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Abstract 

Mlodinow (2008) proposed a crazy market experiment: to release the same film under two titles: Star Wars: 

Episode A and Star Wars: Episode B. Their marketing campaigns and distribution schedule are identical 

except by their titles on trailers and ads. He looks at the first 20,000 moviegoers and record the film they 

choose to see. He claims it is most probable the lead never changes, and it is 88 times more likely that one 

of the two films will be int the lead through all 20,000 customers than it is that the lead continuously 

seesaw. We present a detailed mathematical explanation for Mlodinow claims. 

 

Keywords: misperceptions of randomness; random walk; discrete arc sin law; combinatorial methods; 

 

1. Introduction 

Mlodinow (2008) discusses many problems that defy our intuition and common sense.  He is interested 

in mistaken judgments due to misperceptions of randomness or uncertainty. In one of his examples, 

Mlodinow (2008) proposed a crazy market experiment: to release the same film under two titles: Star Wars: 

Episode A and Star Wars: Episode B. Their marketing campaigns and distribution schedule are identical 

except by their titles on trailers and ads. He looks at the first 20,000 moviegoers and record the film they 

choose to see. To mathematically model his experiment, we are going to use random walks and paths. 

Combinatorial methods allow us to prove Mlodinow claims:  it is most probable that the lead never 

changes, and 88 times more likely that one of the two films to be in the lead through all 20,000 customers 

than it is that each film to be in the lead among 10,000 moviegoers. Mlodinow experiment straightly relates 
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to the classical fictitious gambler Peter, presented by Feller (1957). We combine Feller's (1957, 1968) and 

Border's (2017) results to prove Mlodinow's (2008) claim. In Border (2017), we have a comprehensive 

presentation of Feller's (1957, 1968) results. For completeness, we present their proofs. 

 

2. Random walks and paths 

A real Rademacher variable 𝑋is a random variable defined on some probability space which takes the 

values +1 or −1, each with probability 
1

2
.  That is 𝑋: 𝛺 → {−1,1} such that 

𝑃(𝑋 = +1) = 𝑃(𝑋 = −1) =
1

2
. 

A Rademacher sequence is a sequence (𝑋𝑡)of independent Rademacher random variables. The index 𝑡 

indicates an epoch. The set of epochs is the set 𝐸 of non-negative integers. The epoch 0 is the moment 

before any vote. 

 

For each 𝑡, we define the cumulative sum 

𝑆𝑡 = 𝑋1 + ⋯ + 𝑋𝑡 . 

We define 𝑆0 = 0. The sequence 𝑆0, 𝑆1, 𝑆2, … , 𝑆𝑡 , … is a simple random walk on the integers.  

 

Since the films and their marketing campaigns are the same, we can model the battle mathematically 

through a random walk. For the 𝑡-th viewer we associate a Rademacher variable 𝑋𝑡. If the viewer chooses 

Episode A, then 𝑋𝑡 = 1; if the the viewer chooses Episode B, 𝑋𝑡 = −1. To the sequence (𝑋𝑡), we associate 

the random walk 𝑆0,𝑆1,𝑆2, … , 𝑆𝑡 , …. 

 

2.1 Paths and reachable points 

We associate the random walk (𝑆𝑡) to a polygonal in the plane whose vertices are the points (𝑡, 𝑆𝑡). 

 

Definition 2.1. Let 𝑥, 𝑦 be integers, 𝑥 > 0. A path 𝑠 = (𝑠0,𝑠1,𝑠2,𝑠3, … , 𝑠𝑥) from the origin to the point (𝑥, 𝑦) 

is the graph of the piecewise linear function whose vertices are (𝑗, 𝑠𝑗), 𝑗 = 0,1,2, … , 𝑥 satisfying:  

𝑠𝑗 − 𝑠𝑗−1 = ±1,  𝑠0 = 0,  𝑠𝑥 = 𝑦.         (1) 

 

When we associate the random walk (𝑆𝑡) with a path 𝑠, with 𝑠𝑗 = 𝑋𝑗, we have a geometric representation 

of the battle between the episodes. In (1), we have  

 

𝑠𝑗 − 𝑠𝑗−1 = 𝑋𝑗 = ±1,  for 𝑗 = 1,2, … , 𝑥 

 

If the 𝑗-th vote was for episode A, we have 𝑋𝑗 = +1; if it was for episode B, we have 𝑋𝑗 = −1. The abscissa 

of the endpoint of a path represents the total number of votes (remembering that each person votes in one 

of the two episodes). If the partial sum 𝑠𝑘 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑘 is positive, the partial result up to the 𝑘-th 

vote indicates the victory of episode A. When it is negative, it indicates the victory of episode B. In Figure 

1, five viewers voted. In Figure 1(a), three viewers viewers chose episode A and two, B. In Figure 1(b), 
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two viewers chose episode A and three, B. 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

Figure 1. Five viewers vote. 

 

Suppose that at the end of the vote, 𝑎 viewers chose episode A and 𝑏, episode B, we have 𝑥 = 𝑎 + 𝑏 and 

𝑠𝑥 = 𝑎 − 𝑏.  If 𝑥 is positive, A wins the contest. If the sum is negative, B wins. Any sequence of votes 

given to the episodes corresponds to a path and vice versa. Whenever the path is above the 𝑥-axis, it means 

that A has more cumulated votes than B. Similarly, in case B is winning, the polygonal will be below the 

𝑥-axis. Thus, Episode A is in the lead as long as the polyline is above the 𝑥-axis. When it is below the 𝑥-

axis, B is in the lead . A tie occurs when the polyline touches the 𝑥-axis. The cumulated sum of votes for 

each episode equals zero. That is, each episode received the same amount of votes.   In this case, there 

has not yet been a change in the leading position. We assume that episode A is in the lead until time 𝑡 if 

𝑆𝑡 > 0 or 𝑆𝑡 = 0 and 𝑆𝑡−1 > 0. Similarly, episode B is in the lead until time 𝑡 if 𝑆𝑡 < 0 or 𝑆𝑡 = 0 and 

𝑆𝑡−1 < 0. That is, in the event of a tie, the episode that was ahead in the penultimate epoch is the lead. 

 

When 𝑠𝑡 = 𝑘, for 𝑘 ∈ ℤ, we say that the path 𝑠 visits 𝑘 at epoch 𝑡. If there is a path 𝑠 such that 𝑠𝑡 = 𝑘, 

we say that path 𝑠 reaches the point (𝑡, 𝑘) or that the point (𝑡, 𝑘) is reachable from the origin. 

 

The Proposition 2.1 tells us which points on the plane belonging to 𝐸 × ℤ are reachable. 

 

Proposition 2.1 (Border (2017)). For the point (𝑡, 𝑘) to be reachable, there must be non-negative integers 

𝑎 and 𝑏, such that 

{
𝑎 + 𝑏 = 𝑡 
 𝑎 − 𝑏 = 𝑘

 .         (2) 

 

Note that not every point in the plan is reachable. For example, the point (5,4) is not reachable. In fact, 

for (𝑡, 𝑘) = (5,4), the system has no solution (𝑎, 𝑏) with 𝑎 and 𝑏 non-negative integers. That is, episode 

A cannot win by four votes if there are only five viewers. 

 

Corollary 2.1. If (𝑡, 𝑘) ∈ 𝐸 × ℤ is reachable, then the coordinates 𝑡 and 𝑘 have the same parity. Also, 
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𝑡 ≥ |𝑘|. 

Proof. Let (𝑡, 𝑘) be reachable. As 𝑡 ∈ 𝐸, there are two possibilities for 𝑡: 

1. 𝑡is even. That is, 𝑡 = 2𝜈 for some 𝜈 ∈ 𝐸. We know by Proposition 2.1 that there is an non-negative 

integer solution of (2): 

2𝜈 = 𝑎 + 𝑏  and   𝑘 = 𝑎 − 𝑏 

Then 𝑘 = 2(𝑎 − 𝜈) = 2(𝜈 − 𝑏). Therefore, if 𝑡 is even, 𝑘 must also be even so that (2) has a non-

negative integer solution. In this case 

 

𝑎 =
𝑡+𝑘

2
   e  𝑏 =

𝑡−𝑘

2
. 

 

2. 𝑡 is odd. That is, 𝑡 = 2𝜈 + 1 for some 𝜈 ∈ 𝐸. Similarly, by Proposition 2.1, there is a non-negative 

integer solution (𝑎, 𝑏)  of (2). Then 𝑘 = 2(𝑎 − 𝜈) − 1 = 2(𝜈 − 𝑏) + 1 . Therefore, if 𝑡  is odd, 𝑘 

must also be odd so that (2) has a non-negative integer solution. Again 

 

𝑎 =
𝑡+𝑘

2
   e  𝑏 =

𝑡−𝑘

2
. 

 

Since 𝑡 = 𝑎 + 𝑏, 𝑎, 𝑏 ≥ 0 and 𝑘 = 𝑎 − 𝑏, we have |𝑘| = |𝑎 − 𝑏| ≤ 𝑚𝑎𝑥{𝑎, 𝑏} ≤ 𝑡. 

 

Definition 2.2. 𝑁𝑡,𝑘 denotes the number of paths from origin to a point (𝑡, 𝑘). If (𝑡, 𝑘) is not reachable, 

then  𝑁𝑡,𝑘 = 0. 

 

In Proposition 2.2, we calculate the number of different votes cast by 𝑡 spectators ending with 𝑆𝑡 = 𝑘. 

 

Proposition 2.2 (Feller (1968)).  If (𝑡, 𝑘) is an achievable point, then  

N𝑡,𝑘  =  (
𝑡 

𝑡 +𝑘 

2

)  =  (
𝑡 

𝑡 −𝑘 

2

).         (3) 

Proof. Since (𝑡, 𝑘) is a reachable point, by Proposition 2.1, there are non-negative integers 𝑎 and 𝑏 that 

satisfy (2). Episode A received 𝑎 votes. That is, 𝑎 is the number of times +1 has occurred; 𝑏 is the 

number of times −1 appears. When voting, +1 and −1 can appear in any order.  That is, we have a 

permutation with repetition of 𝑡 = 𝑎 + 𝑏. Thus: 

 

N𝑡,𝑘  =  
(𝑎+𝑏)!

𝑎!𝑏!
 =  (

𝑎 + 𝑏 
𝑎

)  =  (
𝑎 + 𝑏 

𝑏
)  =  (

𝑡 
𝑡 +𝑘 

2

)  =  (
𝑡 

𝑡 −𝑘 

2

). 

So there are precisely 𝑁𝑡,𝑘 different paths from the origin to the point (𝑡, 𝑘) corresponding to the possible 

votes during the contest. 
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Figure 2. Episode A wins by one vote. 

 

Figure 2 illustrates three scenarios of the episode A winning by one vote when five viewers voted. That is 

(𝑡, 𝑘) = (𝑡, 𝑆𝑡) = (5,1). Ten different paths connect the origin to the point (5,1). 

 

On a path from origin to (𝑡, 𝑘), We shall refer to 𝑡 as the length of the path. For 𝑡, if we let  𝑘 vary in 

(𝑡, 𝑘), there are 2𝑡 paths of length 𝑡. In fact, for each spectator's vote, there are two possible choices. By 

the multiplicative principle, after 𝑡 votes, we obtain one of the 2𝑡 possible paths. All paths are equally 

likely. 

 

The event “at epoch 𝑡 the vote difference between episodes is 𝑘” will be denoted by {𝑆𝑡 = 𝑘}. For its 

probability 𝑃(𝑆𝑡 = 𝑘), we write 𝑝𝑡,𝑘. 

 

Corollary 2.2. If (𝑡, 𝑘) is a reachable point, then  

𝑝𝑡,𝑘  =  (
𝑡 

𝑡 +𝑘 

2

) ⋅ 2−𝑡.          (4) 

2.1.1 Special paths 

 

We remember that  episode A is in the lead until epoch 𝑡 if 𝑆𝑡 > 0 or 𝑆𝑡 = 0 and 𝑆𝑡−1 > 0. Similarly, 

episode B is in the lead until epoch 𝑡 if 𝑆𝑡 < 0 or 𝑆𝑡 = 0 and 𝑆𝑡−1 < 0. That is, in the event of a tie, the 

episode that was ahead in the penultimate epoch is in the lead. 

• Let 𝑍𝑡 be the set of paths in which the two episodes received the same amount of votes. That is, 

the set of paths 𝑠 where 𝑠𝑡 = 0. 

• Let  𝑃𝑡 be the set of paths in which episode A has always been in the lead, and there has never 

been a tie. That is, the set of paths 𝑠 that satisfy  𝑠1 > 0, … , 𝑠𝑡 > 0. 

• Let 𝑁𝑡 be the set of paths in which episode A has always been in the lead. That is, the set of paths 

𝑠 that satisfy 𝑠1 ≥ 0, … , 𝑠𝑡 ≥ 0. 
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We now show some useful relationships between the sets 𝑍𝑡 , 𝑃𝑡 and 𝑁𝑡. 

 

Lemma 2.1 (Border (2017)). There is a one-to-one correspondence between 𝑃2𝑚 and 𝑁2𝑚−1. 

Proof. For all path 𝑠 of 𝑃2𝑚, the first vote was for Episode A. In fact, as 𝑠1 > 0, path 𝑠 passes through 

(1,1). In addition, we also have 𝑠𝑗 ≥ 1 for 𝑗 = 1, … ,2𝑚, because in 𝑃2𝑚, all partial sums are positive. 

 

Let us consider point (1,1) as the new origin of the Cartesian plane (Figure 3). 

 

 

 

 

 

 

 

Figure 3. Path 𝑠. 

 

In this way, we create a path 𝑠′ of length 2𝑚 − 1 from 𝑠 (Figure 4). The first vote was counted, 2𝑚 − 1 

are left. Precisely, 𝑠′ = (𝑠0′, 𝑠1′, … , 𝑠2𝑚−1′) = (𝑠1 − 1, 𝑠2 − 1, … , 𝑠2𝑚 − 1). Thus, 𝑠′ ∈ 𝑁2𝑚−1. 

 

 

 

 

 

 

 

Figure 4. Path 𝑠′. 

 

Similarly, with each 𝑠′ in 𝑁2𝑚−1,  we can always associate a single path 𝑠 ∈ 𝑃2𝑚. 

Lemma 2.2 (Nelson's lemma). There is a one-to-one correspondence between 𝑍2𝑚 and 𝑁2𝑚. Furthermore, 

each path in 𝑍2𝑚 that has a minimum value of −𝑘, corresponds to a path in 𝑁2𝑚 that ends in (2𝑚, 2𝑘). 

 

Proof. (Border (2017)) To prove the lemma, we  indicate how to build a bijective function 𝐹: 𝑍2𝑚 → 𝑁2𝑚. 

Consider a path 𝑠 in 𝑍2𝑚. Since 𝑠2𝑚 = 0, there is necessarily 𝑗such that 𝑠𝑗 ≤ 0. At some point 𝑡 ≤ 2𝑚, it 

assumes a minimum value −𝑘 ≤ 0.  Possibly −𝑘 is assumed more than once. Let 𝑡̂ be the smallest 𝑡 

for which 𝑠𝑡 = −𝑘. 

Note that if the path 𝑠 is already an element of 𝑁2𝑚, we have 𝑠𝑡 ≥ 0 for 𝑡 = 0, … ,2𝑚. Consequently, 𝑘 =

0 and 𝑡̂ = 0. In this case, we define 𝐹(𝑠) = 𝑠. If 𝑠 does not belong to 𝑁2𝑚, we necessarily have 𝑠𝑡 < 0 

for some 0 < 𝑡 < 2𝑚. Then, 𝑘 > 0 and 0 < 𝑡̂ < 2𝑚 (Figure 5). 
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Figure 5. 𝑠 does not belong to𝑁2𝑚 

 

To get a path 𝑠′ in 𝑁2𝑚, we proceed as follows (see Figure 6): 

• Take the section of path 𝑠 from (0,0) to (𝑡̂, −𝑘). 

• Reflect this section over the vertical line 𝑡 = 𝑡̂. 

• Slide the reflected section until the old endpoint (𝑡̂, −𝑘) coincides with the point (2𝑚, 0). 

• Consider (𝑡̂, −𝑘) as the new origin of the Cartesian plane. 

 

 

 

 

 

 

 

Figure 6.  Path 𝑠′ . 

 

 

The path 𝑠′ belongs to 𝑁2𝑚, and we define 𝑠′ = 𝐹(𝑠) (see Figure 7). 

 

𝑠′ = (𝑠𝑡 + 𝑘, 𝑠𝑡+1 + 𝑘, … , 𝑠2𝑚 + 𝑘, 𝑠𝑡−1 + 2𝑘, … , 𝑠1 + 2𝑘, 2𝑘). 

 

 

 

 

 

 

 

Figure 7.  Path 𝑠′ . 

 

 

We now show that 𝐹 is invertible: let 𝑠 be a path in 𝑁2𝑚. If 𝑠2𝑚 = 0, we have 𝐹−1(𝑠) = 𝑠. If 𝑠2𝑚 > 0, we 

know from Corollary 2.1 that 𝑠2𝑚 is even. That is, 𝑠2𝑚 = 2𝑘, for some integer 𝑘 > 0. Consider 𝑡 the last 
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epoch when 𝑠𝑡 = 𝑘 (see Figure 8) 

 

 

 

 

 

 

 

 

 

 

Figure 8. Last epoch when 𝑠𝑡 = 𝑘. 

To get a path 𝑠′ in 𝑍2𝑚, we proceed  as follows: 

 

• Take the section of path 𝑠 that runs from (𝑡, 𝑘) to (2𝑚, 2𝑘).  

• Reflect this section over the vertical line 𝑡 = 𝑡. 

• Slide the reflected section until the old endpoint (𝑡, 𝑘) matches the origin (see Figure 9(a)). 

• Consider the starting point as the new origin of the Cartesian plane (see Figure 9(b)). 

 

 

(a) 

 

(b) 

 

Figure 9. The path 𝑠′ = 𝐹−1(𝑠). 

The path 𝑠′ belongs to 𝑍2𝑚: 

 

𝑠′ = (𝑠2𝑚 − 2𝑘, 𝑠2𝑚−1 − 2𝑘, … , 𝑠𝑡 − 2𝑘, 𝑠1 − 𝑘, … , 𝑠𝑡−1 − 𝑘, 0). 

 

The procedure described for 𝑠′ construction reverses that described in the definition of 𝐹. Thus thre is a 

one by one correspondence between 𝑍2𝑚 and 𝑁2𝑚. 

 

2.1.2 Special events 

Let's calculate the probability of some events of interest in the episode battle: 

 

• 𝐻 = {𝑆2𝑚 = 0}, when both episodes received the same amount of votes. 
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• 𝐻 = {𝑆1 ≥ 0, … , 𝑆2𝑚 ≥ 0}, episode A has always been in the lead. 

• 𝐻 = {𝑆1 ≤ 0, … , 𝑆2𝑚 ≤ 0}, episode B has always been in the lead. 

 

Lemma 2.3. The odds are identical: 

𝑃(𝑆2𝑚 = 0),          (5) 

𝑃(𝑆1 ≥ 0, … , 𝑆2𝑚 ≥ 0),         (6)  

𝑃(𝑆1 ≤ 0, … , 𝑆2𝑚 ≤ 0).         (7) 

Proof. (Border (2017)) Note that all the events mentioned can be associated with paths of length 2𝑚. To 

calculate the probability 𝑃(𝐻) of an event 𝐻 related to paths of length 2𝑚, it is necessary to determine 

the number of paths associated with event 𝐻 and divide by 22𝑚. 

 

The probability in (6) is associated with the situation in which Episode A always wins. Draws can occur, 

but A is still in the lead, as there is no 𝑆𝑡 < 0. The associated path does not cross the 𝑥-axis. Thus, there is 

no change in lead. In probability (7), it is the same situation, but the one who always wins is B. In both 

cases, by symmetry1, the sets have the same cardinality. That is 

 

|{𝑠, 𝑠1 ≥ 0, … , 𝑠2𝑚 ≥ 0}| = |{𝑠, 𝑠1 ≤ 0, … , 𝑠2𝑚 ≤ 0}|.  

 

Therefore, 𝑃(𝑆1 ≥ 0, … , 𝑆2𝑚 ≥ 0) = 𝑃(𝑆1 ≤ 0, … , 𝑆2𝑚 ≤ 0). 

To conclude the lemma's proof, we show that the probabilities in (5) and (6) are equal. By Nelson's lemma 

(Lemma 2.2), we have |𝑍2𝑚| = |𝑁2𝑚|.  So 𝑃(𝑆2𝑚 = 0) = 𝑃(𝑆1 ≥ 0, … , 𝑆2𝑚 ≥ 0). 

 

3. Draws 

We want to know if there was a change in the lead in the battle between the episodes. Thus, it is necessary 

to count the number of times that the associated paths crossed the 𝑥-axis. First, it is required to count how 

many times they have touched the mentioned axis. We now study the paths that connect the origin to an 𝑁 

point on the 𝑥-axis. 

 

Definition 3.1 (Returns to zero). When a path touches the 𝑥-axis, we say it returns to zero or the origin. 

In this case, 𝑠𝑡 = 0 for some time 𝑡. 

 

To return to the origin, the episodes must receive the same amount of votes. It follows from Corollary 2.1 

that 𝑡 is even. Consider 𝑡 = 2𝑛. The number of paths from the origin to (2𝑛, 0) is 𝑁2𝑛,0, so by Corollary 

2.2, the probability 𝑢2𝑛 of a path of length 2𝑛 ending at the point (2𝑛, 0) is given by: 

𝑢2𝑛  =  (
2𝑛 
𝑛

) ⋅ 2−2𝑛,          (8) 

𝑢2𝑛 is the probability of a tie at epoch 𝑡 = 2𝑛. 

 

 
1 Just define 𝐹: {𝑠, 𝑠1 ≥ 0, … , 𝑠2𝑚 ≥ 0} → {𝑠, 𝑠1 ≤ 0, … , 𝑠2𝑚 ≤ 0}, 𝐹(𝑠) = −𝑠. 
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Definition 3.2 (First return to zero). The first return to zero occurs when a path touches the 𝑥-axis at the 

epoch  2𝑚 and𝑠1 ≠ 0, 𝑠2 ≠ 0, … , 𝑠2𝑚−1 ≠ 0. We denote by 𝑓2𝑚 the probability of occurring the first return 

to zero in the epoch 2𝑚. That is,  

 

𝑓2𝑚 = 𝑃(𝑆1 ≠ 0, 𝑆2 ≠ 0, … , 𝑆2𝑚−1 ≠ 0, 𝑆2𝑚 = 0). 

Lemma 3.1 (Border (2017)). An explicit formula for 𝑓2𝑚 is  

𝑓2𝑚 = 𝑢2𝑚−2 − 𝑢2𝑚 =
1

2𝑚−1
𝑢2𝑚 =

1

2𝑚−1
(

2𝑚 
𝑚

)
1

22𝑚.      (9) 

 

Proof. As 2𝑚 − 1 is odd, by Corollary 2.1, we necessarily have 𝑠2𝑚−1 ≠ 0.  So we can write the first 

return event at the epoch 2𝑚  as {𝑆1 ≠ 0, 𝑆2 ≠ 0, … , 𝑆2𝑚−2 ≠ 0, 𝑆2𝑚 = 0} .  The paths associated with this 

event belong to the difference between two sets: of events in which 𝑠𝑡 never vanishes until epoch 2𝑚 − 2 

minus the events in which 𝑠𝑡 never vanishes until epoch 2𝑚. That is,  

 

{𝑠, 𝑠1 ≠ 0, 𝑠2 ≠ 0, … , 𝑠2𝑚−2 ≠ 0, 𝑠2𝑚 = 0} = {𝑠, 𝑠1 ≠ 0, 𝑠2 ≠ 0, … , 𝑠2𝑚−2 ≠ 0} ∖ {𝑠, 𝑠1 ≠ 0, 𝑠2 ≠ 0, … , 𝑠2𝑚 ≠ 0}. 

Note that for paths of length 2𝑚, we have  

 

{𝑠, 𝑠1 ≠ 0, 𝑠2 ≠ 0, … , 𝑠2𝑚 ≠ 0} ⊂ {𝑠, 𝑠1 ≠ 0, 𝑠2 ≠ 0, … , 𝑠2𝑚−2 ≠ 0}.  

Besides, the number of paths of length 2𝑚 such that 𝑠1 ≠ 0, 𝑠2 ≠ 0, … , 𝑠2𝑚−2 ≠ 0 is equal to four times the 

amount of paths of length 2𝑚 − 2 such that 𝑠1 ≠ 0, 𝑠2 ≠ 0, … , 𝑠2𝑚−2 ≠ 0.   

By Lemma 2.3,  for 𝛥 = 𝑃((𝑆1 ≠ 0, 𝑆2 ≠ 0, … , 𝑆2𝑚−2 ≠ 0) ∖ (𝑆1 ≠ 0, 𝑆2 ≠ 0, … , 𝑆2𝑚 ≠ 0)), we have  

 

𝛥 =
4 ⋅ |{𝑠, 𝑠1 ≠ 0, 𝑠2 ≠ 0, … , 𝑠2𝑚−2 ≠ 0}| − |{𝑠, 𝑠1 ≠ 0, 𝑠2 ≠ 0, … , 𝑠2𝑚 ≠ 0}|

22𝑚
= 𝑢2𝑚−2 − 𝑢2𝑚 

By (8), we have  

𝑢2𝑚−2 − 𝑢2𝑚 = (
2𝑚 − 2 
𝑚 − 1

) ⋅ 2−2(𝑚−1) − 2−2𝑚 =
1

2𝑚 − 1
(

2𝑚 
𝑚

)
1

22𝑚
. 

 

We can also obtain a recursive formula for the return to zero involving the first returns. 

 

Corollary 3.1 (Feller (1968)). For 𝑚 ≥ 1, we have  

 

𝑢2𝑚 = ∑ 𝑓2𝑟 𝑢2𝑚−2𝑟.         (10) 

 

Proof. If a return to the origin occurs in the epoch 2𝑚, then the first return to zero occurs in an epoch 2𝑟 ≤

2𝑚 . Every such path 𝑠  has a section of length 2𝑚  where 𝑠1 ≠ 0, 𝑠2 ≠ 0, … , 𝑠2𝑟−1 ≠ 0  and a section of 

length 2𝑚 − 2𝑟 where𝑠1 ≠ 0, 𝑠2 ≠ 0, … , 𝑠2𝑟−1 ≠ 0. Therefore, the number of paths of length 2𝑚 from the 

origin to the point (2𝑚, 0), whose first return to zero happened at the point (2𝑟, 0) is given by 

 

 22𝑟 ⋅ 𝑓2𝑟 ⋅ 22𝑚−2𝑟 ⋅ 𝑢2𝑚−2𝑟. 

Adding over 𝑟, we get (10). 



International Journal for Innovation Education and Research            Vol:-8 No-06, 2020 

International Educative Research Foundation and Publisher © 2020        pg. 377 

4. In the lead 

It is important to note that the analysis made by Feller (1957) and adapted by Mlodinow (2008) for the 

battle of episodes is not interested in uninterrupted leads, but in studying how long an episode is in the lead. 

In the Figures, each episode remained half the time in the lead. 
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Figure 10. Half the time in the lead  

 

Our intuition leads us to believe that in the contest between the episodes, each of them would stay about 

half the time in the lead, and frequent changes do not occur. However, as the following result shows, our 

intuition played a trick with us. The next theorem analyzes the fraction of the total time that a path remains 

above the 𝑥-axis. That is, the probability of episode A to stay in the lead over a fraction of the total votes. 

Fractions close to 1 are the least likely. 

 

Theorem 4.1. Let 𝛼2𝑘,2𝑛 be the probability that during the interval from 0 to 2𝑛, episode A remains for 

2k votes in the lead, and episode B remains for 2𝑛 − 2𝑘 votes in the lead. So  

 

𝛼2𝑘,2𝑛 = 𝑢2𝑘𝑢2𝑛−2𝑘,  𝑘 = 0,1, … , 𝑛.        (11) 

 

Proof (Feller (1957)). We prove by induction on 𝑛. First, let's deduce a recursive expression for 𝛼2𝑘,2𝑛, 

with 1 ≤ 𝑘 ≤ 𝑛 − 1, which also involves probabilities of first return to zero. If episode A remains for 2𝑘 
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votes in the lead and episode B remains for 2𝑛 − 2𝑘 votes in the lead, there is a tie at some point. Let 2𝑟 

be the time when the first return to zero occurred. As 1 ≤ 𝑘 ≤ 𝑛 − 1, we have 2𝑟 < 2𝑛.  That is, the first 

tie must take place before the voting ends. Otherwise, only one episode would remain in the lead at all 

times. Thus, as the first tie takes place in epoch 2𝑟, the path 𝑠 associated with the contest of the episodes 

belongs to one of two classes: 

 

• In the first class, episode A led the entire range from 0 to 2𝑟. 

• In the second class, episode B led the entire range from 0 to 2𝑟. 

 

In the first class, we necessarily have 𝑟 ≤ 𝑘 ≤ 𝑛 − 1, and in the section of the path s after (2𝑟, 0), episode 

A remains in the lead by exactly 2𝑘 − 2𝑟 more votes. Let's calculate how many paths of length 2𝑛 there 

are in the first class. Note that we have 22𝑟 ⋅ 𝑓2𝑟 paths of length 2𝑟, whose first return occurs at the time 

2𝑟. By symmetry, in half of them, episode A leads all the time. Also, there are 22𝑛−2𝑟 ⋅ 𝛼2𝑘−2𝑟,2𝑛−2𝑟 paths 

of length 2𝑛 − 2𝑟  in which episode A remains for 2𝑘 − 2𝑟  votes in the lead. Consequently, the total 

number of paths of length 2𝑛 in the first class is given  

 

1

2
⋅ 22𝑟 ⋅ 𝑓2𝑟 ⋅ 22𝑛−2𝑟 ⋅ 𝛼2𝑘−2𝑟,2𝑛−2𝑟 =

1

2
⋅ 22𝑛 ⋅ 𝑓2𝑟 ⋅ 𝛼2𝑘−2𝑟,2𝑛−2𝑟. 

 

On each of these paths, episode A remains for 2𝑘 votes in the lead. Therefore, episode B remains for 2𝑛 −

2𝑘 votes in the lead. 

 

In the second class, episode B led until season 2𝑟. By an analogous argument, we have 𝑘 ≤ 𝑛 − 𝑟, and the 

total number of paths of length 2𝑛 in the second class is given by 

 

1

2
⋅ 22𝑟 ⋅ 𝑓2𝑟22𝑛−2𝑟 ⋅ 𝛼2𝑘,2𝑛−2𝑟 =

1

2
⋅ 22𝑛 ⋅ 𝑓2𝑟 ⋅ 𝛼2𝑘,2𝑛−2𝑟. 

 

On each of these paths, episode A remains for 2𝑘 votes in the lead. Therefore, episode B remains for 2𝑛 −

2𝑘 votes in the lead. 

 

Note that the classes are disjoint with each other and are also disjoint with the classes corresponding to 

different values of 𝑟. Thus,  

 

𝛼2𝑘,2𝑛 =
1

2
∑ 𝑓2𝑟 ⋅ 𝛼2𝑘−2𝑟,2𝑛−2𝑟 +

1

2
∑ 𝑓2𝑟 ⋅ 𝛼2𝑘,2𝑛−2𝑟.      (12) 

 

Let us now prove (11), by induction on 𝑛. For 𝑛 = 1, we only have two possible values for 𝑘: 𝑘 = 0 or 

𝑘 = 1. According to Lemma 2.3, the odds are the same for episode A  remain in the lead throughout the 

interval from 0 to 2𝑛 and for that both episodes receive the same amount of votes until the 2𝑛 season. 

So, using (8), we get  



International Journal for Innovation Education and Research            Vol:-8 No-06, 2020 

International Educative Research Foundation and Publisher © 2020        pg. 379 

𝑃(𝑆1 ≥ 0, … , 𝑆2𝑚 ≥ 0) = 𝑃(𝑆2𝑚 = 0) = 𝑢2𝑛 = (
2𝑛 
𝑛

) ⋅ 2−2𝑛. 

Therefore, 𝛼2𝑛,2𝑛 = 𝑢2𝑛𝑢0 = 𝑢2𝑛.  Similarly, using (7) from Lemma 2.3, we obtain 𝛼0,2𝑛 = 𝑢0𝑢2𝑛 = 𝑢2𝑛.  

That is, each episode is just as likely to remain in the lead for the entire 0 to 2𝑛 interval. Thus, (11) is 

verified for 𝑛 = 1. 

 

Our induction hypothesis is 

𝛼2𝑘,2𝜈 = 𝑢2𝑘𝑢2𝜈−2𝑘,   𝜈 = 1,2, … , 𝑛 − 1,  𝑘 = 0,1, … , 𝑛 − 1. 

Note that in the first summation in (12), we have 𝑛 − 𝑘 ≤ 𝑛 − 𝑟 ≤ 𝑛 − 1. In the second summation, 𝑘 ≤ 𝑛 −

𝑟 ≤ 𝑛 − 1. Using the induction hypothesis in (12), we obtain  

 

𝛼2𝑘,2𝑛 =
1

2
∑ 𝑓2𝑟 ⋅ 𝛼2𝑘−2𝑟,2𝑛−2𝑟 +

1

2
∑ 𝑓2𝑟 ⋅ 𝛼2𝑘,2𝑛−2𝑟 

𝛼2𝑘,2𝑛 =
1

2
∑ 𝑓2𝑟 ⋅ 𝑢2𝑘−2𝑟𝑢2𝑛−2𝑘 +

1

2
∑ 𝑓2𝑟 ⋅ 𝑢2𝑘𝑢2𝑛−2𝑟−2𝑘 

𝛼2𝑘,2𝑛 =
1

2
⋅ 𝑢2𝑛−2𝑘 ∑ 𝑓2𝑟 ⋅ 𝑢2𝑘−2𝑟 +

1

2
⋅ 𝑢2𝑘 ∑ 𝑓2𝑟 ⋅ 𝑢2𝑛−2𝑟−2𝑘 . 

By (10),  

𝛼2𝑘,2𝑛 =
1

2
⋅ 𝑢2𝑛−2𝑘𝑢2𝑘 +

1

2
⋅ 𝑢2𝑘𝑢2𝑛−2𝑘 = 𝑢2𝑘𝑢2𝑛−2𝑘. 

 

We use Theorem 4.1 to determine the probability of episode A to be in the lead over a fraction of the total 

votes. 2𝑘 is the number of votes over which episode A remains in the lead. We remember that  

 

𝑢2𝑛 = (
2𝑛 
𝑛

) ⋅ 2−2𝑛. 

 

Let 2𝑛 = 20.000 and 𝑘 = 0, that is, episode A will never take the lead. Substituting in formula (11), we 

have  

 

𝛼0;20,000 =
20,000!

10,000!⋅10,000!
⋅

1

220,000 =
20,000!

(10,000!)2⋅220,000. 

For 2𝑘 = 10,000, both films remain in the lead for the same period,  

 

𝛼10,000;10,000 =
(10,000!)2

(5,000!)4 ⋅ 220,000
 

To verify2 that one probability is about 88 times greater than the other: 

20,000!

(10,000!)2⋅220,000 ÷
(10,000!)2

(5,000!)4⋅220,000 = 20,000! ⋅ (
5,000!

10,000!
)

4

≃  8,8625 ⋅ 10 = 88,625. 

The probability that one of the films will remain in the lead for the entire period of the choice of 20,000 

viewers is almost 88 times greater than that of having equal lead times for both films. 

 
2 We calculate factorials by https://www.calculatorsoup.com/calculators/discretemathematics/factorials.php. 

https://www.calculatorsoup.com/calculators/discretemathematics/factorials.php
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