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Abstract 

Autonomous vehicle path planning aims to allow safe and rapid movement in an environment without 

human interference. Recently, Reinforcement Learning methods have been used to solve this problem and 

have achieved satisfactory results. This work presents the use of Deep Reinforcement Learning for the task 

of path planning for autonomous vehicles through trajectory simulation, to define routes that offer greater 

safety (without collisions) and less distance for the displacement between two points. A method for 

creating simulation environments was developed to analyze the performance of the proposed models in 

different difficult degrees of circumstances. The decision-making strategy implemented was based on the 

use of Artificial Neural Networks of the Multilayer Perceptron type with parameters and hyperparameters 

determined from a grid search. The models were evaluated for their reward charts resulting from their 

learning process. Such evaluation occurred in two phases: isolated evaluation, in which the models were 

inserted into the environment without prior knowledge; and incremental evaluation, in which models were 

inserted in unknown environments with previous intelligence accumulated in other conditions. The results 

obtained are competitive with state-of-the-art works and highlight the adaptive characteristic of the 

models presented, which, when inserted with prior knowledge in environments, can reduce the 

convergence time by up to 89.47% when compared to related works. 
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1. Introduction 

The evolution of mobile robotics ensures the creation of technology for automating everyday tasks [1], 

from robots for domestic use, as presented in [2], often based on reactive control [3], to autonomous land 

vehicles [4], air vehicles [5] or water vehicles [6] and self-guided vehicles in Industry 4.0 [7], based on 

advanced control and automation techniques or artificial intelligence. The fundamental task performed by 

an autonomous vehicle, regardless of the environment in which it operates, is the ability to move around 

[8], whether in a controlled or an uncontrolled environment. An autonomous vehicle must be able to receive 

data from the environment, process it for decision-making, and take action through actuator devices. 

According to [9], the main challenges offered regarding the development of autonomous vehicles are: Path 

Planning and Collision Avoidance. Path Planning is the system's ability to decide a good route to be taken 

by the vehicle [4]. The quality of the chosen path can be assessed through metrics such as: travel time; path 

distance; and the number of collisions [10]. Collision Avoidance [11] refers to the necessity for the 

determined route to be free of collisions with possible obstacles. Furthermore, being essentially important 

in this context, as it represents the safety of a path, Collision Avoidance is directly related to Path Planning, 

so there is a demand for a system able to find a satisfying route in terms of safety and distance [12]. 

Figure 1 shows a high-level architecture for an autonomous vehicle, in which its main modules are 

observed. Sensing & Mapping and Acting are interface modules with the environment. Sensing & Mapping 

is the autonomous vehicle module that receives inputs from the environment, usually through sensor 

networks [13], aiming to process them to be understood, by the vehicle, of the environment in which it 

operates, in other words, to perform mapping and auto localization concerning the environment. For this 

processing, the Simultaneous Localization and Mapping (SLAM) technique [14] is shown to be robust in 

several situations using different forms of interaction with the environment. In [6], for example, SLAM is 

applied to an autonomous underwater vehicle that senses the environment from sonar signals, whilst in [15] 

SLAM is implemented using signals and video camera images. 

 

 

Figure 1: A High-level architecture of an Autonomous Vehicle System. 

 

Nevertheless, the Acting module is responsible for applying to the environment the actions decided by the 

autonomous vehicle, such as traction and rotation of the engine and emergency stop, for example, through 
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peripherals called Actuators. In this segment, many works present applications of techniques based on the 

Theory of Classical and Modern Control [16], as in [17], which presents a system of variation of buoyancy 

based on the Proportional Integral Derivative controller (PID) applied to robotics autonomous navy, and in 

[18], which presents a PID controller for electric vehicle traction motors. In various recent works, these 

controllers are equipped with artificial intelligence, as in [19], [20] and [5], in which the authors use, 

respectively, artificial neural networks with online training, genetic algorithms and Fuzzy inference to 

optimize the parameters of PID controllers, which add an adaptive feature to the controller, in which the 

parameters are adjusted in real-time, thus increasing the robustness of the control system for possible 

disturbances in the input variables. 

The Path Planning module may be compared to an autonomous vehicle data processing center. It is the 

module responsible for planning and (re) defining, in real-time, a route to be determined by the vehicle, 

from the mapping data, and transmitting this information to the Acting module. For this activity, artificial 

intelligence techniques, especially reinforcement learning, have been applied, as is the case in [21], in 

which models based on two Deep Reinforcement Learning techniques are presented called Deep 

Deterministic Policy Gradient (DDPG) and Multiple Experience Pools DDPG (MEP-DDPG) for planning 

autonomous movement of aerial unmanned vehicles (AUVs). Likewise [22] presents the application of 

DDPG for planning land vehicle routes. 

Therefore, a Path Planning method for autonomous vehicles based on Trajectory Simulation using Deep 

Reinforcement Learning is proposed. Given a mapped environment, Artificial Neural Networks will be 

used to define the quality of the actions to be taken by an autonomous vehicle. This decision-making 

process will be based on rewards obtained from simulations of trajectories carried out in the environment, 

it means that the model becomes capable of evaluating actions based on experience acquired by simulations 

in the environment. As the intelligent model and the implementation pipeline of the artificial intelligence 

system is based on reinforcement learning, the idea is that simulations are accomplished until the model 

finds the route that offers the best rewards, which represent, for the model, safety and cost conditions until 

reaching the predetermined objective, thus performing Collision Avoidance and Path Planning, 

respectively. 

Section 1 presented the Introduction to the theme, the concepts and the problem addressed by this work, as 

well as a contextualization concerning the related works observed in the literature. Section 2 presents the 

materials and methods employed for the development, in which it describes, minutely, the machine learning 

approach used as well as the components created to conduct the experiments and presents the methods of 

choosing the architecture of the smart models tested and evaluation of the results obtained. Section 3 

presents and analyzes the results obtained regarding the proposed method and compares the performance 

of the system to related research. Lastly, in Section 4, final considerations and perspectives for future work 

are presented. 

 

2. Materials and Methods 

This section describes the materials and methods used for the development and analysis of the experiments 

conducted. The subsections contain: (2.1) Description of Machine Learning Approach, which indicates an 
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overview of how machine learning was applied in this work; (2.2) Reinforcement Learning Components, 

which presents in details all the components that integrate the reinforcement learning system; (2.3) Neural 

Network Architecture, which exposes the methodology of defining the neural network architecture used; 

and, eventually, (2.3) Model Evaluation, which informs how the performance evaluation of the models 

proceeds for the task in question. 

 

2.1 Description of Machine Learning Approach 

This work presents Reinforcement Learning (RL) [23] with the task of simulating trajectory for 

autonomous vehicles, with the purpose of planning routes in previously mapped environments. The 

experiments were conducted in a computer-simulated environment. Figure 2 presents the architecture of a 

RL system where the system components interaction can be conceived. 

 
Figure 2: Reinforcement Learning System architecture. 

 

The interaction dynamics of the components of a RL system, as illustrated by Figure 2, consists of: an 

Agent (actor of the system) that from a state 𝑠𝑖 (situation proposed by the environment), chooses an Action 

𝑎𝑖 (an activity that the Agent can perform to interact with the Environment) based on a Policy (decision-

making strategy) and, according to this interaction with the environment, the Agent assumes a new State 

𝑠𝑖+1 and the policy is updated by a Reward 𝑅(𝑠𝑖 , 𝑎𝑖) received by the action taken from the previous state, 

which can be positive or negative (also called Penalty). Therefore, an epoch of reinforcement learning ends. 

Thereafter the new state 𝑠𝑖+1 becomes the current state 𝑠𝑖 and the process is repeated until learning is 

reached. 

In the context of this work, the Agent is represented by an autonomous vehicle, which has a constant 

velocity and its possible actions are associated with the direction of the route. The simulation environment 

created computationally presents arbitrary obstacles and a determined point of origin and destination. 

Whether a contact of the agent with the environment obstacles occurs, it signifies the agent achieves an 

obstacle state, thereby receiving a negative reward, as well as when happens excessive steps before the 

destination. Hence, the agent's purpose is to establish a trajectory between the points of origin and 

destination with the greatest possible reward, promptly and without collisions. The decision policy is based 

on the Deep Q-Learning approach [24], which considers the classic Q-Learning algorithm [25] in which, 

from the Q function: 
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      𝑄(𝑠, 𝑎) = 𝑅(𝑠, 𝑎)  +  𝛾 ⋅ (𝛿(𝑎, 𝑠, 𝑠′) ⋅ 𝑚𝑎𝑥𝑎′(𝑄(𝑠′, 𝑎′)))                  (1) 

 

originated from the general equation from Bellman [26], a table of qualities is created that relates the agent's 

actions to the states to be achieved through the defined actions by a Markov Decision Process [27]. 

Concerning the function, it assumes: 𝑠 the current state; 𝑎 the executed action to reach the state 𝑠; 𝑅 the 

rewards function; 𝛾 discount factor; and 𝛿 the state transition function (which defines the probability of 

reaching the state 𝑠′, once it was in 𝑠 and 𝑎 was executed, having 𝑃(𝑠′|(𝑠, 𝑎)). In other words, the Q 

equation may represent, mathematically, Figure 2. Deep Q-Learning, otherwise, approximates the quality 

values for each action from Artificial Neural Networks [28] (ANN), thus it creates an intelligent model 

capable of deciding the actions to be taken by the agent in the environment. 

 

2.2 Reinforcement Learning Components 

The components of the Reinforcement Learning System presented in this work will be fully detailed in 

the following topics, divided respectively into: Environment and States; Agents and Actions; Rewards; 

and Policy and Exploitation / Exploration. 

 

2.2.1 Environment and States 

The work was performed in a graphical environment developed in Python version 3.7.4 through the Kivy 

framework, in its version 1.11.1, which uses OpenGL version 4.5 resources as a back-end. An environment 

may be abstracted as a 600x800 dimension matrix, so 600 rows and 800 columns. Every position in this 

matrix represents a state, which may be achieved by the agent. 

A state may contain an obstacle or not. Considering the idea is to simulate a real environment, which does 

not have a specific pattern of obstacle disposition, it is settled to randomly generate obstacles following 

some rules of degrees of difficulty, as it appears in [21]. Therefore, the RL model will be prepared and 

assessed in environments with degrees of difficulty: Easy; Medium; Difficult. These difficulties were 

established in relation to the number of obstacles and their respective sizes, whilst their position was 

established utterly casually. Toward this purpose, the lower and upper limits of quantity and size of 

obstacles were empirically set, which assisted as references for random generation. Table 1 presents these 

intervals. 

 

Table 1: Intervals of values of quantity and size of obstacles for each degree of difficulty. 

Difficulty  

Level 

Number of Obstacles Size of Obstacles 

Lower Limit Upper Limit Lower Limit Upper Limit 

Easy 10 20 10 60 

Medium 20 30 20 80 

Hard 30 40 30 100 
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Thus, from these intervals, the generation of obstacles is arranged: 

1. The difficulty level of the environment is defined; 

2. A random value 𝑛 ∈ [𝑛𝑖 , 𝑛𝑠] is generated, with  𝑛𝑖 , 𝑛𝑠,  respectively, the lower and upper limit 

of the number of obstacles according to the degree of difficulty. This process will determine the 

number of obstacles in the environment; 

3. Repeat steps 4 and 5 𝑛 times; 

4. A random value 𝑠 ∈ [𝑠𝑖 , 𝑠𝑠] is generated, being 𝑠𝑖 , 𝑠𝑠, respectively, lower and upper limit of the 

number of obstacles according to the degree of difficulty. This process determines one of the 𝑛 

obstacles that will be created; 

5. An obstacle is created from a point of origin 𝑝𝑜 = (𝑥𝑜, 𝑦𝑜) to an end point 𝑝𝑓 = (𝑥𝑓 , 𝑦𝑓), in that 

𝑥𝑜, 𝑦𝑜  and 𝑥𝑓 , 𝑦𝑓  are randomly defined, with 𝑥𝑜, 𝑥𝑓 ∈ [0,800] , 𝑦𝑜 , 𝑦𝑓 ∈ [0,600] , and (𝑥𝑓 −

𝑥𝑜)2 + (𝑦𝑓 − 𝑦𝑜)2 = 𝑠2, it means, 𝑝𝑓 distances 𝑠 from 𝑝𝑜. 

 

Also, the regions of origin and destination of the agent were defined, being located in the upper and lower 

central part of the environment. As the proposed task is to obtain a trajectory, and not to find a final state, 

as is the case with most RL systems, it was decided to alternate the regions of origin and destination, in 

other words, when the agent assumes a state in the region of destination, this becomes the region of origin 

and the region of origin becomes the new region of destination, so the agent travels several routes between 

the two regions until it discovers the one that offers the greatest possible reward. 

 

2.2.2 Agents and Actions 

The agent simulates a vehicle that can move around in the environment. It has constant velocity and degrees 

of freedom regarding possible directions, choosing to go forward or perform a 45𝑜 inclination both to the 

right and to the left. These operations define the set of actions that the Agent may take, denoted by 𝐴 =

{0𝑜, 45𝑜, −45𝑜}. 

 

Figure 3 exemplifies some states that the agent may be in, the possible actions to take and the resulting 

states from each action. The colored circles simulate sensors that identify possible states to reach for each 

action. 
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Figure 3: Examples of possible actions to take by the agent and the respective resulting states for each 

action. 

 

2.2.3 Rewards 

Possible cases have been raised based on the actions occasionally taken by the agent. One case represents 

the situation of the agent regarding its aim of finding a rapid trajectory and without collisions between the 

defined points of origin and destination. According to the proposed task, the importance of each case is 

rated as: Strong Positive, when the case has strong representativeness in favor of the wanted purpose; Weak 

Positive, when the case has weak representativeness in favor of the wanted purpose; Strong Negative, when 

the case has strong representativeness contrary to the purpose; and Weak Negative, when the case has weak 

representativeness contrary to the purpose. 

The reward values were defined in the range of [−1, +1] from tests based on empirical results presented 

in [29]. For cases with a Strong Positive rating, a reward of +1, was assigned, for cases with a Weak 

Positive rating, a reward of +0.2, for cases with a Strong Negative rating, a reward of  −1, and for cases 

with a Weak Negative rating, a reward of  −0.2. Table 2 presents the raised cases and their respective 

ratings and rewards. 

 

Table 2: Table of rewards based on the cases in which the agent may be in the environment. 

Case Rating Reward 

Collision with Obstacles Strong Negative -1 

Collision with limits of the 

environments 

Strong Negative -1 

Distance to destination has 

decreased since the last iteration 

Weak Positive +0.2 

Distance to destination has not 

decreased since the last iteration 

Weak Negative -0.2 

 

It is observed from 2, the “Strong Positive” rate was not attributed to any case, because as the assignment 

is to find a trajectory between the regions of origin and destination, to offer the agent a very high reward 

for a proximity to the destination can create a tendency in the model, in addition to a misleading analysis 
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in the rewards graph, which would present very high values even before a supposed ideal path was found. 

Another classic option would be to repay the agent with high rewards when the destination region is 

reached, which is appropriate when the task of RL is to discover a state, which is not the case, therefore, 

doing so, an error in the analysis of the rewards graph would also occur: average high rewards even if Weak 

Negative cases happened, so the model would have its learning influenced by a high reward having 

neglected important small penalties. 

Hence, it is reasonable to affirm the task is dictated by negative rewards and the agent holds the main 

purpose of not to suffer penalties, which is suitable for the model, since the importance of not having 

collisions on the route is greater than the one to find the shortest path. In this case, the analysis of the 

rewards graph will happen explicitly: high negative values will appear when there are collisions, otherwise, 

the values should fluctuate around zero, tending to stabilize as the proximity to the ideal trajectory happens, 

that is, the shortest path without collisions. 

 

2.2.4 Policy and Exploitation / Exploration 

The decision-making policy used is based on artificial neural networks of the Multilayer Perceptron (MLP) 

type [30] with online training [31], that is, the weights are continuously adjusted as experience is being 

acquired by the agent. This experience is a result of the input interaction, processing and neural network 

output. At the end of each interaction, also called a step, the reward value is presented to the network that 

performs weight adjustment in order to maximize the reward values, reinforcing the weights of the neural 

connections that have the greatest influence on an output that led to a positive reward and penalizing the 

connections with the greatest contrary influence, thus realizing an approximation to the Q function, 

presented in equation (1). Figure 4 illustrates this learning process of the neural network from the 

reinforcement resulting from the actions taken. 

 

Figure 4: Process of online training of the neural network from the reinforcement resulting from the 

actions taken. 

 

ANN entries represent the situation the agent is in at a certain time. Thus, the network receives data from 

the sensors, which correspond to the possible states to reach through an action, and receives the rotation of 
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the agent concerning the environment, which can be seen in Figure 3, in which the agent appears with an 

inclination 0𝑜, 45𝑜 and 135𝑜, respectively from left to right. The network processes this data in the hidden 

layers, and returns, in the output layer, the approximation to the Q value for each action, it means, for each 

neuron in the output layer, and the neuron with the highest Q value corresponds to the suggested action for 

the exact instant. 

An important issue in Reinforcement Learning is the Exploitation / Exploration dilemma [32]. Exploitation 

is when decision-making is fulfilled from experience, that is, from the learning the model has had until 

then, while Exploration consists of decision-making, usually random, aiming to increase the model's 

experience. The use of neural networks, which weights are started randomly, means that, until a certain 

moment, decisions are made with the intention of exploration, since the network does not have, or has little, 

prior knowledge regarding the environment. When experiences are created by the model, there is a risk that 

decision-making will become tendentious, which means the model always chooses to follow paths already 

taken, even if these are not the shortest ones. Given the dilemma, it was decided to manage the dynamics 

of Exploitation / Exploration randomly with probabilities of occurrence of 0.9  and 0.1  respectively, 

which is illustrated by Figure 5 through a Probabilistic Finite Automaton (PFA) [33]. 

 

Figure 5: Probabilistic Finite Automaton of Exploitation / Exploration. 

 

Figure 5 indicates that, from the initial state 𝑞0, the next state reached is the decision-making Exploitation 

or Exploration, represented respectively by 𝑞1 and 𝑞2, with the Exploitation state being reached in 90% 

of the cases, in which the neural network decides which action to take, and the Exploration state in 10% of 

the cases, in which the action is decided randomly. After the decision-making stage is completed, that is, 

after states 𝑞1 or 𝑞2, the state reached is 𝑞3, that corresponds to the state in which the action is performed. 

Once the determined action is performed, one of the decision-making states 𝑞1 or 𝑞2 is reached again 

respecting the same probabilities as before. This cycle defines the policy used for RL. 

 

2.3 Neural Network Architecture 

The architecture of the multi-layer Perceptron network applied for the agent's decision-making process was 

established through a grid search, as described below, to optimize the search for its best parameters and 

hyperparameters. The grid search consists of training all possible combinations of parameters and 

hyperparameters previously established [34]. For this, an environment of each degree of difficulty was 

generated and each network generated was used, without prior learning, in the agent's policy that was 
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inserted in the environments. The final metric used to describe the best network architecture was the 

average, for the performance of the models in the 3 environments, from the number of steps to the 

convergence of the rewards graph. 

The pre-defined parameters and hyperparameters for the grid search were: number of hidden layers, number 

of neurons per hidden layer, batch size, learning rate, activation function and optimizer. The number of 

hidden layers was fixed at 2, since, with two hidden layers, a neural network can implement any function 

[30]. The number of hidden neurons was obtained by the Geometric Pyramid Rule (GPR) [35], given by: 

                                                                 

𝑁ℎ = ⌈𝛼 ∙ √𝑁𝑖 ∙ 𝑁𝑜 ⌉                                    (2) 

 

where 𝑁ℎ  is the total number of hidden neurons, 𝑁𝑖  the number of neurons in the input layer, which 

corresponds to the number of predictive attributes, 𝑁𝑜 the number of neurons in the output layer, which 

corresponds to the number of classes, and 𝛼 a constant arbitrary. All combinations of two layers were 

admitted, formed by the total of hidden neurons obtained by GPR when 𝛼 = 1;  1.5; and 3. The batch size 

was 16, 24 and 32. The determined learning rates were 0.0001 and 0.0005. While the tested optimizers 

[37] were the Adam algorithm; Stochastic Gradient Descent (SGD); and Limited-Memory Broyden–

Fletcher–Goldfarb–Shanno (LBFGS) [36]. Ultimately, the activation functions were ReLU: 

 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥)                                 (3) 

 

Sigmoidal: 

 𝑆𝑖𝑔(𝑥) =
1

1+𝑒−𝑥                                     (4) 

 

Hyperbolic Tangent: 

 

𝑡𝑎𝑛ℎ(𝑥) =
𝑠𝑒𝑛ℎ(𝑥)

𝑐𝑜𝑠ℎ(𝑥)
=

𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥                            (5) 

 

and Identity: 

𝐼𝑑𝑒𝑛𝑡(𝑥) = 𝑥                                    (6) 

 

2.4 Model Evaluation 

The evaluation metric used to assess the models is the Rewards Graph [38], which consists of a rewards 

curve according to the steps, where it is possible to observe, mainly, the learning evolution in each 

environment and the number of steps until convergence, that indicates the number of interactions required 

till the model finds a satisfactorily short and collision-free path. The evaluation of the models will be 

performed in two phases: Isolated Evaluation and Incremental Evaluation, which will be detailed in the 

following topics. 
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2.4.1 Isolated Evaluation 

The isolated assessment consists of analyzing the performance of the models in each environment without 

any prior knowledge. Thus, the testing routine will be displayed as follows: for each degree of difficulty, 

100 environments will be generated, according to the proposed methodology, and in each environment, an 

agent without prior knowledge will be included. Hence, the final performance metric will be the average 

reward curves of the 100 models referring to the environments of each degree of difficulty. 

 

2.4.2 Incremental Evaluation 

The incremental assessment consists of analyzing the performance of the models in environments from the 

lowest to the highest level with an accumulation of knowledge between the environments. Therefore, the 

testing routine will be performed as follows: for each degree of difficulty 100 environments will be 

generated, according to the proposed methodology, then an agent will be inserted in an environment of 

easy degree, after the convergence of the curve, the same agent will be inserted in an environment of 

medium degree until convergence, and, finally, inserted in a difficult-grade level. 

The final performance metric will be the average curve of the agent's performance in medium 

environments, holding previous knowledge of an easy environment, and the agent's performance in difficult 

environments, having preceding data of an average environment. Through these reward curves generated 

by a model with acquired information, it will be feasible to analyze, in comparison with the results of the 

isolated assessment, the adaptive nature of the models, that is, when a model with experience is inserted in 

a new and, by the time, unknown environment. 

 

3. Results and Discussions  

This section describes the results achieved from the proposed methodology for simulating the trajectory of 

autonomous vehicles through deep reinforcement learning. The subsections include the following topics: 

(3.1) Environments Generation, which presents the results from the proposed method for the creation of 

RL environments; (3.2) Neural Network Architecture, which presents the best network architecture found 

from the grid search; (3.3) Isolated Evaluation; and (3.4) Incremental Evaluation, which present the metrics 

obtained for the respective forms of evaluation of intelligent models. 

 

3.1 Environments Generation 

The environments were developed respecting the proposed methodology and divided between the degrees 

of difficulty: Easy; Medium and Difficult. Figure 6 displays an example of each degree of difficulty from 

the environments. It is observed that the parameters of quantity and size of obstacles defined for the creation 

of the environments were properly adjusted, making it clear the levels of difficulty that each environment 

must intend to the agent. The difficulty increases from left to right, the environment on the left being easy, 

the middle environment, medium and the right environment, difficult. At the upper and lower edges in the 

center of each of the environments, the regions of destination and origin of the agent are marked in red, 

which delimit the path that the agent will take in search of the trajectory that offers it better rewards. 
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Figure 6: Examples of environments created to perform the proposed RL task. 

 

3.2 Neural Network Architecture 

According to the proposed methodology, the neural network adopted for the proposed task was based on 

the result of a grid search. The network has 4 neurons in the input layer, referring to data from 3 sensors 

and rotation of the agent concerning the environment, and 3 neurons in the output layer, referring to possible 

actions to be taken. Amidst these data and with values of 𝛼 = 1;  1.5 and 3, from GPR, equation (2), the 

amounts of hidden neurons 𝑁ℎ = 2;  6 and 11 were obtained for each value of 𝛼. With these values, 16 

combinations of neurons are possible, sorted into 2 hidden layers. Table 3 presents the defined parameters 

and hyperparameters for the grid search. 

 

Table 3: Parameters and Hyperparameters defined for the grid search. 

Parameter/ Hyperparameter Amount of Values Values 

Number of Hidden Layers 1 2 

Neurons of Hidden Layers 16 Defined by equation (2) 

Batch Size 3 16, 24, 32 

Learning Rate 2 0.0001, 0.0005  

Optimizer 3 Adam, SGD, LBFGS 

Activation Functions 4 ReLU, Sigmoidal, Hyperbolic 

Tangent, Identity 

 

Therefore, the product of the quantities of values results in the number of combinations between parameters 

and hyperparameters of neural networks. As a result, 1,152 tests with neural networks were performed. It 

is noteworthy that in this phase of the experiments, the selection of the neural network was made through 

the performance of the models in 3 environments, one of each degree of difficulty. These procedures were 

performed trying to find the combination with the lowest average number of steps until the convergence of 

the reward charts for the environments where the agents were inserted. Table 4 shows five networks with 

the best grid search results. Finally, the network ranked first in the grid search was defined as the standard 
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network used in the agent's policy. 

 

Table 4: Results obtained from the grid search. 

Classification Hidden 

Layers 

Activation 

Function 

Optimizer Learning 

Rate 

Batch Size Mean of 

Steps 

1 (4,7) ReLU Adam 0.0005 16 1,998.67 

2 (2,9) Identity Adam 0.0005 16 2,005.33 

3 (3,3) Identity SGD 0.0001 24 2,042.00 

4 (4,7) ReLU Adam 0.0001 16 2,101.67 

5 (2,4) Sigmoidal Adam 0.0005 24 2,133.33  

 

3.3 Isolated Evaluation 

In the isolated assessment, for each environment, an agent without prior learning was inserted and their 

rewards graph was analyzed. Altogether, the environments were tested, being divided equally between the 

three levels of difficulty. Figure 7 shows the performance of the intelligent model proposed for the 

respective degrees of difficulty according to the average reward curve achieved throughout the conducted 

experiments. 

 

Figure 7: Graphs of average rewards obtained by the models in environments with three degrees of 

difficulty. 

 

Figure 7 shows a standard behavior in the curves making possible to observe: from the initial moment, the 

agent has a random behavior, which causes collisions with obstacles, so there are, initially, the presence of 

some negative peaks. With the increase in steps, the experience is acquired by the agent and the curves 

tend to converge to a constant reward of 0.2, as expected. This convergent behavior implies that the model 

has learned from the environment and is capable of drawing a route without penalties, that is, a short path 

and without collisions.  

Furthermore, from Figure 7, it is observed that, in fact, the difficulties of the environment directly affect 

the number of required interactions until convergence. It is noticed that the graph referring to rewards in 

environments of easy degree showed convergence around the step 1500, that is, fewer interactions than the 



International Journal for Innovation Education and Research      Vol:-8 No-12, 2020 

International Educative Research Foundation and Publisher © 2020                           pg. 449 

graphs referring to rewards in environments of medium and difficult degrees, which reached convergence, 

respectively, around steps 2000 and 2900. 

Figure 8 exemplifies a case in which an agent finds a satisfactory path, that is, after its reward chart has 

converged at 0.2. In the figure, the path from the lower to the upper region was found by the agent after 

2100 steps and represented in 6 frames. Visually, it is noted that the agent did not cause any collision as 

well as having chosen a short path for the execution of the task, which indicates that the approach and the 

evaluative analysis on the performance of the task are valid for the context of trajectory simulation of 

autonomous vehicles. 

 

Figure 8: Frames sequence representing the trajectory taken by the agent after the learning has been 

performed. 

3.4 Incremental Evaluation 

Also, in the incremental evaluation, 300 testing environments were used in total, divided equally between 

the 3 degrees of difficulty. For each easy grade environment, an agent was inserted, which after obtaining 

experience until finding convergence in its rewards graph, this agent was inserted in a medium grade 

environment until its rewards curve also reached convergence and, finally, each agent was introduced in a 

difficult environment. At the end of the procedures, the average graphics of rewards obtained by the agents 

in the environments to where they were inserted with previous learning (that is, medium and difficult 

environments) were obtained, as presented in Figure 9. 

 

Figure 9: Graphs of average rewards obtained in environments of medium and difficult difficulties by 

models with prior knowledge. 
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In comparison with the graphs displayed by Figure 7, it is observed that the graphics in Figure 9 present 

curves with convergences in fewer steps. In this case, the negative peak regions on the graphic represent 

the adaptation interactions of the model for the environment where inserted. This region proved to be very 

small for medium-grade environments. The graphic shows that the agent reaches a positive convergence 

after approximately 300 steps, still increases the level of convergence around step 1000. What reduces half 

of the necessary interactions in the environment until confirmed learning compared to the model without 

prior knowledge. The same is true for the performance of agents in difficult environments, where the 

number of steps required until positive convergence was around 1200, less than half of the result obtained 

by the isolated evaluation, which was about 2900 steps, it means, a reduction of upon 58.62% in the number 

of steps to convergence. This behavior proves the adaptive capacity the proposed model has. It means that 

actions taken despite adverse conditions are quickly adjusted. Therefore, the model is proved robust to 

disturbances in the environment. 

The validation of the importance of this work was made from a comparative analysis with the performance 

of related works. Additionally, Table 5 presents the results obtained by the works that most resemble the 

experiments conducted by this one. Hence, the results obtained by [21] which consist in the application of 

Deep Reinforcement Learning in the planning of AUVs movement with an evaluation methodology very 

close to that presented in this work: simulated environments were created for testing in different difficulty 

levels and the average reward curves are analyzed according to the steps. The results obtained in [22] are 

also presented, which also proposes the application of Deep Reinforcement Learning for route planning for 

land vehicles. The main difference between the evaluation methods of the models presented in [22] and in 

this model is the fact that the reference does not present evaluations of the models due to the degree of 

difficulty of the tested environments, however, the reward curves are analyzed according to the steps, as in 

this work, which allows performance comparisons to be made. For comparison purposes, the metric 

adopted to assess each model is the number of average steps required before the convergence of their 

respective average reward curves. 

 

Table 5: Comparison between obtained results and related works. 

Model Method Level Steps to Convergence 

 

 

 

 

[37] 

 

 

DDPG 

Easy ~2,500 

Medium ~2,800 

Hard ~2,900 

 

 

MEP-DDPG 

Easy ~2,750 

Medium ~2,900 

Hard ~3,000 
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[38] DDPG Unique ~3,600 

 

 

 

 

Proposed 

 

MLP without previous 

learning 

Easy ~1,500 

Medium ~2,000 

Hard ~2,900 

MLP without previous 

learning 

Medium ~300 

Hard ~1,900 

 

From Table 5 it is observed that the results obtained by the experiments conducted presented results that 

were competitive with the state of the art. The method using MLP without prior learning surpassed all the 

results of the related works concerning the Easy and Medium levels and had a similar performance, for the 

Hard level, to the DDPG method presented by [21]. The proposed model using prior knowledge 

demonstrated a very large evolution about the results presented by the other models. This means that the 

model has a fast adaptive capacity even when inserted in a higher-level environment. Thus, the models 

showed an average reduction in the number of steps until the convergence of 2,550 and 2,500 for the 

medium and difficult levels respectively (the model presented in [22] was considered a difficult level for 

this analysis). So, there was a reduction of 89.47% regarding the performance in the medium level and of 

64.29% about the difficult level when compared with the related works. Therefore, this approach to path 

planning through trajectory simulation using an MLP-based policy with prior knowledge has proven to be 

state of the art for the present task. 

 

4. Conclusion 

Two Deep Reinforcement Learning approaches were presented for the path planning task through trajectory 

simulation. The first approach was about an intelligent agent with a policy based on MLP neural networks 

that was inserted in environments of different degrees of difficulty without any prior knowledge. The 

second model went to the first environment, however with previous data in lower degrees of difficulty. The 

first model obtained competitive results, surpassing the performance of related jobs at the easy and medium 

levels and conferring similar performance at the difficult level. The second approach, on the other hand, 

presented a great advance for research in this segment, proving the adaptive capacity of MLP-based models. 

The results presented show an average reduction in the number of steps up to 76.88% about related works. 

It is suggested, for future work, the application of the proposed model in an embedded system to a prototype 

to perform tests in a real environment. Moreover, there must be a concern with the hardware performance, 

since the system response must be in real-time, thereby suggesting to implement in hardware to optimize 

the system performance time. 
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