 8.9673 mm.
	Figure 12. Transmission Coefficient for Multilayer FSS of filter 2 via MOGA.
	The objectives or filter 2 are to tune the upper cutoff frequency for the first operating band at 8 GHz, and the lower cutoff frequency for the second operating band at 12 GHz. With this, the X band is transmitted and the C and Ku bands are blocked, which also characterizes the device as dual-band.
	Still according to Figure 12, it is observed that the values obtained concerning the lower cutoff frequency and the upper cutoff frequency are, respectively, 7,995 GHz and 11,961 GHz for the result calculated from the FIT, which represents a relative error in relation to the objectives configured in the BIC code of about 0.39%. Then, when verifying the result calculated by FEM, the values obtained for the lower cutoff frequency and the higher cutoff frequency were, respectively, 8.02 GHz and 12.1 GHz, corresponding to a relative error of 1.08% to the objectives of BIC.
	Figure 13 presents the results for the transmission coefficient calculated via FIT versus the calculated via FEM, when considering the optimal structural parameters returned by the hybrid technique GRNN + MOCS for the multilayer FSS referring to filter 2. The optimal parameters obtained were D = 1.7845 mm, T1 = 14.5 mm, T2 = 12.3419 mm, W1 = 12.9119 mm, and W2 = 8.785 mm.
	Figure 13. Transmission Coefficient for the Multilayer FSS of filter 2 via MOCS.
	When analyzing the results presented in Figure 13, it can be noted that the values obtained in relation to the lower cutoff frequency and the upper cutoff frequency are, respectively, 7,983 GHz and 12,026 GHz, for the result calculated from FIT, the which represents a relative error in relation to the objectives configured in the BIC code of about 0.43%. Then, when verifying the result calculated by FEM, values for the lower cutoff frequency and the upper cutoff frequency were, respectively, 8,025 GHz and 12.15 GHz, which is equal to a relative error of 1,562% in relation to the objectives of BIC.
	A characteristic that must be taken into account when analyzing FSS, be it single layer or multilayer, is the angular stability of the device, given that this aspect allows the analysis of the capacity that the FSS has to operate effectively in the filtering of electromagnetic waves with oblique incidence coming from multiple paths. However, an evaluation of FSS response for the two main types of polarization, horizontal and vertical, should be considered.
	The angular phase stability calculated from FIT is shown in Figure 13 for both filters optimized via MOGA. These results were considered because this technique has shown a higher degree of precision in meeting the project’s objectives.
	(a) Filter 1 – TM polarization.             (b) Filter 1 – TE polarization.
	(c) Filter 2 – TM polarization.             (d) Filter 2 – TE polarization.
	Figure 14. Angular stability of filters 1 and 2 for horizontal and vertical polarizations.
	Figures 14 (a) and (c) show the calculated results for filter 1, while Figures 14 (b) and (d) show the calculated results for filter 2. When analyzing these results, it is verified that the behavior of the devices remains unchanged regardless of the incident wave polarization, confirming that the multilayer FSS are independent of the incident wave polarization. According to the consensus found in the literature, the proposed FSS is characterized as having an independent polarization.
	With regard to angular stability, specifically in Figures 14 (a) and 14 (b), it is noteworthy that for the incidence angle of 40º the lower and upper cutoff frequencies have a deviation of approximately 160 MHz and 75 MHz, respectively, in relation to the normal incidence angle. As the application of filter 1 consists of a rejection of X band frequencies, these values of deviation in the cutoff frequencies meet the prerequisite of a maximum deviation of 2% in relation to the normal incidence wave. This ensures that the device operates with good angular phase stability for waves with an oblique incidence of up to 40º.
	For Figures 14 (c) and 14 (d), when analyzing the critical angle of incidence of 40º, the lower and upper cutoff frequencies for the first rejection band show deviations of about 147 and 140 MHz, respectively, in normal incidence angle. However, it is observed that the frequencies belonging to the Ku band (12–18 GHz) suffer greater distortions when subjected to different angles of wave incidence, which can be justified by the wavelength being shorter for this band – which makes it more sensitive to these variations and fatally contributes to the formation of reflected waves between filter plates with phases that cancel each other out, thereby distorting the frequency response of the device. However, for the first rejection band, the deviation values at the cutoff frequencies meet the prerequisite for a maximum deviation of 2% with respect to the normal incidence wave.
	Table 5 presents a summary of the synthesis process of the filters designed in this work.
	Table 5. Summary of obtained data



