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Abstract

Milodinow (2008) proposed a crazy market experiment: to release the same film under two titles: Star Wars:
Episode A and Star Wars: Episode B. Their marketing campaigns and distribution schedule are identical

except by their titles on trailers and ads. He looks at the first 20,000 moviegoers and record the film they

choose to see. He claims it is most probable the lead never changes, and it is 88 times more likely that one

of the two films will be int the lead through all 20,000 customers than it is that the lead continuously

seesaw. We present a detailed mathematical explanation for Mlodinow claims.

Keywords: misperceptions of randomness; random walk; discrete arc sin law; combinatorial methods;

1. Introduction

Mlodinow (2008) discusses many problems that defy our intuition and common sense. He is interested
in mistaken judgments due to misperceptions of randomness or uncertainty. In one of his examples,
Mlodinow (2008) proposed a crazy market experiment: to release the same film under two titles: Star Wars:
Episode A and Star Wars: Episode B. Their marketing campaigns and distribution schedule are identical
except by their titles on trailers and ads. He looks at the first 20,000 moviegoers and record the film they
choose to see. To mathematically model his experiment, we are going to use random walks and paths.
Combinatorial methods allow us to prove Mlodinow claims: it is most probable that the lead never
changes, and 88 times more likely that one of the two films to be in the lead through all 20,000 customers
than it is that each film to be in the lead among 10,000 moviegoers. Mlodinow experiment straightly relates
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to the classical fictitious gambler Peter, presented by Feller (1957). We combine Feller's (1957, 1968) and
Border's (2017) results to prove Mlodinow's (2008) claim. In Border (2017), we have a comprehensive
presentation of Feller's (1957, 1968) results. For completeness, we present their proofs.

2. Random walks and paths
A real Rademacher variable Xis a random variable defined on some probability space which takes the

values +1 or —1, each with probability % That is X:02 - {-1,1} such that

PX=+1)=PX =-1)= %

A Rademacher sequence is a sequence (X,)of independent Rademacher random variables. The index ¢t
indicates an epoch. The set of epochs is the set E of non-negative integers. The epoch 0 is the moment

before any vote.

For each t, we define the cumulative sum
Se=X, ++X,.

We define S, = 0. The sequence S,,S;,S,, ..., S, ... 1S a simple random walk on the integers.

Since the films and their marketing campaigns are the same, we can model the battle mathematically
through a random walk. For the t-th viewer we associate a Rademacher variable X,. If the viewer chooses
Episode A, then X, = 1; if the the viewer chooses Episode B, X, = —1. To the sequence (X,), we associate

the random walk S, S, S, ..., S, ...

2.1 Paths and reachable points

We associate the random walk (S;) to a polygonal in the plane whose vertices are the points (t,S,).

Definition 2.1. Let x,y be integers, x > 0. Apath s = (50515,,53, ...,s,) from the origin to the point (x,y)
is the graph of the piecewise linear function whose vertices are (j,s;), j =0,1,2,...,x satisfying:

sj—si-1 =31, s50=0, s,=y. (D)

When we associate the random walk (S,) with a path s, with s; = X;, we have a geometric representation

of the battle between the episodes. In (1), we have
Sp—Sj_1 = X; = +1, for j=1,2,..,x

Ifthe j-th vote was for episode A, we have X; = +1; if it was for episode B, we have X; = —1. The abscissa
of the endpoint of a path represents the total number of votes (remembering that each person votes in one
of the two episodes). If the partial sum s, = X, + X, + -+ X, is positive, the partial result up to the k-th
vote indicates the victory of episode A. When it is negative, it indicates the victory of episode B. In Figure
1, five viewers voted. In Figure 1(a), three viewers viewers chose episode A and two, B. In Figure 1(b),
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two viewers chose episode A and three, B.

N

(a) (b)

Figure 1. Five viewers vote.

Suppose that at the end of the vote, a viewers chose episode A and b, episode B, we have x =a+ b and
s, =a—b. If x is positive, A wins the contest. If the sum is negative, B wins. Any sequence of votes
given to the episodes corresponds to a path and vice versa. Whenever the path is above the x-axis, it means
that A has more cumulated votes than B. Similarly, in case B is winning, the polygonal will be below the
x-axis. Thus, Episode A is in the lead as long as the polyline is above the x-axis. When it is below the x-
axis, B is in the lead . A tie occurs when the polyline touches the x-axis. The cumulated sum of votes for
each episode equals zero. That is, each episode received the same amount of votes.  In this case, there
has not yet been a change in the leading position. We assume that episode A is in the lead until time ¢ if
S;>0 or S, =0 and S,_, > 0. Similarly, episode B is in the lead until time ¢ if S, <0 or S, =0 and

S._1 < 0. That is, in the event of a tie, the episode that was ahead in the penultimate epoch is the lead.

When s, =k, for k € Z, we say that the path s visits k at epoch t. If there is a path s such that s, =k,
we say that path s reaches the point (t,k) or that the point (t, k) is reachable from the origin.

The Proposition 2.1 tells us which points on the plane belonging to E x Z are reachable.

Proposition 2.1 (Border (2017)). For the point (¢,k) to be reachable, there must be non-negative integers
a and b, such that

(G1h2h - @

Note that not every point in the plan is reachable. For example, the point (5,4) is not reachable. In fact,
for (t,k) = (5,4), the system has no solution (a,b) with a and b non-negative integers. That is, episode
A cannot win by four votes if there are only five viewers.

Corollary 2.1. If (t,k) € E X Z is reachable, then the coordinates ¢t and k have the same parity. Also,
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t > |k|.
Proof. Let (t,k) be reachable. As t € E, there are two possibilities for ¢:
1. tiseven. Thatis, t = 2v for some v € E. We know by Proposition 2.1 that there is an non-negative
integer solution of (2):
2v=a+b and k=a-b
Then k =2(a —v) = 2(v — b). Therefore, if ¢ is even, k must also be even so that (2) has a non-

negative integer solution. In this case

t+k t—k
= — c b=—.
2 2

2. t isodd. Thatis, t = 2v+1 for some v € E. Similarly, by Proposition 2.1, there is a non-negative
integer solution (a,b) of (2). Then k =2(a—v)—1=2(v—b)+ 1. Therefore, if ¢ is odd, k

must also be odd so that (2) has a non-negative integer solution. Again

t+k t—k
=— € b=—.
2 2

Since t=a+b,a,b >0 and k = a — b, we have |k| =|a — b| < max{a, b} < t.

Definition 2.2. N, denotes the number of paths from origin to a point (¢, k). If (¢, k) is not reachable,
then N, =0.

In Proposition 2.2, we calculate the number of different votes cast by t spectators ending with S, = k.

Proposition 2.2 (Feller (1968)). If (t k) is an achievable point, then

o) ()

Proof. Since (t, k) is a reachable point, by Proposition 2.1, there are non-negative integers a and b that
satisfy (2). Episode A received a votes. That is, a is the number of times +1 has occurred; b is the
number of times —1 appears. When voting, +1 and —1 can appear in any order. That is, we have a

permutation with repetition of t = a + b. Thus:

N = &2 = (A40) = (240 = (Q) - (ka)

2

So there are precisely N, different paths from the origin to the point (¢t,k) corresponding to the possible

votes during the contest.
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Figure 2. Episode A wins by one vote.

Figure 2 illustrates three scenarios of the episode A winning by one vote when five viewers voted. That is
(t, k) = (t,S:) = (51). Ten different paths connect the origin to the point (5,1).

On a path from origin to (t,k), We shall refer to t as the length of the path. For ¢, if we let k vary in
(t, k), there are 2 paths of length t. In fact, for each spectator's vote, there are two possible choices. By
the multiplicative principle, after ¢t votes, we obtain one of the 2! possible paths. All paths are equally
likely.

The event “at epoch t the vote difference between episodes is k” will be denoted by {S, = k}. For its
probability P(S, = k), we write p;y.

Corollary 2.2. If (¢, k) is a reachable point, then
t
pow = (12x) 2 @

2

2.1.1 Special paths

We remember that episode A is in the lead until epoch ¢t if S, >0 or S, =0 and S;_, > 0. Similarly,
episode B is in the lead until epoch t if S, <0 or S, =0 and S,_; < 0. That is, in the event of a tie, the
episode that was ahead in the penultimate epoch is in the lead.
o Let Z, be the set of paths in which the two episodes received the same amount of votes. That is,
the set of paths s where s, = 0.
o Let P, be the set of paths in which episode A has always been in the lead, and there has never
been a tie. That is, the set of paths s that satisfy s; >0,...,s; > 0.
o Let N, be the set of paths in which episode A has always been in the lead. That is, the set of paths
s that satisfy s; >0,...,s, = 0.
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We now show some useful relationships between the sets Z,, P, and N,.

Lemma 2.1 (Border (2017)). There is a one-to-one correspondence between P,,, and N,,,_;.

Proof. For all path s of P,,,, the first vote was for Episode A. In fact, as s; > 0, path s passes through

(1,1). In addition, we also have s; > 1 for j =1,...,2m, because in P,,,, all partial sums are positive.

Let us consider point (1,1) as the new origin of the Cartesian plane (Figure 3).

(1.1)

(0,0

Figure 3. Path s.

In this way, we create a path s of length 2m — 1 from s (Figure 4). The first vote was counted, 2m — 1

are left. Precisely, s’ = (so’,s1, ) Sam1’) = (51 — 1,8, = 1, ..., So;n — 1). Thus, s" € Npp_y.

Figure 4. Path s'.

Similarly, with each s" in N,,,_,, we can always associate a single path s € P,,,.
Lemma 2.2 (Nelson's lemma). There is a one-to-one correspondence between Z,,, and N,,,. Furthermore,

each path in Z,,, that has a minimum value of —k, corresponds to a path in N,,, thatendsin (2m,2k).

Proof. (Border (2017)) To prove the lemma, we indicate how to build a bijective function F:Z,,, = Nyp,.
Consider a path s in Z,,,. Since s, = 0, there is necessarily jsuch that s; < 0. At some point t < 2m, it
assumes a minimum value —k < 0. Possibly —% is assumed more than once. Let £ be the smallest t
for which s, = —&.

Note that if the path s is already an element of N,,,, we have s, >0 for t =0,...,2m. Consequently, & =
0 and # = 0. In this case, we define F(s) =s. If s does not belong to N,,,, we necessarily have s, <0
for some 0 <t < 2m.Then, £ >0 and 0 < £ < 2m (Figure 5).
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Figure 5. s does not belong toN,,,

To get a path s' in N,,,, we proceed as follows (see Figure 6):
o Take the section of path s from (0,0) to (£ —k).
o Reflect this section over the vertical line t = £.
o Slide the reflected section until the old endpoint (£, —&) coincides with the point (2m, 0).
o Consider (¢,—£) as the new origin of the Cartesian plane.

N

t,%k)

Figure 6. Path s’ .

The path s’ belongs to N,,,, and we define s’ = F(s) (see Figure 7).

s'=(sp+ R sppq + R o Som + R, sp_q + 2R, .. s, + 2K, 28R).

Figure 7. Path 5" .

We now show that F is invertible: let s be a pathin N,,,. If s,, =0, we have F~1(s) =s.If s,,, >0, we

know from Corollary 2.1 that s,,, is even. Thatis, s,,, = 2k, for some integer k > 0. Consider t the last

International Educative Research Foundation and Publisher © 2020 pg. 373



International Journal for Innovation Education and Research Vol:-8 No-06, 2020

epoch when s, = k (see Figure 8)

Figure 8. Last epoch when s, = k.

To get a path s’ in Z,,,, we proceed as follows:

o Take the section of path s that runs from (¢, k) to (2m,2k).
e Reflect this section over the vertical line t = t.
o Slide the reflected section until the old endpoint (t, k) matches the origin (see Figure 9(a)).

e Consider the starting point as the new origin of the Cartesian plane (see Figure 9(b)).

(b)
(@)

Figure 9. The path s’ = F~1(s).
The path s" belongs to Z,,,:

s’ = (SZm — 2k, Som-1 — 2k, o) SF— 2k, S — k, e SE_q — k, 0).

The procedure described for s’ construction reverses that described in the definition of F. Thus thre is a

one by one correspondence between Z,,, and N,,,.

2.1.2 Special events
Let's calculate the probability of some events of interest in the episode battle:

e H ={S,,, = 0}, when both episodes received the same amount of votes.
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e H={5=0,..5, =0}, episode A has always been in the lead.
e H={5<0,..,5, <0}, episode B has always been in the lead.

Lemma 2.3. The odds are identical;

P(SZm = 0)9 (5)
P(S, >0, ..,S,, =0), (6)
P(S, <0,...,S,, <0). (7)

Proof. (Border (2017)) Note that all the events mentioned can be associated with paths of length 2m. To
calculate the probability P(H) of an event H related to paths of length 2m, it is necessary to determine

the number of paths associated with event H and divide by 22™,

The probability in (6) is associated with the situation in which Episode A always wins. Draws can occur,
but A is still in the lead, as there is no S, < 0. The associated path does not cross the x-axis. Thus, there is
no change in lead. In probability (7), it is the same situation, but the one who always wins is B. In both
cases, by symmetry?, the sets have the same cardinality. That is

|{s,51, =2 0,..,5,;, =0} =1|{s5,5; <0, ..., 55, < 0}].

Therefore, P(S; =0, ...,S,, 20) =P(5; £0,...,55, <0).
To conclude the lemma's proof, we show that the probabilities in (5) and (6) are equal. By Nelson's lemma
(Lemma 2.2), we have |Z,,,| = |[Nypm|. S0 P(Sy, =0) = P(S; =0, ...,5,, = 0).

3. Draws

We want to know if there was a change in the lead in the battle between the episodes. Thus, it is necessary
to count the number of times that the associated paths crossed the x-axis. First, it is required to count how
many times they have touched the mentioned axis. We now study the paths that connect the origin to an N

point on the x-axis.

Definition 3.1 (Returns to zero). When a path touches the x-axis, we say it returns to zero or the origin.

In this case, s, = 0 for some time t.

To return to the origin, the episodes must receive the same amount of votes. It follows from Corollary 2.1
that ¢ is even. Consider t = 2n. The number of paths from the origin to (2n,0) is N,,,, so by Corollary

2.2, the probability u,, of a path of length 2n ending at the point (2n,0) is given by:

= (41)- 27, (8)

n

u,, 1s the probability of a tie at epoch t = 2n.

L Justdefine F:{s,s; = 0,...,5m =0} > {s,5; <0, ..., 5,, <0}, F(s) = —s.
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Definition 3.2 (First return to zero). The first return to zero occurs when a path touches the x-axis at the
epoch 2m ands; #0,s, # 0, ..., s, # 0. We denote by f,,,, the probability of occurring the first return
to zero in the epoch 2m. That is,

me = P(Sl * O,SZ #* 0, ""SZm—l #* OlSZm = 0).
Lemma 3.1 (Border (2017)). An explicit formula for f,,, is

_ 1 _ 1 (2m\ 1 9
fam = Ugm—z = Upm = am—1dem =5\ gy ) €))

Proof. As 2m —1 is odd, by Corollary 2.1, we necessarily have s,,,_; # 0. So we can write the first
return event at the epoch 2m as {S; # 0,5, #0, ...,Sp;m_2 # 0,S,,, = 0}. The paths associated with this
event belong to the difference between two sets: of events in which s, never vanishes until epoch 2m — 2

minus the events in which s, never vanishes until epoch 2m. That is,

{s,51 #0,5, #0,...,S9m—2 F0,55, =0} ={5,5 # 0,5, # 0, ..., Sy;p—2 # 0} \ {s5,5; # 0,5, # 0, ..., Sy, # 0}.
Note that for paths of length 2m, we have

{s,51 #0,5, #0,...,50 0} C {s,5; # 0,5, # 0, ..., Sy;p_2 # 0}.
Besides, the number of paths of length 2m such that s; #0,s, # 0, ..., s3;,_, # 0 1is equal to four times the
amount of paths of length 2m — 2 such that s; # 0,s, #0, ..., S5, # 0.
By Lemma 2.3, for 4 =P((S; #0,S, #0,...,Sn_2 £ 0\ (S; # 0,5, # 0, ..., Sy, # 0)), we have

4-1{s,s; #0,5, #0,...,S3m—2 = 0} — |{s, s, # 0,5, # 0, ..., Sy, # 0}]
4= o2m = Upym-2 — Uzam

By (8), we have

2m— 2 ) . 9-2(m-1) _ g—2m _ 1 (Zm)i

tam-2 = tzm = (0 7 2m—1\m /) 22m

We can also obtain a recursive formula for the return to zero involving the first returns.

Corollary 3.1 (Feller (1968)). For m > 1, we have

Uym = Zer Uzm—2r- (10)

Proof. 1f a return to the origin occurs in the epoch 2m, then the first return to zero occurs in an epoch 2r <
2m. Every such path s has a section of length 2m where s; #0,s, #0,...,5,,_, # 0 and a section of
length 2m — 2r wheres; # 0,s, # 0, ...,s,,_; # 0. Therefore, the number of paths of length 2m from the

origin to the point (2m,0), whose first return to zero happened at the point (2r,0) is given by

2r 2m-2r
277 - for - 2 *Uzm-—2r-

Adding over r, we get (10).
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4. In the lead

It is important to note that the analysis made by Feller (1957) and adapted by Mlodinow (2008) for the
battle of episodes is not interested in uninterrupted leads, but in studying how long an episode is in the lead.

In the Figures, each episode remained half the time in the lead.

(@) (®)

() (d)

Figure 10. Half the time in the lead

Our intuition leads us to believe that in the contest between the episodes, each of them would stay about
half the time in the lead, and frequent changes do not occur. However, as the following result shows, our
intuition played a trick with us. The next theorem analyzes the fraction of the total time that a path remains
above the x-axis. That is, the probability of episode A to stay in the lead over a fraction of the total votes.

Fractions close to 1 are the least likely.

Theorem 4.1. Let a,;,, be the probability that during the interval from 0 to 2n, episode A remains for

2k votes in the lead, and episode B remains for 2n — 2k votes in the lead. So
Aok,2n = UzkUzn—2k> k=0,1,..,n. (11)

Proof (Feller (1957)). We prove by induction on n. First, let's deduce a recursive expression for a,y ,y,

with 1 <k <n—1, which also involves probabilities of first return to zero. If episode A remains for 2k
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votes in the lead and episode B remains for 2n — 2k votes in the lead, there is a tie at some point. Let 2r
be the time when the first return to zero occurred. As 1 <k <n—1, we have 2r < 2n. That is, the first
tie must take place before the voting ends. Otherwise, only one episode would remain in the lead at all
times. Thus, as the first tie takes place in epoch 2r, the path s associated with the contest of the episodes

belongs to one of two classes:

o In the first class, episode A led the entire range from 0 to 2r.

e In the second class, episode B led the entire range from 0 to 2r.

In the first class, we necessarily have r < k < n — 1, and in the section of the path s after (2r,0), episode
A remains in the lead by exactly 2k — 2r more votes. Let's calculate how many paths of length 2n there
are in the first class. Note that we have 2%" - f,, paths of length 2r, whose first return occurs at the time
2r. By symmetry, in half of them, episode A leads all the time. Also, there are 22"72" - ay,_5, 5,5, paths
of length 2n —2r in which episode A remains for 2k —2r votes in the lead. Consequently, the total
number of paths of length 2n in the first class is given

1

2r 2n-2r — 2n
2 2T for - 2 *Uok—2r2n-2r = 2 2°M - for * Qok—2r2n—27-

On each of these paths, episode A remains for 2k votes in the lead. Therefore, episode B remains for 2n —
2k votes in the lead.

In the second class, episode B led until season 2r. By an analogous argument, we have k < n —r, and the

total number of paths of length 2n in the second class is given by

1

2r 2n-2r _ 2n
2 (25T for 2 " Aok 2n—2r = E 25" for - Aok pn—2r

On each of these paths, episode A remains for 2k votes in the lead. Therefore, episode B remains for 2n —

2k votes in the lead.

Note that the classes are disjoint with each other and are also disjoint with the classes corresponding to

different values of r. Thus,
1 1
Qzk2n = ;Zer “Uok—2r2n-2r EZer " Aok 2n—2r- (12)

Let us now prove (11), by induction on n. For n = 1, we only have two possible values for k: k=0 or
k = 1. According to Lemma 2.3, the odds are the same for episode A remain in the lead throughout the
interval from 0 to 2n and for that both episodes receive the same amount of votes until the 2n season.
So, using (8), we get
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2n -
P(Sl 2 O' '"JSZTTL 2 0) = P(SZm = 0) =u’27’1 = ( n )2 271.

Therefore, ayn2n = Upnlp = Uy,. Similarly, using (7) from Lemma 2.3, we obtain g, = Uy, = Uy
That is, each episode is just as likely to remain in the lead for the entire 0 to 2n interval. Thus, (11) is

verified for n = 1.

Our induction hypothesis is
azkIZV = U Upy—_2k» v = 1,2, T (R 1, k = 0,1, (e 1.
Note that in the first summation in (12), we have n— k <n —r <n — 1. In the second summation, k <n —

r <n — 1. Using the induction hypothesis in (12), we obtain

1 1
Xok,2n = EZer *Qog—2r2n-2r T Ez for * @k on-2r
1 1
A2k2n = 5 for * Ugk—2rUzn—2k + 5 for * UzkUzn—2r—2k

1 1
Aokzn = 5 " Uzn-2k Z for * Ugk—2r + 5 " Uzk Z for - Uzn—2r—2k-

By (10),

1 1
Uzkzn = 5 Uzn-zkUzk T 5 UzkUzn-2k = UzkUzn—2k-

We use Theorem 4.1 to determine the probability of episode A to be in the lead over a fraction of the total

votes. 2k is the number of votes over which episode A remains in the lead. We remember that

Uzn = (277:) ST,

Let 2n =20.000 and k = 0, that is, episode A will never take the lead. Substituting in formula (11), we

have

20,000! 1 20,000!

@0;20,000 = T50001-10,000! 220000 (10,0001)2.220,000°

For 2k = 10,000, both films remain in the lead for the same period,

(10,000!)?
(10,000;10,000 = (5,000!)* - 220,000

To verify? that one probability is about 88 times greater than the other:

20,000! ! (10,000!)2
(10,0001)2.220,000 (5 oQI)4.220,000

5,000!
10,000!

4
= 20,000! - ( ) ~ 88625 - 10 = 88,625.

The probability that one of the films will remain in the lead for the entire period of the choice of 20,000
viewers is almost 88 times greater than that of having equal lead times for both films.

2 We calculate factorials by https://www.calculatorsoup.com/calculators/discretemathematics/factorials.php.
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