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Abstract 

The Kalman-Bucy filter was applied on the preprocessing of the functional magnetic resonance image-

fMRI. Numerical simulations of hemodynamic response added Gaussian noise were performed to evaluate 

the performance of the filter. After the proceeding was applied in auditory real data. The Kohonen’s self-

organized map was employed as tools to compare the performance of the Kalman’s filter with another 

type of pre-processing. The results of the application of Kalman-Bucy filter for simulated data and real 

auditory data showed that it can be used as a tool in the temporal filtering step in fMRI data. 

 

Keywords: Kalman Filter, Temporal Filtering, fMRI, Self-organizing maps. 

 

1. Introduction 

There are several techniques used to study the mapping of neural activation in the human brain 

noninvasively. Among these techniques we can mention positron emission tomography (PET), 

magnetoencephalography (MEG), Single Photon Emission Computer Tomography (SPECT), 

electroencephalography (EEG) and the functional magnetic resonance Imaging (fMRI). 

From the variety of techniques involved in assessing brain activity through images, the most used technique 

is the acquisition of functional magnetic resonance images (fMRI) (Huettel et al., 2004). This technique is 

based on the phenomenon of nuclear resonance. The fMRI analyzes the hemodynamic variation and has 

the distinction of not submitting to voluntary harmful effects.  

In a functional magnetic resonance image experiment, the subject remains within a resonance equipment 

where he is submitted to various stimuli. The neural activity to stimuli causes an increase in blood flow 

and oxygenation in blood vessels located in the brain region responsible for the activity in question. The 
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mechanism of BOLD (Blood Oxygen Level Dependent) contrast is the answer to the application of the 

experimental protocol consisting of periodic changes between stimulus and non-stimulus.   

The temporal evolution of the BOLD effect (Hemodynamic Response Function) is a time series for each 

voxel of the functional images. The signal acquisition is done over several cycles of stimulation and rest 

so that the signal of interest is approximately a square wave with constant period. 

The BOLD effect gives rise to the change in signal intensity captured which is restricted to a particular area 

of the brain and this variation is transitory in time with respect to the stimulus. However, these effects are 

low intensity and corrupted by noise and artifacts. One of the most challenging aspects of fMRI is to find 

methods to mitigate the noise present in the signal captured, because the technique is susceptible to various 

noise sources, causing inaccuracies temporal and spatial in the data. 

Among the sources that cause these inaccuracies, we can mention the noise due to unintentional movement 

of the head, or noise derived from the heart beat or noise arising from the respiration or noise caused by 

other processes, such as differences in acquisition time of images, noise due to imperfections in the 

hardware and noise caused by interference from other stimuli unrelated to the task of interest. 

The time series in an fMRI experiment usually have a low Signal to Noise Ratio (SNR). Thus, it becomes 

necessary some type of preprocessing for filtering noise in the signal. The pre-processing techniques are 

used to reduce the influence of most noises mentioned above on the signal. If fMRI data are processed 

without the application of a technique for pre-processing, the signal to noise ratio (SNR) will be low. 

Furthermore, the variability that is not associated with an experimental stimulus is reduced with the 

application of pre-processing. Such variability can reduce or even invalidate the power to detect brain areas 

considered active or inactive in an experiment.  Among preprocessing stages, one can cite: the 

realignment; spatial filter and time filter. 

In temporal filtering, the goal is to attenuate undesired components in the time series, without damaging 

the signal of interest, that is, it is important to keep after the filtering process the shape of the original 

signal. 

The temporal filtering enhances the quality of fMRI data improving this way the signal to noise ratio. As 

opposed to the spatial filter which operates on each volume separately, the temporal filtering operates in 

the time series of the voxels separately, a series of each time. As in fMRI data, many processing techniques 

are applied directly in the time series, the temporal filtering usually occurs after all stages of the 

preprocessing. 

Several authors applied temporal filters for preprocessing of fMRI data. Kruggel et al. (1999) made 

comparisons of filtering methods for fMRI datasets, they investigated the correction of baseline and signal 

restoration. Ngan et al. (2000) applied a time-varying filter based on the theoretical work of Nowak and 

Baraniuk (1999), such a filter operates under the stationary wavelet transform framework, where they 

showed that the filter had a good estimate of the true signal. Bannister et al. (1999) applied linear and non-

linear filters for fMRI temporal analysis, and their results shown that in general the linear filter is better 

than the non-linear filter for the signal restoration. 

In this paper, the Kalman-Bucy filter (Kalman, 1960; Kalman and Bucy, 1961; Rocha and Leite, 2003; 

Rocha et al., 2007) will be applied to realize the preprocessing of the fMRI data. It is made an adaptation 

in this method for filtering periodic signals so as to preserve morphology and amplitude of the original 
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signal. To make the analysis of the data after the application of the Kalman-Bucy filter, it is used the 

Kohonen’s self-organized map (SOM) (Campelo et al., 2014; Haykin, 2001; Liao et al., 2008). The data 

will be also analyzed by the SOM without the application of the Kalman-Bucy filter for purpose of 

comparison and efficiency analysis of the procedure adopted here. 

 

2. Material and Methods 

The work of Kalman (Kalman, 1960) are referred in the literature as a significant contribution to the process 

of retrieving messages contaminated with noise, from the work of Wiener (Wiener, 1949). Essentially, the 

Kalman filter method is the Wiener solution to the problem of non-stationary processes, by means of 

transformation of an integral equation at a differential equation most appropriate for numerical calculation. 

From the description of the simplest Wiener-Kolmogorov problem, the stationary form, whose objective it 

is to obtain an optimum-filter function, time-invariant, h(t), that operates on the measured signal z(t) and 

minimizes the mean square error between real output )(ˆ tx (estimated signal) and the desired output x(t). 

The cost function of minimizing is given by 

2ˆ{ ( )} {[ ( ) ( )] }E h t E x t x t= −  

that results in the normal equations between deviations and observations, 

 

ˆ{[ ( ) ( )]} ( ) 0E x t x t z t−  =  

The basic formulation of filter operation is given by the convolution integral: 

( ) ( )ˆ( )x t h z t d  
+

−
= −                                                                  

(1) 

where h(t) is a unknown time-invariant operator (optimum filter) which it must satisfies the Wiener-Hopf 

equation: 

( ) ( )xz w zzh t d    
+

−
= −                                                                        

(2) 

where xz  e zz  are the cross correlation and stochastic autocorrelation functions. 

To specify the optimum filter of Wiener-Hopf (WH) it is necessary to solve equation (2), which presents 

the disadvantage of supposing stationarity of the process and this is not satisfied by the characteristics of 

the problem in study. It is necessary to make a generalizations of the problem of WH to non-stationarity 

processes (h(t,𝜏)) and restrict  the operation to a moving window. However, these conditions are not 

satisfied by integral of convolution. So, equation (2) will be rewritten in the form of a moving average 

according to Wiener-Kolmogorov theory which established the relation: 

0
0( , ) ( , ) ( , )         ( )

t

xz zzt
t h t d t t       =   ,                                                (3) 

and the estimated value equation is given by 
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( ) ( )ˆ( ) ,
o

t

t
x t h t z d  =  .                                                                    

(4) 

Equation (3) is a booton integral and it is usually difficult to solve, but an approach was developed using 

state variables to describe nonstationary processes (Rocha and Leite, 2003). Kalman and Bucy (1961) have 

converted the integral in a first-order differential equations system which are more suitable to solve than 

(3). 

 

2.1 Kalman-Bucy Solution 

The problem solution ((3) and (4)) is initiated with an ordinary differential equation of order N-1 that 

expresses the relation between the input and output in a system, given by 

1

1
1

( )
( ) ( )     ( 1)

nN

n n
n

d y t
a t w t a

dt

−

=

= = .                                                              

(5) 

The transformation of (5) for state variables ( )nx t  and ( )nx t  is done by substituting the derivatives of y(t) 

according to the rule 

1
1 2 3,  ,  , ,  N

Nx y x y x y x y −= = = =                                                             

(6) 

1 2 2 3 3 4 1,  ,  , ,  N Nx x x x x x x x−= = = =                                                          

(7) 

1 1 2 2( ) ( )N N Nx a x a x a x w t= − + + + + .                                                           

(8) 

The change of variables results in the state dynamic equations. The most general case, (6) and (7), are 

continuous and time-variant 

( ) ( ) ( ) ( ) ( )x t F t x t G t w t= +           (system)                                                      

(9) 

( ) ( ) ( ) ( )z t H t x t v t= + ,                (measurement)                                             

(10) 

 

where the vector ( )x t  is state variable and the matrices ( ),  ( )F t G t  and ( )H t are dependent on t; the vector 

( )w t is state generating (signal); and the vector ( )z t is the selected output from ( )H t ; ( )v t  is the added 

white noise to the process. 

In Kalman–Bucy solution it is necessary to define the specific priori stochastic properties to the processes 

( ), ( )z t w t  and ( )v t  related in the autocorrelation and the stochastic cross correlation. Such a priori 
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condition is formed by the autocorrelations of white noise series, and by null cross correlations in the 

window of definition of the governing integral equation, and they are 

{ ( )} 0;         ( , ) { ( ) ( )} ( ) ( )
T

wwE w t t E w t w W t t    = = = −                                 (11) 

{ ( )} 0;         ( , ) { ( ) ( )} ( ) ( )
T

vvE v t t E v t v V t t    = = = −                                       

(12) 

( , ) { ( ) ( )} 0        ( , ) { ( ) ( )} 0
T T

wz wvt E w t z t E w t v     = = = =                                     (13) 

( , ) { ( ) ( )} 0        ( , ) { ( ) ( )} 0
T T

xv wxt E x t v t E w t x     = = = = ,                                (14) 

 

where ( )t  is the Dirac’s delta function that multiplied for ( )W t  and ( )V t  define diagonal matrices to 

the autocorrelation as priori conditions.  Reorganizing the equations (8)-(11), one obtains the linear and 

nonlinear differential equations. Solutions in the continuous form are summarized in Table 1. 

 

Table 1 Dynamics equations of the Kalman-Bucy Filter in the continue form. 

System ( ) ( ) ( ) ( ) ( )x t F t x t G t w t= +  

Measurement ( ) ( ) ( ) ( )z t H t x t v t= +  

Initial conditions 
00 0

ˆ ˆ{ (0)} 0,  {( (0) )( (0) ) }TE x E x x x x P= − − =  

State estimate ˆ ˆ( ) [ ( ) ( ) ( )] ( ) ( ) ( )x t F t K t H t x t K t z t= − +  

Ricatti equation 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T T T
P t F t P t P t F t P t H t V t H t P t G t W t G t

−
= + − −  

Gain matrix 1
( ) ( ) ( ) ( )

T
K t P t H t V t

−
=  

 

2.2 Kalman-Bucy Filter and fMRI 

To model the hemodynamic response function with paradigm in block, it will be used the model proposed 

by Friston et al. (2000) with the parameters presented by Hu et al. (2009). Figure 1 show a simulated 

hemodynamic response function, x(t), with zero mean and variance 2
a . To the signal x(t) is included an 

additive noise v(t) with zero mean and variance 2
v  to obtain the measured signal z(t), that is, z(t) = x(t) 

+ v(t). 
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Figure 1 – (a) stimulus function for a block design. (b) Block design response 

 

So, the stochastic properties to model are established, and they are summarized below: 

2

1 2{ ( )} 0;         ( , ) { ( ) ( )} ( )
T

xx aE x t t t E w t w t    = = = −                                 (15) 

2

1 2{ ( )} 0;         ( , ) { ( ) ( )} ( )
T

vv vE v t t t E v t v t    = = = −                                   (16) 

2

1 2{ ( )} 0;         ( , ) { ( ) ( )} ( )
T

ww aE w t t t E w t w t    = = = −                                (17) 

To solve the proposed problem, it is necessary to define the state variables, as below: 

1 2 1( ) ( ) ( )           ( ) ( ) ( ) ( )x t x t y t x t x t x t w t= = = = = .                                       (18) 

By comparing (18) with (6), (7) and (8), one obtain 

1 10 ( )             ( ) ( )x w t y t x t= + =                                                     (19) 

and 

0       1        1F G H= = = .                                                          (20) 

By replacing (19) and (20) in Ricatti equation (Table 1), one obtain 

1
( ) ( ) ( ) ( )P t P t V P t W t

−
= − +                                                            (21) 

and the gain matrix is given by 

1
( ) ( ) ( ) ( )K t P t H t V t

−
= .                                                           (22) 

By rearranging the terms, one obtains a differential equation of the covariance of the error in scalar form 

2
2

2

( ) ( )
a

v

dp t p t

dt



= − +                                                             (23) 

and the gain in scalar form, given by 

2

( )
( )

v

p t
K t


= . 

By solving  (23), one obtain 

( )2( ) tanhvp t t  =  
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and 

( )( ) tanhK t t =                                                                  (24) 

where 

2

2

a

v





= . 

By replacing (24), (19) and (20) in State estimate (Table 1), one obtain the differential equation of the 

state estimate of the Kalman filter  

)()tanh()(ˆ)tanh(
)(ˆ

tzttxt
dt

txd
 +−= .                               (25) 

It will be applied to the differential equation (25) which represents the state estimative of the Kalman filter 

in the scalar form. Based on these theoretical considerations, it was developed a computational algorithm 

for the implementation of the Kalman-Bucy filter on fMRI data, in which the quality of the filter will be 

specified by parameter  . The Kalman-Bucy filter operates in the time series of voxels, z(t), separately, a 

time series at a time. The application of the Kalman-Bucy filter on time series occurs in windows defined 

by sequential cycles of rest and stimulation. Figure 2 illustrates the design of the windows for the 

application of the Kalman-Bucy filter.  Each window is formed by a period of activation alternated with 

a period of rest.  Figure 3 shows the application of the Kalman filter with windows in a certain interval (

ot T  ). The hyperbolic shape of the linear operator h(t) is evidenced after the application of the filter in 

the interval ( ot T  ). The parameter   was considered constant in the windows. 

 

 

Figure 2 - Windows for application of the filter. 

 

Figure 3 - Illustration of the filter application window ( ot T  ) and the hyperbolic form of the linear 

operator 

2.3 Self-Organizing Maps 
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fMRI data were analyzed with Kohonen´s SOM (Kohonen, 2001) using an implementation available in the 

literature (Fischer and Henning, 1999; Ngan et al., 2002; Peltier et al., 2003; Campelo et al., 2014). 

Kohonen´s SOM is an artificial neural network where neurons are disposed as a uni- or bi-dimensional grid 

layout. In a bi-dimensional layout, the geometry is free and can be rectangular, hexagonal, triangular etc. 

In a SOM, each neuron in a grid is represented by a probability distribution function of the input data. The 

SOM algorithm responsible for map formation begins initializing the grid neurons weights with random 

values, which can be obtained from the input data. In the present work, it was used a bidimensional grid of 

dimension 10 × 10. Each neuron in the grid is connected to every element of the input dataset, i.e., the 

dimension of weights m is the same as the input dataset: 

1 2[ , , , ]T n
i i i inm m m m=   

where n indicates the total amount of points available in the time series generated by the fMRI experiment. 

After each iteration t of the ANN, we selected randomly a vector from the input dataset, given by: 

1 2[ , , , ]T n
i nx x x x=    

which indicates the time series of a given voxel from the fMRI dataset. Then x is compared to all the 

weights of the grid, with frequent use of the minimum Euclidean distance as similarity criterion for 

choosing a winner neuron (Fischer and Henning, 1999; Peltier et al., 2003). However, the correlation as a 

similarity criterion reveals itself better than the conventional Euclidean distance (Liao et al., 2008), the 

choice of the winning neuron c given by: 

arg max{ ( ( ), ( ))}c im corr x t m t= , 

with 1, ,i M= , where M is the total number of neurons in the grid, ( )cm t  represents the time series of the 

winner c and corr(x(t),mi(t)) is the correlation coefficient between x(t) and mi(t). 

The updating of the weight vector ( 1)m t + in time t+1, with 1, 2,t =   is defined by: 

                                           ( 1) ( ) ( )[ ( ) ( )]i i ci im t m t h t x t m t+ = + −                                            

(26) 

which is applied to every neuron on the grid that is within the topological neighborhood-kernel from the 

winner neuron. Equation (26) has the goal of approximating the weight vector mi of neuron i towards the 

input vector, following the degree of interactions hci. This approach transforms the grid, after training, in a 

topologically organized characteristic map, in the sense that adjacent neurons tend to have similar weights. 

A function frequently used to represent the topological neighborhood-kernel hci is the Gaussian function, 

which is defined by: 

2
( ) ( )exp

2 ( )

c i
ci

r r
h t t

t




 − 
= − 

  

, 

where ( )t is the learning rate, which has to gradually decrease along time to avoid that new data gathered 

after a long training session could compromise the knowledge already sedimented in the ANN;  cr and ir    
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determine the discreet position of neurons c and i in the grid and ( )t defines the topological neighborhood 

radius, i.e., defines the full-width at half-maximum (FWHM) of the Gaussian kernel. The parameters ( )t

and ( )t gradually decrease by /t  ( is a time constant) after each iteration t, following an exponential 

decay. 

After the learning process of the SOM, the input data with similar patterns appear in groups in neighboring 

neurons on the map. However, often the amount of groups is unknown or of complex discrimination, 

making it difficult to distinguish such groups. A proposal for detection and automatic segmentation of the 

groups in the SOM map is through clustering techniques. The purpose of the clustering techniques is to 

form similar groups, ie groups that have a high degree of correspondence or similarity. 

Several methods for grouping of neurons in the SOM have been proposed, in this paper will apply the 

hierarchical clustering (HC), for more details see (Liao et al., 2008, Campelo et al., 2014). 

There are several mechanisms that can evaluate the quality of the generated map obtained after the learning 

process. In the present work it was used the quantization error: 

                                                          
21

q cE x m
N

= −                                                      

(27) 

The quantization error is defined as the mean square error corresponding to the difference between each 

characteristic vector x and the winner neuron mc, where N is the total number of patterns (Santos et al., 

2019). 

 

2.4 Synthetic data  

To compare different values of the parameter  , are generated artificial time series of voxels considered 

active, i.e. time series containing evidence of BOLD signal. Using an artificial signal, it is possible to 

compare the original signal, noisy signal and filtered signal, determining in this way, the factor of noise 

reduction  , which it will be a metric of performance in this work. 

2

2

[ ( ) ( )]

ˆ[ ( ) ( )]

k

k

z k x k

x k x k


−

=
−




,                                                       (26) 

where x(k) is the original signal without noise, z(k) is the signal with noise and the ˆ( )x k  is the filtered 

signal and k is the sample index. 



International Journal for Innovation Education and Research      Vol:-8 No-09, 2020 

International Educative Research Foundation and Publisher © 2020    pg. 425 

The time series were simulated from block design paradigm, formed of 6 blocks of activation and 6 blocks 

of rest, where the first block was composed of rest. On the time series it was added a Gaussian noise. From 

these time series were simulated the 3D data with 64×64 voxels (Figure 4) with 128 samples in time. In 

Figure 4, the area considered active is composed with 49 voxels, the gray matter was composed of 1349 

voxels and the other voxels are of the background of the image. On the time series was added noise with 

SNR of 5dB, 0dB and -5 dB. 

 

 

 

 

 

 

 

 

Figure 4- Simulated image: a rectangular area inside the gray matter represents a region considered active. 

 

2.4 Real data 

The fMRI experiment used a 1.5 T Siemens scanner (Magnetom Vision, Erlangen, Germany), with the 

following parameters for EPI (echo-planar imaging) sequences: TE = 60 ms, TR = 4.6 s, FA = 90º, 

FOV=220 mm, and slice thickness of 6.25 mm. 64 cerebral volumes with 16 slices each were acquired with 

a matrix dimension of 128x128. During the experimental procedure the subject received auditory 

stimulation in a blocked design, with 5 stimulation blocks (27.5s each) intercalated with 6 resting blocks 

(27.5 s each). During the task, the subject listened passively to a complex story with a standard narrative 

structure. After the test, the subject had to inform to the experimenter its comprehension of the story 

content. 

Acquired images were preprocessed with the software SPM8 (Statistical Parametric Mapping) in order to 

increase the signal-to-noise ratio (SNR) and to eliminate incident noise associated with the hardware, 

involuntary movements of the head, cardiac and respiratory rhythms, etc. 

 

3. RESULTS 

3.1 Synthetic data 

In several tests performed, it will be presented here only the synthetic time series that were contaminated 

with the noise whose SNR was from -5 dB and the values of 250, 200, 150, 100 and 50 were considered to 

the parameter γ. Figures 5(a) and 5(b) show the original and contaminated (SNR of -5 dB) time series, 

respectively. Figures 5(c), 5(d), 5(e), 5(f) and 5(g) show the results of the filtering applying by Kalman-

Bucy filter, respectively, with γ = 250, γ = 200, γ = 150, γ = 100 e γ = 50. One can observe that smaller the 

value of the parameter γ, more the signal tends to smoothen. However, the higher the level of smoothing 

increases the possibility of losing of the desired properties of the signal. Therefore, it is important to choose 

a suitable value for the parameter γ, such that the filtering remove undesired components of the time series 
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and keep the desired properties of the signal. That is, the quality of results from the application of the 

Kalman filter is related to the choice of parameter. 

Through factor noise reduction (26) it was selected the parameter γ that best filters the signal. For an SNR 

of -5 dB it was found a factor of noise reduction δmax = 2.1535 for γ = 20. Figure 6 shows the evolution 

of the noise reduction factor for SNR =-5dB, and Figure 7(a) shows the comparison between a time series 

with SNR = -5 dB (blue line) and that series filtered (red line) with γ = 20, which provides the best noise 

reduction factor (δmax = 2.1535). Based only in Figure 7(a), it can be assumed that there is a loss in signal 

amplitude significantly after applying the filter, but when comparing the filtered signal with the original 

signal, it is noticed that the filter has performed well (Figure 7(b)), recovering good part of original form 

of the signal. 

 

Figure 5. (a) Original signal; (b) Contaminated signal with SNR=-5dB; and filtered signal with: (c) γ=250; 

(d) γ=200; (e) γ=150; (f) γ=100; (g) γ=50. 

 

Figure 6. Noise reduction factor for a time serie contaminated with noise of SNR =-5dB. 
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Figure 7.  (a) comparison between the time serie contaminated with noise of SNR = -5 and the time serie 

filtered by the Kalman-Bucy filter, com γ = 20 e δmax = 2,1535. (b) comparison between original signal and 

the filtered signal.  

 

The self-organizing map (SOM) was applied to verify performance of the Kalman-Bucy filter on the time 

series of the simulated slice. For the first analysis was considered the time series of the simulated slice 

without applying the Kalman filter. For this data set, has been started the training stage of the SOM in a 

total of 150 iterations. Upon completion of this step, the SOM presented a neurons 10x10 grid shown in 

Figure 8(a). After the training of the SOM it was applied the hierarchical cluster to determinate the group 

of the neurons that present pattern of the activation. The neurons on the left bottom (highlighted in yellow) 

represent the activation. 

In the second analysis it was applied the Kalman-Bucy filter in the dataset of the slice simulated. Then 

began the training of the SOM keeping the set of initial weights used in the analysis without the application 

of the filter (the previous analysis). Figure 8(b) shows the neurons 10x10 grid for this analysis, although to 

in smaller number, neurons that represent activation signals are sharper than of Figure 8(a), according to 

visual analysis made at the weights of the neurons grid. 
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Figure 8. (a) Neurons 10x10 grid for data of simulated slice without the application of the Kalman-Bucy 

filter; (b) Neurons 10x10 grid for data of simulated slice with the application of the Kalman-Bucy filter.  

To generate the map of activation (Figure 9) it was calculated the correlation coefficient between all voxels 

of the areas of the brain and the average weights of the neurons belonging to group candidates. The 

correlation coefficient between these two signals is used as the threshold to find the voxels with greater 

possibilities of being actives. 

The results were also compared from the quantization error curves (27). The quantization error, among 

other things also serves as a controller and as a comparator of quality of learning of an artificial neural 

network. Figure 10 shows the quantization error curves with and without the application of the Kalman 

filter on time series of the slice simulated. It is observed that the stabilization in both cases occurs 

approximately from the 70th iteration, with the amplitude of the quantization error of the curve by applying 

the filter being slightly smaller than the curve without the filter. 

 

 

Figure 9. Activation map. The Black area inside the gray matter correspond to active region obtained by 

SOM. 

 



International Journal for Innovation Education and Research      Vol:-8 No-09, 2020 

International Educative Research Foundation and Publisher © 2020    pg. 429 

Figure 10. Comparison of the quantization error for the simulated slice with SNR =-5dB: with the 

application of the Kalman filter (red line), and without the Kalman filter (blue line). 

 

3.2 Real data 

In this section it is presented the results of the application of the Kalman filter on experimental fMRI data 

described at the Section 2.4. Once again, the self-organizing map was applied to assess the real fMRI data 

without and with the application of the Kalman filter. 

Figure 11 (a) and (b) show evolution of the quantization error to data without and with the application of 

Kalman filter with 80 = , respectively. It is observed that the amplitude of quantization error curve of 

filtered data is lightly lesser than that data without the filtering. After training the SOM and applying the 

hierarchical clustering on the eighth slice image of fMRI experimental data preprocessed with the Kalman-

Bucy filter, the 10 × 10 neuron grid is shown in Figure 12. The group of neurons highlighted in yellow 

indicates activation pattern. 

The map of activation made from the correlation coefficients between the time series of each voxel of the 

image (eighth slice) and the average of the weights highlighted in Figure 12 is shown in Figure 13. Figure 

14 is presented the map of activation for data without the application of the Kalman filter. It is observed 

that images are similar, however, the auditory areas in Figure 13 are slightly greater than that in Figure 14.  

 

Figure 11. Quantization error: (a) without filter application; (b) with filter application. 

 

The Kalman-Bucy filter left the weight of the neurons of the SOM grid sharper than the signal of the same 

weight for data without the filter application, It is possible that voxels with low BOLD signal, but that 

belong to active region have been detected. Explaining, thereby, the small differences between the images. 
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Figure 12. 10x10 neuron grid after executing the SOM algorithm, the highlighted neuron group corresponds 

to the activity patterns. 

 

Figure 13. Result of auditory stimulation in the cerebral cortex according to SOM analysis, using data 

filtered by Kalman with γ = 80. 
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Figure 14. Result of auditory stimulation in the cerebral cortex according to SOM analysis, using data 

without Kalman filtering. 

 

4. CONCLUSIONS 

In this work the Kalman-Bucy approach in the differential form was applied to time series of fMRI data. 

The experimental results showed that the Kalman filtering can mitigate noise of fMRI data by altering 

slightly some details and amplitude of events and, however, preserving the characteristic morphology of 

signal. 

In simulated and real data, Kohonen self-organizing map and hierarchical clustering were applied as 

analyze tools. It was used the quantization error of the SOM to verify the performance of the Kalman filter 

in the fMRI data preprocessing. 

It was observed that the amplitude of the SOM quantization error was minor with the Kalman filter 

application than without filter application on the data. This result was observed for every SNR values. 

Regarding the stabilization of the quantization error curve, it was noted that the curves showed similar 

behaviors. The results showed that Kaman filter can be applied as a tool in the stage of temporal filtering 

of fMRI data. 
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