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Abstract 

Ethnopharmacological relevance: Tucumã (Astrocaryum vulgare)is a fruit native to the Amazon region. 

Extracts from the peel and pulp are thought of as promising treatments for bacterial infections. The 

primary constituents of Tucumã oil and butter possess unsaturated carbon chains that are susceptible to 

oxidation by light or heat. The oils have high volatility and low aqueous solubility that limits their use 

without a vehicle. Nanotechnology refers to techniques to solve these problems. Nanostructured lipid 

carriers (NLC), for example, protect fixed oils degradation by heat or light, as well as from oxidation and 

evaporation, ensuring greater stability and function, thereby prolonging the useful life of the final product. 

Study objectives: The objective of this study was to evaluate the hemolytic, cytotoxic, antimicrobial and 

antibiofilm properties of an NLC containing Tucumã butter and oil soasto improve the solubility and 

photosensitivity of the compounds, generating better pharmacological efficacy. Materials and methods: 
The NLC was assessed for stability for 60 days. The cytotoxicity of nanoparticles in peripheral blood 

mononucleated cells was determined in culture using assays for cell viability, DNA damage, oxidative 

metabolism and damage to human erythrocytes. Antimicrobial activity was determined using the broth 

microdilution technique and antibiofilm activity according to standardized protocols. Results: The Tucumã 

NLC remained stable throughout the evaluated period, with pH between 5.22–5.35, monodisperse 

distribution (PDI<0.3) and average particle size of 170.7 ± 3nm. Cytotoxicity studies revealed that the NLC 

is safe and modulates inflammatory processes, demonstrated by increased cell viability and nitric oxide 

levels. There was low hemolytic activity of the NLC against human erythrocytes atmost concentrations 
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tested. Conclusion: Taken together, the data suggest that NLC containing Tucumã oil and butter showed 

antimicrobial and antibiofilm activity against organisms that cause morbidity and mortality in humans. 

They may be alternative solutions to public health problems related to bacterial infections. 

 

Keywords: Microorganisms; Infections; Nanoparticles; Tucumã. 

 

1. Introduction  

Bacterial infections are one of the main causes of chronic diseases and mortality, causing economic losses 

for patients and public health systems. Each year in the United States, at least 2.8 million people are infected 

with antibiotic-resistant bacteria, with at least 35,000 deaths (CDC, 2019). Based on the incidence of 

antibiotic-resistant infections in 2014, each infection would cost $ 1,383 to be properly treated, resulting in 

national health care costs for the adult population of approximately 2.8 billion per year (CDC, 2019). 

Antibiotics have been the preferred treatment method because antimicrobial agents kill microorganisms or 

stop their growth. Nevertheless, several studies have provided direct evidence that the widespread use of 

antibiotics leads to the emergence of multidrug-resistant bacterial strains (KNETSCH and KOOLE, 2011; 

PORSE et al., 2020), now considered a significant health problem worldwide (TARSILLO and PRIEFER, 

2020). 

Antibacterial agents based on herbal products have aroused growing interest because of their technological, 

economic, nutritional, and bactericidal activities(SUTILLI et al., 2018; JOSHI, 2018).These herbs include 

Tucumã (Astrocaryum vulgare) (HOVORKOVÁ et al., 2018),a fruit native to the Amazon region that is 

widely used as an anti-inflammatory and antioxidant (BONY et al., 2012).Recent studies have revealed its 

potential use as a hypoglycemic and antioxidant in a model of diabetes induced by alloxan (BALDISSERA 

et al., 2017). In the particular interest of the present study, Hovorková et al. (2018) studied the antibacterial 

activity of Tucumã against gram-positive and commensal pathogenic bacteria in the intestine, revealing 

that Tucumã is a promising herbal product for use as an antibacterial agent. Jobim et al. (2014) tested 

extracts of pulp and bark from Tucumã (Astrocaryum aculeatum) against 37 microorganisms and found 

significant antibacterial activity against three important gram-positive bacteria and antifungal activity 

against C. albicans. The antimicrobial mechanism of action of Tucumã appeared to involve redox 

imbalance that interrupts the growth of microorganisms and/or causes increased mortality. This effect has 

some specificity for each microorganism involving the role of different chemical compounds found in 

Tucumã extracts. 

Even with good biological activity, oils in generation can undergo oxidation, with consequent loss of 

biological function. In this context, nanotechnology may provide an important alternative, because 

substances on the nanometer scale have different properties from those on the macrometric scale (FREIRE 

et al., 2018). In addition, nanoparticles (NPs) increase the retention of a drug in the particle, increasing the 

release time and controlling the release of the molecule. Nanostructured lipid carriers (NLC) protect fixed 

oils against degradation by heat and light, oxidation and evaporation, ensuring greater stability and function, 

consequently prolonging the useful life of the final product (PIRAN et al., 2017). We believe that 

nanotechnology can improve the antimicrobial activity of Tucumã oil and prevent its activity from being 
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reduced. 

Most antimicrobial resistance mechanisms are irrelevant to NPs, because NPs are in direct contact with the 

bacterial cell wall, without the need to penetrate the cell. This shows that NPs are less likely to promote 

resistance in bacteria than are antibiotics. In addition, in view of the serious health concern associated with 

antimicrobial resistance, new approaches to inhibit microbial growth and the biofilms formed by them have 

been studied. The usefulness of nanomaterials for the efficient administration of antibacterials and the 

development of anti-biofilm agents is a promising strategy to overcome the resistance of microorganisms 

to antimicrobials (LOPES et al., 2019; WANG et al., 2017). 

 

2. Materials and methods 

2.1 Acquisition of Tucumã oil and butter 

Tucumã oil and butter were purchased commercially from Amazon oil Industry - (Pará, Brazil). 

 

2.1.1 Characterization of Tucumã oil and butter 

The oil was previously characterized by Baldissera et al. (2017) using the gas chromatography method. 

The major components were oleic (368.7 mg/g) and palmitic acid (198.23 mg/g). 

Tucumã butter was characterized using the method of Hartman and Lago (1973). A total of 20 mg of lipids 

from 1 mL of 0.4 M KOH methanolic solution were added in a test tube and vortexed for 1 min. The 

samples were kept in a water bath for 10 minutes at the boiling point and subsequently cooled to room 

temperature. Then, 3 mL of1 M H2SO4 methanolic solution were added and vortexed and kept in a water 

bath for 10 min. After cooling, 2 ml of hexane was added and centrifuged at 1050g for 5 min. Finally, the 

hexane with the fatty acid methyl esters (FAME) was subjected to chromatographic analysis. For FAME 

determination, a gas chromatograph model 3400CX was equipped with a flame ionization detector (Varian, 

Palo Alto, CA). A microliter of samples was injected into an injector without division, operated in split 

mode (20:1) at 250 °C. Hydrogen was used as a carrier gas at a constant pressure of 30 psi. The FAMEs 

were separated using an HP-88 chromatography column (100 m × 0.25 mm × 0.20 μm thick film, Agilent, 

J & W, Folson, CA, USA). The initial oven temperature was programmed at 50 °C for 1 min and increased 

to 185 °C, at a rate of 15 °C/min. Then, increasing to 195 °C, at a rate of 0.5 °C/min, and finally up to 

230 °C, increasing by 15 °C/min, and maintained for 5 min at isothermal. The detector temperature was 

kept constant at 250 °C. FAME compounds were identified by comparing the experimental retention time 

with those of the authentic standard (FAME Mix-37, Sigma Aldrich, St. Louis, MO). The results were 

presented as a percentage of each FA identified in the lipid fraction, considering the equivalent factor of 

the chain size from FAME to FID and the conversion factor of the ester in the respective acid, according to 

Visentainer and Franco (2006). 

 

2.2 Preparation and characterization of the Nanostructured Lipid Carrier 

The NLC containing the Tucumã oil and butter was prepared using a method developed by pre-formulation 

tests using Ultra Turrax® equipment and characterized according to pH, polydispersion index (PDI), size 

and zeta potential. The diameter and PDI determinations of the nanoparticles were carried out through 
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dynamic light scattering; the zeta potential was measured using electrophoresis (Zetasizer® nano-Zs model 

ZEN 3600, Malvern), the determination of the pH of the nanoparticles was performed in pH-meter. The 

formulation was prepared at n = 3 and maintained under various temperature and storage conditions 

(refrigerator at 28ºC, oven at 40ºC, room temperature with exposure to light and room temperature in a 

dark place) over60 days. 

 

2.3 Biocompatibility Parameters 

2.3.1 Hemolytic activity 

The hemolytic assay was determined according to Souza Filho et al. (2019) with modifications. Blood was 

added with 1x PBS solution (1:1 v/v) and centrifuged for 15 minutes at 168g. The supernatants were 

discarded, and this procedure was repeated three times. Subsequently, in microtubes containing 1mL of 1x 

PBS at different pHs (pH 7.2 simulating cases of sepsis due to metabolic acidosis; pH 7.4 simulating the 

normal pH of the organism and pH 7.5 simulating alkalemia), 50μL of red blood cells were added washed 

and 10μL were taken. As controls, we used the following: negative control (NC) (erythrocytes + 0.9% 

sodium chloride); positive control (PC) (erythrocytes + distilled water); surfactants (TS) (erythrocytes + 

mixture of surfactants, Tween® 60 + Spam 60®, in the same concentrations as treatments with NLC). The 

tubes were incubated at 37 °C at room temperature, under rotation, for 1 hour. After the microtubes were 

centrifuged for 15 minutes at 168g, 200µL of the supernatants were transferred to 96-well plates and were 

read in the ELISA reader at 540nm. The results were expressed as a percentage of the positive control. 

 

2.3.2 Coagulation test 

This assay was performed according to Souza Filho et al. (2019). Whole blood was collected in citrate 

tubes and centrifuged for 10 minutes at 1050g. Then, 225 µL of plasma were separated into wells along 

with 25 µL of NLC treatments and incubated at 37 °C for 30 minutes. Two independent experiments were 

carried out in duplicate with different donors. Subsequently, a properly calibrated Quick Timer II (Drake) 

coagulometer was read, according to the manufacturer's recommendations for tests for TP hemostasis 

(Labtest - lot: 4008) and TTPa hemostasis (Labtest - lot: 4006). As a reference we used the interval between 

25 and 35 seconds for the normal value of TTPa, while the baseline values of TP used the interval between 

11 and 15 seconds, according to authors (SALVADOR-MORALES et al., 2009; ADAMSON et al., 1993). 

 

2.4 Cytotoxicity evaluation 

2.4.1 Cell culture and treatments 

Peripheral blood mononuclear cells (PBMCs) derived from whole blood samples discarded from healthy 

adults were obtained from the Clinical Analysis Laboratory of the Franciscan University (LEAC-UFN) 

(experimental protocol approved by the UFN Ethics Committee on Human Beings) (CAAE número: 

31211214.4.0000.5306) with absence of identification data.  

Blood samples were processed for PBMC separation using procedure based on the difference in density 

gradient using the Ficoll Histopaque-1077VR reagent (Sigma-Aldrich). After the blood was disposed of in 

the reagent (1:1 v/v), the samples were centrifuged for 30 minutes at room temperature. PBMCs were 

distributed in 96-well plates containing RPMI 1640 cell medium (Sigma-Aldrich) containing 10% fetal 
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bovine serum and supplemented with 1% antibiotics. The cells were grown at 2x105cells ml-1per well 

(BOTTON et al. 2015). Then, the cells were exposed to each compound tested for the efficacy protocol 

described in this research, in the same concentrations for 24 h, to evaluate its effect on cell modulation 

through different colorimetric and fluorometric assays. All treatments and trials were carried out in at least 

triplicate to ensure coherent statistical analysis; hydrogen peroxide (H2O2) at 200 µM was used as a positive 

control for all tests. 

 

2.4.2 Cell viability measurements 

After the treatment period, cell viability was assessed. The first assay performed was MTT (3-(4,5-

dimethylthiazol-2yl)-2,5-diphenyl tetrazoline bromide) using the protocol according to Mossman (1983), 

when completing the incubation time of the cells with the treatment were 20μL of the MTT solution (0.01M 

and pH 7.4) was added at a concentration of 5mg/mL diluted in PBS (1X phosphate buffer). The plates that 

received the MTT solution were protected from light and kept at 37 °C, in an oven with 5% CO2, which 

was homogenized and incubated for 2 h. After incubation, the supernatants were removed from the wells 

and the cells resuspended in 150μL of dimethyl sulfoxide (DMSO). Absorbance was determined in an 

ELISA reader at 560nm.  

The determination of cell viability was complemented by the quantification of free DNA in the medium 

using the DNA-PicoGreen® reagent (Invitrogen, Life Technologies). DNA-PicoGreen® reagent was 

incubated for 5 min together with the sample dark 96-well plates, and fluorescence reading was performed 

on the spectrofluorometer at 480nm (excitation) and 520nm (emission) (SAGRILLO et al., 2015). 

 

2.4.3 Quantification of total levels of reactive oxygen species 

The total ROS levels were measured by fluorescence according to the technique described by Esposti 

(2002) using wavelengths of 488 nm (excitation) and 525 nm (emission). The results were expressed as% 

of the negative control. 

 

2.4.4 Determination of nitric oxide (NO) levels 

NO levels were measured according to the technique described by Choi et al. (2012). For this, 50μL of cell 

culture supernatant and 50μL of Griess reagent were added to96-well plates. The plates were maintained at 

room temperature for 15 min and the reading was performed spectrophotometrically at 540nm. The results 

were expressed in percentages in relation to the negative control. 

 

2.5 Evaluation of the antimicrobial activity of the Nanostructured Lipid Carrier 

The sensitivity tests for determining the minimum inhibitory concentration (MIC) of the different 

microorganisms tested were determined using the broth microdilution method according to the protocol 

M07-A8 approved by the Clinical and Laboratory Standards Institute (CLSI). 

The bacterial strains of Klebsiella pneumoniae, Escherichia coli, Proteus mirabilis, Staphylococcus aureus, 

Staphylococcus epidermidis, Streptococcus agalactiae, Streptococcus mutans, Enterococcus faecalis and 

methicillin-resistant Staphylococcus aureus (MRSA) used in this study are clinical isolates from inmates 

at the Santa Maria University Hospital who were previously identified by gender-specific phenotypic 
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methods. These microorganisms are part of the collection of strains of the Microbiology Laboratory of the 

Franciscan University, Santa Maria - RS. The strains of Aeromonas hydrophila and Pseudomonas 

aeruginosa were provided by the Microbiology and Pathology Laboratory of the Federal University of 

Santa Maria - UFSM, Santa Maria - RS, Brazil. 

MIC was determined to assess the NLC's antimicrobial activity against the microorganisms tested. In this 

sense, the bacterial samples were cultured on Mueller–Hinton agar (MH), and the colonies were inoculated 

in 5 mL of sterile saline, the absorbance was controlled until a transmittance of 0.5 was obtained on the 

MacFarland scale (1 x 106to 5 x 106cellsper mL), then a 1:10 dilution in MH broth was performed resulting 

in a concentration of 104cells per mL. 

After inoculum preparation, MIC was performed in 96-well polystyrene plates. The tests were performed 

in triplicate where, first, 100μL of MH broth were distributed in each well. A 100μL aliquot of the NLC 

solution containing Tucumã butter and oil was added to the first well and, after homogenization, transferred 

to the second, and so on until the twelfth well. Once the serial dilutions were made, the following dilutions 

were obtained: 25000, 12500, 6250, 3125, 1562.5, 781.25, 390.6, 195.3, 97.65, 48.8,24.41, and 

12.2μg/mL.Soon after, the microorganisms were inoculated, where 10 µL of the standardized inoculum 

was then added to each well of the microdilution plate. After pipetting, the plates were incubated at 37 ºC 

for 48 h. The plates were read by adding 20μL of a 1% solution of the 2,3,5-triphenyl tetrazolium chloride 

dye (Vetec®), in order to assist in the MIC development. As a negative control (-) three wells were used 

with the MH broth and, as a positive control (+), three wells were used with the MH broth and the bacterial 

inoculum and as a surfactant control (TS) three wells with a mixture of surfactants, Tween® 60 + Spam 

60®, in the same concentrations as NLC treatments. 

 

2.6 Interference of the Nanostructured Lipid Carrier in the formation of biofilm 

To assess the interference capacity of the NLC on the biofilm in formation of K. pneumoniae, E.coli, P. 

aeruginosa, S.aureus, S. epidermidis, S.agalactiae, methicillin-resistant S.aureus (MRSA) and 

A.hydrophila, one amount of each bacterial isolate was cultured in sterile petri dishes with MH Agar and 

incubated at 37ºC for 24 h. Then the colonies were suspended in sterile 0.85% saline to prepare the 

inoculum. Cell density was adjusted in a spectrophotometer in order to obtain a transmittance equivalent 

to the 0.5 tube on the McFarland scale(1 x 106 a 5 x 106  cells/mL) at a wavelength of 630nm. 

In 96-well plates of sterile polystyrene, 90µL of brain–heart infusion (BHI) broth supplemented with 1% 

glucose was added and then 20µL of the inoculum of each microorganism in each well and 90µL of the 

NLC solution were dispensed to test the antibiofilm activity of the nanoparticles. For the negative control, 

only broth was added, and for the positive control, the culture medium plus the solution containing the 

microorganisms was added. For the surfactant control (TS), the medium and the mixture of surfactants, 

Tween® 60 + Spam, was added. 60®, in the same concentrations as NLC treatments. After pipetting, the 

plates were incubated at 37ºC for 48 h. After this period, the samples were washed with 200μL of distilled 

water, three times. Then, the biofilm was fixed with 150μL of methane for 20min, after the plates were 

emptied and the wells were stained with 150μL of gentian violet for 15min and again washed with 200μL 

of distilled water. Subsequently, 150μL of 95% ethanol was added to dilute the crystals. Finally, the OD 

(optical density) was determined in a microplate reader, measured at 570nm (STEPANOVI et al. 2007). 



International Journal for Innovation Education and Research        ISSN 2411-2933   01 May 2021 

International Journal for Innovation Education and Research© 2021                          pg. 484 

2.7 Statistical analysis 

The results of hemolysis and cytotoxicity were presented as a percentage of the untreated control group 

(negative control). The analyses were performed using one-way bilateral analysis of variance (ANOVA) 

followed by Dunnett's post hoc test. Values with p <0.05 were considered statistically significant. The data 

were expressed as mean ± standard deviation. The graphs were prepared using GraphPadPrism version 

5.01 (GraphPad Software, La Jolla, CA, USA). 

The OD readings obtained in the biofilm formation assay were recorded as mean ± standard deviation (SD) 

and bilateral one-way ANOVA followed by Dunnett's post hoc test. Values with p <0.05 were considered 

statistically significant. The graphs were prepared using GraphPadPrism version 5.01 (GraphPad Software, 

La Jolla, CA, USA). 

 

3. Results  

3.1 Characterization of Tucumã butter 

The determination of the concentration of fatty acids is shown in Table 1. The analysis of Tucumã butter 

by gas chromatography identified 12 fatty acids, the majority of which was lauric acid (41.95 mg/g), 

myristic acid (28.08 mg/g) and oleic acid (10.07 mg/g). 

 

Table 1. Determination of fatty acid composition in tucumã butter (Astrocaryum vulgare) by gas 

chromatography. 

Fattyacid mg of fatty acid/g of tucumã butter 

Ácido capróico (C6:0) 0,07 

Ácido caprílico (C8:0) 1,77 

Ácido cáprico (C10:0) 1,89 

Ácido undecanóico (C11:0) 0,07 

Ácido láurico (C12:0) 41,94 

Ácido isomerístico (C13:0) 0,10 

Ácido mirístico (C14:0) 28,3 

Ácido palmítico (C16:0) 9,03 

Ácido esteárico (C18:0) 2,55 

Ácido oléico (C18:1cis) 10,07 

Ácido linoléico (C18:2cis) 2,64 

Ácido ℽ-linolênico (C18:3n6) 0,03 

Construção do autor. 

 

3.2 Preparation and characterization of the Nanostructured Lipid Carrier 

The prepared formulation had a monodispersed distribution of particles showing PDI value of 0.256 ± 2, 

average size of 170.7 ± 3nm, zeta potential of -18.2 ± 2 and pH of 5.22–5.35. When evaluating the NLC 

formulations under various conditions of temperature and storage, there were no significant changes in the 

stability of the formulations over 60 days in any of the conditions of storage and temperature that they were 
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exposed to. The formulations stored in the refrigerator at -4ºC, showed a PDI value of 0.252 ± 2, average 

size of 168.9 ± 3nm, zeta potential of -18.8 ± 2 and pH of 5.32–5.55. The formulations stored in an oven 

at 40ºC showed a PDI value of 0.255 ± 2, an average size of 165.9 ± 3nm, zeta potential of -18.6 ± 2 and 

pH of 5.42–5.53. When stored at room temperature in a dark environment, the formulations showed a PDI 

value of 0.257 ± 2, average size of 171.3 ± 3nm, zeta potential of -18.4 ± 2 and pH of 5.37–5.43.In a clear 

environment, PDI value was0.254 ± 2, average size was171.8 ± 3nm, zeta potential was-18.0 ± 2 and pH 

was5.39–5.45.The formulations maintained in a clear environment and at room temperature underwent a 

color change. 

 

3.3 Biocompatibility Parameters 

3.3.1 Hemolytic activity 

Hemolytic activity was significantly higher in the treatment with 12500 µg/mL NLC with pH 7.2 (acidosis) 

compared to the NC group, while it was significantly higher in the treatment with 25000 µg/mL NLC with 

pH 7.4 (physiological) compared to the NC group. There was no significant difference between groups 

treated with NLC in relation to hemolytic activity at pH 7.5 (alkalosis) (Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Results of hemolysis at different concentrations of the Nanostructured Lipid Carrier (NLC) at 

different pHs. (A) Results of hemolysis at pH 7.2 simulating cases of metabolic acidosis. (B) Hemolysis 

results at pH 7.4 simulating cases of physiological pH. (C) Hemolysis results at pH 7.5 simulating cases 

of metabolic alkalosis. Note: Results expressed as a percentage of positive control (100%). Values with p 

<0.05 were considered statistically significant. 

 

3.3.2 Coagulation test 

The results of the coagulation tests are related to the type and concentration of treatments, as can be seen 

in Figure 2A (TP) and 2B (TTPa). Where for the TP test there were no results outside the biological range. 
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In the TTPa test at treatment concentrations of 781.25 µg/mL and 12.2 µg/mL. The results were below the 

biological range. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Results of coagulation tests at different concentrations of the Nanostructured Lipid Carrier 

(NLC). (A) prothrombin time (TP) results. (B) results from partially activated thromboplastin time 

(TTPa). The dotted limits correspond to the expected physiological times for healthy donors (between 12 

and 15 seconds for PT and 25 and 35 seconds for TTPa). Values expressed as mean ± standard deviation 

(SD). 

 

3.4 Cytotoxicity evaluation 

3.4.1 Cell viability measurements 

Cell viability was significantly higher in the treatment with 25000 µg/mL NLC than in the NC group 

(Figure 3A). Figure 3B shows the results for detecting double-stranded DNA damage in the cell culture 

supernatant, where no DNA damage was observed in any of the tested concentrations. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. (A) MTT assay (3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazoline bromide) after 24h 

incubation. (B) Quantification quantity of free dsDNA after 24h of treatment. The data are presented as% 

of the untreated control group (CN). Values with p <0.05 were considered statistically significant. 
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3.4.2 Quantification of total levels of reactive oxygen species 

Treatments with 6250 μg/mL and 3125 μg/mL NLC showed a significant increase in DCF production 

compared to the NC group (Figure 4). 

 

 

 

 

 

 

 

 

 

 

Figure 4. 2 ', 7'-dichlorofluorescein diacetate (DCF) assay with 24h incubation. The data are presented 

as% of the untreated control group (CN). Values with p <0.05 were considered statistically significant. 

 

3.4.3 Determination of nitric oxide levels 

ON levels were significantly higher in the treatment with 25000 µg/mL NLC than in the NC group (Figure 

5). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Nitric oxide (NO) assay with 24h incubation. The data are presented as% of the untreated 

control group (CN). Values with p <0.05 were considered statistically significant. 

 

3.5 In vitro evaluation of the antimicrobial activity of the Nanostructured Lipid Carrier 

The NLC containing Tucumã oil and butter showed antimicrobial activity in vitro against ten 

microorganisms of broad clinical importance to humans. The results also indicate that there was a greater 

antibacterial efficiency for gram-negative bacteria than for gram-positive bacteria (Table 2). 
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Table 2. Minimum Inhibitory Concentration (MIC) of the Nanostructured Lipid Carrier (CLN) containing 

Tucumã oil and butter Astrocaryum vulgare. 

MICROORGANISMS MIC(µg/mL) 

Staphylococcus aureus 12500 

Staphylococcus aureus 

resistente a Meticilina (MRSA) 

12500 

Staphylococcusepidermidis 3125 

Streptococcus mutans --- 

Streptococcus agalactiae 6250 

Enterococcusfaecalis 6250 

Klebsiellapneumoniae 12500 

Escherichia coli 12500 

Pseudomonasaeruginosa 25000 

Aeromonashydrophila 25000 

Construção do autor. 

 

3.6 Interference of the Nanostructured Lipid Carrier in the formation of biofilm 

The biofilm formation for A.hydrophila, E.coli, K.pneumoniae, S.agalactiae and were significantly lower 

at concentrations of 25,000, 12500 and 6250 µg/mL NLC compared to that of PC. By contrast, biofilm 

formation for S. epidermidis and S.aureus was significantly lower at concentrations of 25000 and 

12500µg/mL NLC compared to PC (Figure 6). 
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Figure 6. Effect of different concentrations of the Nanostructured Lipid Carrier (NLC) on the biofilm inhibition of 

different microorganisms. Significant difference between the tested concentration and the positive control (CP). Values 

with p <0.05 were considered statistically significant. 

 

4. Discussion 

We observed for the first time that a nanoformulation of Tucumã oil in the form of NLC showed potent 

antimicrobial and anti-biofilm activities against various gram-positive and gram-negative bacteria that are 

human and animal pathogens. Our findings reveal that this formulation has morphological characteristics 

and an adequate safety profile, which makes this formulation an alternative to combat these pathogens. 

A complete characterization of NLC is important, considering the influence of such parameters in terms of 

biological effects, because the physical-chemical analysis provides important information about the 

stability of these types of nanoformulation over time (GIORDANI et al., 2014). Particle size is an important 

attribute of lipid nanocarriers, affecting stability, encapsulation efficiency, drug release profile, 

biodistribution, mucus adhesion, and cell uptake. A rapid increase in particle size, for example, indicates 

low stability of the colloidal system (BAHARI and HAMISHEHK, 2016). For a particle to be considered 
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nanometric, it is necessary that at least one of its dimensions is less than 1000 nm and that this changes its 

nature properties. Thus, the results found for the sizes of the produced nanoparticles agree with the criteria 

established in the literature, suggesting adequate stability and better therapeutic efficacy. The results of the 

characterization of the nanoparticles suggestadequate homogeneity: all formulations must be 

monodispersed (PDI <0.3) and diameter less than 300 nm. The numerical value of the PDI varies from 0.0 

(for a perfectly uniform sample in relation to the particle size) to 1.0 (for a highly polydispersed sample 

with various particle size populations). Values of 0.2 and below are generally considered acceptable in 

practice for nanoparticles based on material polymers. In drug delivery applications using lipid-based 

carriers, such as liposomes and nanoliposomes formulations, a PDI of 0.3 and below is considered 

acceptable and indicates a homogeneous population of phospholipid vesicles (CHEN et al. 2011). In this 

study, the polydispersity index was low (<0.3) for all dispersions obtained, indicating the formation of 

monodispersed systems.  

The stability studies of the Nanostructured Lipid Carrier (NLC) showed that it remained stable for the 

period of 60 days in all established temperature and storage conditions. There were no visible trends in 

sedimentation, phase separation or aggregation over time. The average particle size, PDI, zeta potential and 

pH are considered good indicators of stability of suspended nanoparticles (BERNARDI et al., 

2011).Considering that the zeta potential reflects the electrostatic repulsion between the particles, and that 

the standard value of the zeta potential is equal to or greater than +/- 30mV, it is associated with stable 

solutions, it can be said that the prepared formulation was stable. In addition, high values of polydispersity 

index indicate heterogeneity in the diameter of the suspended particles; variations in polydispersity values 

as a function of time indicate the formation of particle populations with diameters that did not initially 

exist, which may be due to particle aggregation or breaking/degradation (MACHADO et al., 2019). The 

characterization and stability results obtained demonstrate that the NLC was successfully developed, 

remaining stable for a substantial period of time in all temperature and storage conditions to which it was 

exposed. In order for nanoformulations to be used efficiently in technological and biomedical applications, 

they must be able to remain stable for a long period of time, without losing their properties or structural 

changes. 

The hemolysis assay is useful to determine cytotoxic activity and may be related to direct damage to the 

erythrocyte cell membrane (ALENCAR et al., 2015). For this reason, we performed this test in three 

conditions (physiological, acidosis, and alkalosis) to see if NLC were capable of causing damage to 

erythrocytes. We found that the highest concentrations of NLC (12500 µg/mL in the condition of acidosis; 

25000 µg/mL in physiological conditions) caused hemolysis in the erythrocytes, suggesting a possible 

cytotoxic effect when applied in high concentrations. To the best of our knowledge, there are no reports on 

the hemolytic effects of NLC; however, that effect can be explained by one of its major compounds, i.e., 

oleic acid. Hoque et al. (2013) found that high concentrations of oleic acid caused hemolysis in human and 

goat erythrocytes. According to what was observed in the present study, where only the two highest 

concentrations of NLC have hemolytic effect, we believe that the high amount of oleic acid present in 

Tucumã oil and butter may be responsible for the hemolytic action of NLC. Ashokraja et al. (2017) 

suggested that the observed hemolysis properties of synthesized NPs can be essentially attributed to their 

size, surface chemistry, and physicochemical properties. Nevertheless, according to these authors, the 
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hemolytic process involves the denaturation of cells through the physical-chemical interaction between 

NPs and the cell surface. Red blood cells do not have cellular organelles and the structure of red blood cells 

is maintained by few membrane proteins, phospholipids and carbohydrates in their cell membrane. In such 

physiological conditions, red blood cell senescence occurs due to physical-chemical changes in its 

membrane. More molecules of the NLC are being released at pH 7.2 and 7.4 than the NLC at pH 7.5, as 

blood pH variation can also lead to hypertonic condition causing hemolysis. Likewise, the main cause of 

the higher hemolysis properties of the NLC may be due to the interactions of reactive species with the cell 

surface or due to changes in pH (ASHOKRAJA et al., 2017).  

Nevertheless, nanoparticles can have longer systemic circulation times. This prolonged time of circulation 

in the blood stream increases the duration of contact with these blood components, including the 

coagulation system, potentially amplifying the activation of the coagulation cascade. The results of the 

coagulation tests showed normal TP activities, in all concentrations tested with TP values within the 

biological range, and abnormal TPPa values, below the biological range, in the two lowest concentrations 

tested, but without statistical significance. According to Zare-Zardini et al. (2018), one of the most 

important things about coagulation is the idea of the intrinsic and extrinsic arms of the coagulation cascade 

and the way they interact during coagulation in the body. For a potent application of any compound, an 

investigation of its effect on blood clotting is necessary. The results demonstrated that the NLC does not 

interfere in the extrinsic and intrinsic clotting pathways. However, as changes in the TTPa test were 

observed, we did not rule out interactions with intrinsic coagulation factors such as factors VIII, IX, XI, 

XII, and pre-kallikrein protein. For these reasons, different methods of analysis must be performed to 

confirm and better understand our findings. 

To investigate the safety profile of this formulation, we performed MTT assays and measured changes in 

double-stranded DNA. In the MTT assay, no concentration was able to reduce the cellular viability of 

PBMCs after 24 h of culture, suggesting that this treatment does not have cytotoxic effects for mononuclear 

cells such as lymphocytes and monocytes. These results agree with those of Sagrillo et al. (2015), who 

reported that Tucumã fruit extracts did not have cytotoxic effects and reduced the toxic effects of human 

lymphocytes exposed to hydrogen peroxide. Furthermore, we did not detect the presence of double-

stranded DNA damage in any of the tested concentrations.  

To identify possible mechanisms of action associated with these few cytotoxic effects of the highest 

concentrations of NLC, we evaluated the production of ROS and nitric oxide, two important mediators of 

oxidative and inflammatory damage related to cytotoxic effects (Baldissera et al., 2017). According to these 

authors, the production of reactive species are among the main causes of DNA damage. These species react 

with various DNA components to produce DNA damage, modifying bases, inducing interconnection 

between chains and intra-chains, and promoting chromosomal abnormalities. In the present study, a 

significant increase in the production of ROS (6250 and 3125 μg/mL) and NO (25000μg/mL) was observed 

compared to the negative control, suggesting that the production of ROS and NO may be involved in these 

cytotoxic effects found in red blood cells and PBMC exposed to NLC for 24 h. Although it has caused 

some negative effects, a recent study by Baldissera et al. (2017) found that Tucumã oil reduced oxidative 

damage in the brain of diabetic mice, which reveals its potent antioxidant action. On the other hand, β-

carotene, another main constituent of Tucumã oil and butter prevented cell damage and decreased levels of 
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DCF (BESTWICK and MILNE, 1999). Another important constituent of both oil and Tucumã butter is 

tocopherol, an excellent inhibitor of lipid peroxidation, which acts as a hydrogen donor for the peroxyl 

radical, interrupting the radical chain reaction (BARREIROS and DAVDI, 2006). It is important to note 

that the cytotoxic effects of NLC may be due to its constituents, because the literature reports the absence 

of toxic effects of Tucumã oil. 

The results related to antimicrobial activity are important, because these microorganisms isolated in 

hospital environments can colonize and adhere to the surfaces of medical instruments and implants. 

Because they are already resistant to various drugs, the ability to adhere can effectively reduce 

antimicrobial options and can further worsen infections. The main reason why NPs are being considered 

as an alternative to antimicrobials is that they can effectively prevent microbial resistance to drugs in certain 

cases. The rampant use of antibiotics has led to the emergence of several risks to public health, including 

the emergence of superbugs that do not respond to any antibioticand an existing epidemic against which 

the medication has no defense. The search for new effective antibacterial materials is significant for 

combating drug resistance, and NPs are being established as a promising approach to solving this problem 

(WANG et al., 2017).Rossato et al. (2019) showed that Tucumã-free oil showed antimicrobial activity 

against 5 microorganisms. A.vulgare oil is rich in lipids, carotenes, fibers and tocopherol, providing the 

fruit with high energy and nutritive content. Probably, the antimicrobial effect of Tucumã oil may be 

associated with its chemical composition, which includes several types of polyphenol molecules and fatty 

acids. Still, according to Rossato et al. (2019) polyphenols are secondary metabolites produced by higher 

plants, which play several essential roles in the physiology of plants that have potential healthy properties 

in the human body, mainly as antioxidants, anti-inflammatories, anti-allergens, and antimicrobials. This 

suggests that low uptake of free oil may limit its effectiveness, and that lipid encapsulation can help the 

active ingredients achieve their goals. Piran et al. (2017) demonstrated that NLC’s increase the retention 

of a drug in the particle increased the release time and reduced the amount of drug needed to produce 

therapeutic action. According to these authors, this proficiency can be used to control the release of 

essential oils to improve the efficiency and reduce the quantity and toxicity of the essential oils used. By 

controlling the release of the drug molecule, the nanocarriers also protect essential oils against possible 

thermal or photoelectric degradation, oxidation or evaporation, which guarantees greater stability, flavor 

and function, consequently prolonging the useful life of the final product. According to Hu and Kwon 

(2011) most types of NP can overcome at least one of the common resistance mechanisms of 

microorganisms (including the interruption of bacterial membranes and the prevention of biofilm 

formation). These effects are the result of the bactericidal mode of NPs, which is based on their specific 

physicochemical properties. Unlike traditional antibiotics, NPs have dimensions <100 nm. The 

irexceptionally small size results in properties such as greater interaction with the cells due to greater area-

to-surface ratiosand versatile and controllable application. According to Mühling et al. (2009),NPs cross 

the bacterial membrane and gather along the metabolic pathway, influencing the shape and function of the 

cell membrane. Then, NPs interact with the basic components of the bacterial cell, including DNA, 

lysosomes, ribosomes, and enzymes, leading to oxidative stress, disturbances of the electrolyte balance, 

inhibition of enzymes, heterogeneous changes, changes in the permeability of the cell membrane, 

deactivation of proteins, and changes in expression genes, all of which can be considered possible 
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mechanisms of action of nanoparticles against bacteria. According to Karimi et al. (2018) NLC systems 

allow the transfer of antibacterial extracts through the cell membrane layer. They acts carrier agents, 

bringing concentrations of compounds within the aqueous phase to microorganisms. According to these 

authors, there are “holes” in the cell membranes of the bacteria that act as component transfer areas, and 

smaller nanoparticles can be more easily inserted into the cavities and release their bioactive compounds, 

also contributing to the improvement of the antimicrobial activity of the nanoformulations. Finally, 

Mokarizadeh et al. (2017) found that lipid-based nanocarriers can protect essential oils against thermal or 

photoelectric degradation, increasing product stability and consequently, prolonging the life of the final 

product, in addition to not affecting the appearance, texture, or the taste of the product. The use of such 

delivery systems can increase the concentration of antimicrobials in areas in which microorganisms are 

preferentially located and can potentially increase the passive mechanisms of cell absorption that affect the 

stability of the lipid membrane and, as a result, increase antibacterial activity. 

Comparing the MICs and the concentrations capable of inhibiting bacterial biofilm, we observed that the 

NLCs containing Tucumã oil and butter inhibited the formation of biofilm in concentrations lower than the 

MICs in most of the tested microorganisms. This suggests inhibition of biofilm formation of the 

microorganism in the sessile form (adhered to solid surfaces), not only in the inhibition of bacterial growth 

in the planktonic form (microorganisms in suspension and dispersed in the aqueous medium). Size of a NP 

can greatly affect its antibacterial activity. In addition to the rupture of bacterial membranes, the prevention 

of biofilm formation is an important mechanism becausebiofilms play fundamental roles in the 

development of bacterial resistance. The unique structure and composition of bacterial biofilms provides 

shelter or protection for embedded microorganisms, helping them to protect themselves from most 

antibiotics. In addition, bacterial biofilms are "a breeding ground" for frequent resistance mutations and the 

exchange and alteration of these mutations between bacterial cells. Studies have shown that many NPs can 

prevent or overcome biofilm formation (PEULEN and WILKINSON, 2011).Most bacteria exist in the form 

of biofilms, usually containing several species that interact with each other and with the environment. 

Biofilms are specifically microbial aggregates that depend on a solid surface and extracellular products, 

including extracellular polymeric substances (EPSs) (WANG et al., 2017). Astudy by Alalaiwe et al. (2019) 

using the biofilm, demonstrated that oxacillin-loaded nanoparticles penetrated the EPS, eradicating the 

MRSA biofilm more effectively than the individual treatment. According to these authors, extracellular 

DNA plays a fundamental role in the production of biofilm, acting as a chelator of cationic molecules. The 

interaction between EPS and nanoparticles with lipids can cause strong affinity and disintegration of the 

biofilm. 

 

5. Conclusion  

The Tucumã nanostructured lipid carrier was successfully developed by the homogenization method using 

Ultra Turrax. It remained stable for a considerable period of time. Cytotoxicity studies demonstrated that 

the nanoparticle suspension is safe because no concentration reduced cellular viability of PBMCs or caused 

double-stranded DNA damage, in addition to having low NLC hemolytic activity against human 

erythrocytes in most concentrations tested and few toxic effects at high concentrations. The NLC-
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containing Tucumã oil and butter showed antimicrobial and antibiofilm activity against important agents 

that cause human morbidity and mortality Our findings suggest that this treatment, in nanostructured form, 

may be a potential alternative therapeutic agent for the elimination of bacteria and biofilms. 
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