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Introduction 

There are many prime numbers algorithms that man has devised to predict the next prime number. The 

common denominator, however, is that none of them can predict all prime numbers to infinite with one 

hundred per cent accuracy. Prime numbers can best be described as semi-random or partly random because 

of the many bits and pieces of arithmetic series patterns that describe them. The reason why this author is 

writing this paper is so that he can share with you what might be the ultimate prime numbers algorithm that 

decisively explains why the prime numbers series are as incoherent as they are. In other words this 

algorithm offers simple explanations to many petty questions about prime numbers that would otherwise 

require complicated solutions.  

 

1.1 How to calculate a prime number 

One of the fastest methods of calculating prime numbers is the Eratosthenes sieve, named after 

Eratosthenes (276BC-194BC). Prime numbers are worked out by successively filtering out all multiples of 

2 ≤ 𝑥 ≤ √𝑛, where 𝑥 are the prime factors of all non-prime numbers less than n, where n is the greatest 

whole number of the sieve. Table 1.1 is an example of such a sieve. Cancelling out multiples of 2, 3, 5 and 

7 leaves only prime numbers less than 100. 

 

1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

51 52 53 54 55 56 57 58 59 60 

61 62 63 64 65 66 67 68 69 70 

71 72 73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 

91 92 93 94 95 96 97 98 99 100 

 

Table1.1 

Even though prime numbers cannot form a coherent, regular pattern, they can be arranged to make quite 

beautiful spirals. An example is the Ulam spiral (after Stanislaw Ulam) and many other types of spirals that 

can be readily viewed on mathworld.wolfram.com/PrimeSpiral.html .It is said that odd numbers cannot 

make spirals of patterns like prime numbers. But randomly picking odd numbers to try to form a spiral is 

a mathematical error since prime numbers generally exist as two distinct sets and members of each set 

always have a difference that is a multiple of six. That means prime numbers do not happen entirely 

randomly along the number line but follow a certain rule and that would be discussed in due course. 
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1.2 Pattern of remainders 

There are quite a huge number of arithmetic sequences that are identifiable in prime numbers. For example 

2n+1, where n is a whole number, is a universal set that certainly includes all prime numbers. 6n∓1  is 

another set of integers that definitely includes all prime numbers greater than or equal to 5. The list of such 

polynomials is endless. For further reading see, Green-Tao theorem: An exposition, by David Conlon, 

Jacob Fox, and Yufei Zhao. The purpose of the next two sections is to explain in simple terms why there 

is an infinite number of disjointed prime numbers arithmetic series.  

 

 
Table 1.2 

 

The above pattern is a tabular expression of equation 2 ≤ 𝑥 ≤ √𝑛. To obtain the column under the bold 

green 2, you divide each integer by 2, write only the remainder, and ignore the rest of the quotient. The 

second column of remainders is obtained in the same way; you divide the integer by 3 (see the green bold 

3 at the top of the column). Therefore the row of remainders adjacent to, say 11, is obtained by first dividing 

11 by 2. The remainder is 1, which is the 1 adjacent to 11. The 2 adjacent to 11 in the second column of 

the remainders is obtained by dividing 11 by 3, the remainder is 2.  
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The method used above is the one used to obtain the entire pattern from 1 to 26 or the longer one at the end 

of this paper. The reader should also note that none-prime integers all have a row of remainders in front of 

them that have at least one zero, for example 20, thus indicating that they are not prime. All prime numbers 

greater than 9 have rows of remainders that are all devoid of zeros, e.g. 13, 17 19 etc. If the column of 

remainders under each bold green prime is read downwards, the reader would notice that the pattern of the 

remainders repeats after every nth interval (where n is the bold green prime number on top of each 

respective column). For example, the column of remainders under n=5, which begins at 25, reads; 0, 1, 2, 

3 4, 0, 1, and so on to infinite (see longer pattern at the end of the paper). 

Some mathematicians would know straight away why the rows of remainders adjacent to 11 and 13(or any 

other row of remainders adjacent to any integer) repeat after every sixth integer right to infinite. Under the 

column with a bold two (see table 1.2) there are only two possible remainders; 1 and 0. Under the second 

column with a bold 3 there are only three possible remainders; 0, 1and 2. Therefore there are 2×3 ways of 

forming unique rows of remainders from integers 9 to 24 of table 1.2. Therefore the “prime” rows of 

remainders adjacent to 11 and 13 repeat after every sixth integer right up to infinite(check the pattern at the 

end of the paper) and that is the phenomenon that is also responsible for twin primes since 11 and 13 are 

prime numbers next to each other. The two types of prime numbers have been highlighted in red and blue 

so that the reader can see the so-called “prime numbers race”. The rows of remainders adjacent to other 

integers are cyclic as well. 

Since the rows of remainders repeat after every sixth integer we can use that pattern to predict the next 

prime integer in each set of prime numbers between 8 and 25. Indeed 11+6, 11+6+6 are prime numbers. 

The method can be used to predict the primes in the other set as well; 13+6 is prime nevertheless 13+6+6 

is not prime since equation  2 ≤ 𝑥 ≤ √𝑛 (where x is 2 and3) applies to prime numbers between 8 and 25. 

After 25 the method of adding intervals is no longer 100% reliable and that would be explained in due 

course nevertheless all prime numbers of each set would always have a difference that is a multiple of six. 

The repetition of rows of remainders is also noticeable in other integers. For example all multiples of 6 

have a repeating row of remainders 00. The row of remainders (02) adjacent to 8 repeats after every sixth 

integer from 8 to infinite as you can see at the table at the end of this paper. If we look at the table at the 

long table we see that the rows of remainders exist in six main sets (S1, S2, S3, S4, S5, S6); 

 

S1 0 0… 6, 12, 18…∞ 

S2 1 1… 7, 13, 19…∞ 

S3 0 2… 8, 14, 20…∞ 

S4 1 0… 9, 15, 21…∞ 

S5 0 1… 10, 16, 22…∞ 

S6 1 2… 11, 17, 23…∞ 

   

Table 1.3  

In the table above, we have divided all whole numbers into six sets; set S1, S2, S3, S4 ,S5 and S6. The middle column 

of the table indicates the first two remainders of the repeating row adjacent to every element of each set. For example 

the rows of remainders of set S2 {7, 13, 19…} all begin with 1, 1. The third column is the list of the elements (integers) 

of each set. We did not include whole numbers from 0 to 5 but they too can be manually included in these sets as 

well even though they have different rows of remainders. Whole number 0 can be manually inserted into set S1, since 

0+6=6. Whole number 1 belongs to S2, since 1+6 =7 and so on. We are trying to demystify prime numbers so that 

the reader realises that prime numbers are just members of one of the many arithmetic series based on the repetition 

of the row of remainders after every sixth, thirtieth integer etc. Sets S2 and S6 are unique because there are arithmetic 
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series patterns that include numbers whose rows of remainders are devoid of zeros, which we call prime numbers. 

Some members of these two sets are, however, not prime, for example 25, 35, 49, etc. Nevertheless the reader has 

been given a clear proof why prime numbers can form so many arithmetic series patterns. They belong to sets S2 and 

S6, which are themselves arithmetic series patterns. 

 

1.3 Arithmetic series beyond integer 24 

After 24 the pattern of remainders has to include three rows because the elements of the set 2 ≤ 𝑥 ≤ √𝑛 

are now 2, 3, and 5 and that is only valid between 24 and 49. Within that region of integers a similar row 

repeats after 30 (2×3×5) integers. If 29’s row of reminders are of interest, such a row of remainders repeats 

at 29+30 and the result would be 59(59 is prime!). We can add 30 to both 31 and 37 and still obtain prime 

numbers even though we would be violating the equation 2 ≤ 𝑥 ≤ √𝑛  since we used the interval 30 (which 

applies to integers  from 25 to 48 only). After 48 the interval to be used to predict the next prime number 

becomes 210(2 x 3 x 5 x 7). That interval is only relevant from 49 to 120. Nevertheless 59+210; 61+210; 

67 +210 and 73+ 210 are all prime (check the pattern at the end of the paper). Therefore we realize that 

each row of remainders does indeed repeat after a certain interval that is always a multiple of 6 or of the 

previous intervals but it would be having extra columns of remainders because these patterns of remainders 

for integers greater than 24 always overlap into other regions of integers where they do not apply. For 

example the rows of remainders adjacent to 29 or 31 repeat after every 30th integer up to infinite but 

wherever they repeat they would be in a region of integers that have extra columns of remainders. The 

overlapping of intervals into intervals of the next prime squares makes it impossible to predict prime 

numbers greater than 24 with 100% certainty. Nevertheless each row of remainders adjacent to any integer 

repeats after 𝑎 × 𝑏 × 𝑐 … 𝑛, where a, b, c, up to n are the green bold integers at the top of the remainders 

column (the elements of set 2 ≤ 𝑥 ≤ √𝑛). Wherever a new column of remainders is introduced, each 

arithmetic progression subdivides or branches into even more sets. 

As an example, from 9 to 24 the rows of remainders adjacent to prime numbers are only one-one (1, 1) and 

one-two (1, 2) see table 1.2 and table 1.3. From 25 to 48, the one-one  row of remainders subdivides into  

one-one-one(1,1,1), one-one-two(1,1,2) and one-one-three(1,1,3) rows of remainders. The one-two (1, 2) 

row of remainders beginning at integer 11 also subdivides as can be seen at the pattern of remainders at the 

end of the paper. 

However, all the remainders repeat after an interval that is a multiple of six due to the fact that the first two 

elements of the set 2 ≤ 𝑥 ≤ √𝑛 are always 2 and 3. In fact, new sub-arithmetic series patterns begin at 

every prime square of the pattern of remainders; the common difference being the product of the prime 

numbers in the set2 ≤ 𝑥 ≤ √𝑛. Nevertheless, that is unimportant and cannot enable us to predict prime 

numbers greater than 24 with total accuracy but it enables us to easily explain why twin primes, and some 

other semi-regular patterns are found in prime numbers right to infinite. 

 

1.4 Are prime numbers infinite? 

Euclid (about 325BC -265BC) proved that there are an infinite number of prime numbers (Martin H. 

Weissman, why prime numbers still fascinate mathematicians 2,300 years later, April 2, 2018 6.47 a.m. 

EDT). We want to use the table/pattern of remainders at the end of this paper to show that there are an 

infinite number of prime numbers(let the reader refer to the table at the end of the paper). Suppose that 11 

is the greatest prime number such that all other numbers greater than it are composite. Therefore that means 

there would not be a need to introduce the sixth column of remainders adjacent to 169 (if 11 is the greatest 

prime then 13 is not a prime number hence169 cannot be a prime square). Therefore that means 169 itself 

would be prime! Furthermore all those prime numbers rows of remainders occurring between 121 to 168 
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would continue to repeat at regular intervals to infinite thus “creating” more primes! In fact the absence of 

the sixth row adjacent to 169 would enable a prediction of prime numbers from 169 to infinite with one-

hundred per cent certainty, since only the same rows of remainders would be recurring without a need to 

add extra columns of remainders!  

Thus a termination of prime numbers along the number line causes the square of that greatest prime number 

to be prime and causes non-primes like 169 and 221 to be prime! Such a phenomenon creates even more 

prime numbers along the number line. Therefore a cessation of prime numbers along the number line means 

the square of the last prime number would be prime and the way these rows of remainders repeat means an 

occurrence of more prime numbers beyond the “last prime”! So the very cessation of prime numbers along 

the number line makes the square of the largest prime number prime. That is an impossibility since a square 

cannot be prime. Therefore the above statement is a proof that prime numbers exist right to infinite.  

NB. This above proof is only valid assuming that the algorithm used at the end of this paper to calculate or 

identify prime numbers is as natural and obvious or solid as the whole number line itself. 

  

1.5 Linear prime numbers graphs 

In section 1.3 we have shown you that prime numbers can be divided into two main sets; the set whose 

initial prime number is 11 while the other set is a set whose smallest integer is 13. As we showed earlier, 

the former set has its row of remainders that always begins with 1 and 2. The other set has a row that always 

begins with 1 and 1. That is why we call all prime numbers of the set S6, that includes 11, as one-two prime 

numbers. The other set S2, is called the one-one prime numbers set. 

If you look carefully at the prime numbers at the end of this paper, you will realise that one-two and one-

one prime numbers are just terms of an arithmetic series that begin at 11 and 13 respectively (all other 

integers are also elements of their unique arithmetic series patterns as well that continually subdivide at 

every prime square). The general term 𝑎𝑛 describing the one-two arithmetic series is 

 𝑎1,2 = 11 + 6𝑥, 𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 𝑎 𝑤ℎ𝑜𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑡𝑒𝑟𝑚𝑠 𝑏𝑒𝑖𝑛𝑔  

11, 17, 23, 29…∞ 

The one-one arithmetic series general term is; 

𝑎1,1 = 13 + 6𝑥, 𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 𝑎 𝑤ℎ𝑜𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟, and the terms being 13, 19, 25, 31…∞ 

Looking at the above general terms of both equations, it becomes apparent that prime numbers are just one 

of the terms (maybe random) of a specific arithmetic series described by the above equations. 

 



International Journal for Innovation Education and Research        ISSN 2411-2933                           01-June-2021 

International Journal for Innovation Education and Research© 2021                             pg. 136 

 
Fig1.1 

 

 The graph shown above is of equations 𝑎1,2 = 11 + 6𝑥 and 𝑦1,1 = 13 + 6𝑥 respectively. It is a plot of 

prime numbers of both sets against x, check the table of values below. The non-prime numbers were 

deliberately omitted; only prime numbers were used. Due to the fact that the linear equations are too close, 

both graphs appear as a single line with gradient 6. Therefore whatever prime number greater than 9 that 

you can think of; it will lie on either line  𝑎1,2 = 11 + 6𝑥 or 𝑎1,1 = 13 + 6𝑥, even if the lines are 

extrapolated to infinite.  

x 6x+11 

6x+1

3 x 

6x+1

1 

6x+1

3 x 

6x+1

1 

6x+1

3 x 

6x+1

1 

6x+1

3 x 

6x+1

1 

6x+1

3 x 

6x+1

1 

6x+1

3 

   

2

9   

5

9  367 89  547 

11

8  727 

14

9  907 

0 11 13 

3

0 191 193 

6

0  373 90   

11

9  733 

15

0 911  

1 17 19 

3

1 197 199 

6

1  379 91 557  

12

0  739 

15

1  919 

2 23  

3

2   

6

2 383  92 563  

12

1 743  

15

2   

3 29 31 

3

3  211 

6

3 389  93 569 571 

12

2  751 

15

3 929  

4  37 

3

4   

6

4  397 94  577 

12

3  757 

15

4  937 

5 41 43 

3

5  223 

6

5 401  95   

12

4 761  

15

5 941  

6 47  

3

6 227 229 

6

6  409 96 587  

12

5  769 

15

6 947  

7 53  

3

7 233  

6

7   97 593  

12

6 773  

15

7 953  

8 59 61 

3

8 239 241 

6

8 419 421 98 599 601 

12

7   

15

8   

9  67 

3

9   

6

9   99  607 

12

8  787 

15

9  967 

1

0 71 73 

4

0 251  

7

0 431 433 

10

0  613 

12

9   

16

0 971  
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1

1  79 

4

1 257  

7

1  439 

10

1 617 619 

13

0 797  

16

1 977  

1

2 83  

4

2 263  

7

2 443  

10

2   

13

1   

16

2 983  

1

3 89  

4

3 269 271 

7

3 449  

10

3  631 

13

2 809 811 

16

3  991 

1

4  97 

4

4  277 

7

4  457 

10

4   

13

3   

16

4  997 

1

5 101 103 

4

5 281 283 

7

5 461 463 

10

4 641 643 

13

4 821 823 

16

5   

1

6 107 109 

4

6   

7

6 467  

10

5 647  

13

5 827 829 

16

6  1009 

1

7 113  

4

7 293  

7

7   

10

6 653  

13

6      

1

8   

4

8   

7

8 479  

10

7 659 661 

13

7 839     

1

9  127 

4

9  307 

7

9  487 

10

8   

13

9      

2

0 131  

5

0 311 313 

8

0 491  

10

9  673 

14

0  853    

2

1 137 139 

5

1 317  

8

1  499 

11

0 677  

14

1 857 859    

2

2   

5

2   

8

2 503  

11

1 683  

14

2 863     

2

3         149 151 

5

3  331 

8

3 509  

11

2  691 

14

3      

2

4  157 

5

4  337 

8

4   

11

3   

14

4  877    

2

5  163 

5

5   

8

5 521 523 

11

4 701  

14

5 881 883    

2

6 167  

5

6 347 349 

8

6   

11

5  709 

14

6 887     

2

7 173  

5

7 353  

8

7   

11

6   

14

7      

2

8 179 181 

5

8 359  

8

8  541 

11

7 719  

14

8      

 

Table 1.4 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎1,2  𝑜𝑟 𝑎1,1  𝑐𝑎𝑛 𝑏𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑒𝑑 𝑡𝑜 𝑦 = 6𝑥 + 𝑐, where c is either 11 or 13. Therefore, if you 

are moving along the number line of  the whole numbers ℤ0, and you are standing right on a prime number, 

whether a one-one or one-two, you could use the above equation to guess the position of the next prime 

number of either set. For example, assume that you are standing on prime number 17 and you want to guess 

both the next one-one prime and the one-two prime. Knowing that 17 is a one-two prime, you would guess 

the next prime by adding 6. Since the corresponding terms of these two arithmetic series have a difference 

of two, you would only need to add 8(6+2) to estimate the next one-one prime, which unfortunately would 

be 25. Nevertheless if you add 6 to 17+6, you get 29. If you add 8(6+2) to 23 to guess the next one-one 

prime you get 31. Therefore the author assumes the reader realises again that prime numbers are just 

elements of an arithmetic series. 
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1.6 Modified prime numbers sieve 

A typical prime numbers sieve includes all whole numbers up to a certain integer n. Since it is known that 

prime numbers are only terms of a certain arithmetic series patterns, there is no need to include every term 

in the sieve, check example below. Only the arithmetic series terms,  6𝑥 + 11 and 6𝑥 + 13 are included in 

the sieve.  

NB                                                                                                                                                                                                                                                    

Integers from 1 to 8 have to be manually included though. Integers 1, 2 and 3 have a difference of 1. Their 

pattern of “prime numbers” breaks down at 4, where another pattern of prime numbers begins whose 

common difference is 2[5,7]. The pattern breaks down at 9, where two patterns of arithmetic series emerge 

with a common difference of six. Such a pattern breaks down at the next prime square 25. Nevertheless 1 

is not considered a prime number. 

 

1 2 3 4 5 6 7 8 9 10 

11  13    17  19  

  23  25    29  

31    35  37    

41  43    47  49  

  53  55    59  

61    65  67    

71  73    77  79  

  83  85    89  

91    95  97   100 

 

Table 1.5 

 

1.7 Odd numbers Ulam spiral 

It is claimed that odd prime numbers cannot form a spiral (see many failed spirals on Wolfram). Based on 

what you have learnt so far, you know that it is a mathematical error to highlight all odd numbers and hope 

to get a spiral. The odd numbers to be highlighted are one-one and one-two odd numbers of the sets; 𝑆6 =

{6𝑥 + 11} 𝑎𝑛𝑑 𝑆2 = {6𝑥 + 13} (see table below). 

If we then highlight the odd numbers of the mentioned sets we obtain a pattern similar to that obtained 

with prime numbers. See figure 1,2. Such a result confirms our theory that prime numbers are just 

elements of an ordinary arithmetic series pattern. 

 

x 

6x+

11 

6x+

13 x 

6x+

11 

6x+

13 x 

6x+

11 

6x+

13 x 

6x+

11 

6x+

13 x 

6x+

11 

6x+

13 x 

6x+

11 

6x+

13 

   

2

9 185 187 

5

9 365  89 545  

11

8 725  

14

9 905  

0   

3

0   

6

0 371  90 551 553 

11

9 731  

15

0  913 

1   

3

1   

6

1 377  91  559 

12

0 737  

15

1 917  

2  25 

3

2 203 205 

6

2  385 92  565 

12

1  745 

15

2 923 925 

3   

3

3 209  

6

3  391 93   

12

2 749  

15

3  931 
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4 35  

3

4 215 217 

6

4 395  94 575  

12

3 755  

15

4 935  

5   

3

5 221  

6

5  403 95 581 583 

12

4  763 

15

5  943 

6  49 

3

6   

6

6 407  96  589 

12

5 767  

15

6  949 

7  55 

3

7  235 

6

7 413 415 97  595 

12

6  775 

15

7  955 

8   

3

8   

6

8   98   

12

7 779 781 

15

8 959 961 

9 65  

3

9 245 247 

6

9 425 427 99 605  

12

8 785  

15

9 965  

1

0   

4

0  253 

7

0   

10

0 611  

12

9 791 793 

16

0  973 

1

1 77  

4

1  259 

7

1 437  

10

1   

13

0  799 

16

1  979 

1

2  85 

4

2  265 

7

2  445 

10

2 623 625 

13

1 803 805 

16

2  985 

1

3  91 

4

3   

7

3  451 

10

3 629  

13

2   

16

3 989  

1

4 95  

4

4 275  

7

4 455  

10

4 635 637 

13

3 815 817 

16

4 995  

1

5   

4

5   

7

5   

10

4   

13

4   

16

5 1001 1003 

1

6   

4

6 287 289 

7

6  469 

10

5  649 

13

5   

16

6 1007  

1

7  115 

4

7  295 

7

7 473 475 

10

6  655 

13

6 833 835    

1

8 119 121 

4

8 299 301 

7

8  481 

10

7   

13

7  841    

1

9 125  

4

9 305  

7

9 485  

10

8 665 667 

13

9 845 847    

2

0  133 

5

0   

8

0  493 

10

9 671  

14

0 851     

2

1   

5

1  319 

8

1 497  

11

0  679 

14

1      

2

2 143 145 

5

2 323 325 

8

2  505 

11

1  685 

14

2  865    

2

3           

5

3 329  

8

3  511 

11

2 689  

14

3 869 871    

2

4 155  

5

4 335  

8

4 515 517 

11

3 695 697 

14

4 875     

2

5 161  

5

5 341 343 

8

5   

11

4  703 

14

5      

2

6  169 

5

6   

8

6 527 529 

11

5 707  

14

6  889    

2

7  175 

5

7  355 

8

7 533 535 

11

6 713 715 

14

7 893 895    

2

8   

5

8  361 

8

8 539  

11

7  721 

14

8 899 901    
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Table 1.6 

 

Fig.1.2 

The reader can clearly see the regular patterns obtained in the spiral above. The spiral begins at integer 

25. The reason why spirals of odd numbers usually fail is because the authors of such spirals fail to 

realise that prime numbers are elements of an arithmetic series and odd numbers to be used to form such 

spirals should be elements of an arithmetic series as well.   

 

1.7 Conclusion 

Despite the fact that no coherent prime numbers pattern is known beyond 24, it is still possible to derive a 

general formula for calculating the probability of a prime number “occurring’’ between any two known 

consecutive prime squares. Bernard Riemann (see proceedings of the Royal Society: The first digit 

frequencies of prime numbers and Riemann zeta zeros, by B. Luque and Lucas Lacasa)  and Gauss each 

contributed significantly towards calculating the distribution of prime numbers. We will use the pattern of 

the row of remainders at the end of this book to derive both men’s formulae. 

  

As an example, we calculate the probability that 13 is prime(13 lies between the prime squares 9 and 25) 

as follows:  

 The probability that a remainder in the first column of remainders between 9 and 25 is not zero is 1/2 

since in the first column (under bold 2 of table 1.2) there are only two possibilities; 0 or 1. In the second 
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column there are three possibilities; 0, 1 and 2, therefore the probability that a remainder in the second 

column is not 0 is 2/3. For an integer to be prime both remainders in both columns must not be zero. 

Therefore the probability that both remainders of 13’s row of remainders are not zero in both columns is  
1

2
 ×

2

3
=

2

6
 . So the probability that 13 or any integer from 9 to 24 is prime is  

2

6
.  The theoretical 

probability of finding a prime integer between 24 and 49 is 
1

2
 ×

2

3
 ×

4

5
=

8

30
  

For interest sake, the theoretical probability that a number from 4 to 8 is prime is 
1

2
  whereas the 

experimental one is 
2

5
.  The table 1.5 shows comparisons between experimental, theoretical probabilities, 

and 
1

𝑙𝑛𝑥
 between indicated consecutive prime squares. (Experimental probability is obtained by dividing 

the difference between any two consecutive prime squares by the number of prime numbers within that 

range) 

 

 The general formula for the theoretical probability is as shown below: 

 
𝑎−1

𝑎
 ×  

𝑏−1 

𝑏
 ×  

𝑐−1

𝑐
 … 

√𝑥−1

√𝑥
  =  (1 −

1

𝑎
) × (1 −

1

𝑏
) × (1 −

1

𝑐
) … × (1 −

1

√𝑥
) ~

1

𝑙𝑛𝑥
 . 

NB. The above equation is a form of Leonard Euler’s product formula, where a=2, b=3, c=5 and so on (2, 

3, 5 and √𝑥  are the bold numbers at the top of all the columns of remainders between the two 

consecutive prime squares of interest, see pattern at the end of this paper). As an example, the theoretical 

probability of finding a prime number between 49 and 120 is  
1

2
×

2

3
×

4

5
 ×

6

7
=

24

105
 .  

It is obvious that as we continue to multiply more and more fractions less than one, the product 

approaches zero. That is what Gauss observed in his analysis of the prime numbers. 

 

range 
Theoretical 

probability 

Experimental 

probability 
1

𝑙𝑛𝑥
 

4 - 8 0.5 0.4 0.558 

9 - 24 0.33 0.31 0.357 

25 - 48 0.27 0.25 0.278 

49 - 120 0.23 0.21 0.225 

121 - 168 0.21 0.19 0.201 

169 - 288 0.19 0.18 0.184 

289 - 360 0.18 0.15 0.173 

361 - 528 0.17 0.16 0.164 

529 - 840 0.16 0.15 0.153 

841 - 960 0.16 0.13 0.147 

961- 1368 0.15 0.14 0.142 

1369 -1680 0.15 0.14 0.136 

1681 - 1848 0.15 0.12 0.134 

1849 - 2208 0.14 0.13 0.131 

2209 - 2808 0.14 0.13 0.128 

2809 - 3480 0.14 0.12 0.124 

3481 - 3720 0.13 0.13 0.122 

3721 - 4488 0.13 0.12 0.120 

4489 - 5040 0.13 0.12 0.118 

5041 - 5328 0.128 0.105 0.117 
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5329 - 6240 0.126 0.116 0.115 

6241 - 6888 0.124 0.116 0.114 

6889 - 7920 0.123 0.111 0.112 

7921 - 9408 0.122 0.11 0.110 

9409 - 10200 0.120 0.112 0.109 

10201 - 10608 0.119 0.104 0.108 

10609-11448 0.118 0.105 0.107 

11449 - 11880 0.117 0.097 0.107 

11881 - 12768 0.116 0.101 0.106 

12769 - 16128 0.114 0.106 0.104 

 

Table 1.5 

 

Fig 1.3 

The graph above is a comparison of the experimental probability, the theoretical one, and of Gauss’s 

equation  
1

𝑙𝑛𝑥
 . We have modified Gauss’s equation so that instead of just dividing positive integer n by lnx, 

the chosen range is only between two consecutive prime squares just like we do with the theoretical 

probability formula. If you compare the values of table 1.5, 
1

𝑙𝑛𝑥
  is an excellent approximation or best fit 

of the (oscillating) experimental probability graph. To calculate 
1

𝑙𝑛𝑥
, for any range of prime squares, we 

take the average of those consecutive prime squares and calculate their natural logarithm. The reciprocal 

of 𝑙𝑛𝑥 is the probability of finding a prime number within that region between any two integers.  
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Nevertheless the theoretical approximation is also a good approximation of the prime numbers distribution 

but our inclusion of it is so that the reader can see the origins of Gauss and Riemann’s equations. 

 

 
Fig.1.4 

 

Figure 1.4 is a plot of probabilities between randomly selected consecutive prime pairs using equation 
1

𝑙𝑛𝑥
 

and the theoretical one. As you can see they are fairly parallel nevertheless the former is always a better 

approximation.    

range theoretical 
1

𝑙𝑛𝑥
 

2^2-(3^2-1) 0.5 0.56 

7^2-(11^2-1) 0.23 0.23 

13^2-(17^2-1) 0.19 0.18 

23^2-(29^2-1) 0.16 0.15 

31^2-(37^2-1) 0.15 0.14 

43^2-(47^2-1) 0.1417 0.1313 

107^2-(109^2-1) 0.1169 0.1068 

173^2-(179^2-1) 0.10720 0.0967 

233^2-(239^2-1) 0.10159 0.09151 

283^2-(293^2-1) 0.09745 0.08829 

373^2-(379^2-1) 0.09405 0.08432 

439^2-(443^2-1) 0.09154 0.08211 

503^2-(509^2-1) 0.08943 0.08030 

587^2-(593^2-1) 0.08766 0.07837 

647^2-(653^2-1) 0.08611 0.07720 

733^2-(739^2-1) 0.08462 0.07574 

821^2-(823^2-1) 0.08332 0.07450 

883^2-(887^2-1) 0.08225 0.07369 

971^2-(977^2-1) 0.08129 0.07266 

1009^2-(1013^2-1) 0.08088 0.07226 
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Table 1.6 

If you go back to table 1.5 and compare 
1

𝑙𝑛𝑥
 versus the experimental probability you cannot help to be 

impressed by its accuracy. Multiplying the difference between two consecutive prime squares by the 

probability corresponding to the range between those prime squares gives you an approximation of the 

number of prime numbers. For example the logarithmic probability between 16128 and 12769 is 0.104 

whereas the theoretical one is 0.114. Since the difference between 16129 and 12769 is 3360. Multiplying 

3360 by each probability gives 383 and 349 respectively. The actual number of prime numbers between 

this range is 357! The reason why the theoretical method is important is that it leads to Bernard Riemann’s 

formula as we will prove below. 

Going back to the Gauss’s equation, we see that the number of prime numbers between any two prime 

squares 𝑁2  and 𝑛2 is; 
1

𝑙𝑛𝑁2
(𝑁2 − 𝑛2),  𝑤ℎ𝑒𝑟𝑒 

1

𝑙𝑛𝑁2 is the probability of finding a prime number within two consecutive prime 

squares (which is also the method you use to estimate the number of prime squares using the theoretical 

probability method). 

   
1

𝑙𝑛𝑁2
(𝑁2 − 𝑛2) can be re-written as   

1

𝑙𝑛𝑁2
(𝑁 + 𝑛)(𝑁 − 𝑛) 

As 𝑁 𝑎𝑛𝑑 𝑛 get closer and closer 𝑁 + 𝑛  approaches 2𝑁 while 𝑁 − 𝑛 reduces to 𝑑𝑁 

Thus equation 
1

𝑙𝑛𝑁2
(𝑁2 − 𝑛2) becomes 

  ∫
𝑁2

𝑛2
1

𝑙𝑛𝑁2 2𝑁𝑑𝑁. 

Taking 𝑁2 = 𝑡, 𝑎𝑛𝑑 𝑑𝑡 = 2𝑁𝑑𝑁 ( 𝑤ℎ𝑒𝑟𝑒 𝑙𝑛𝑁2 ≥ 2, 𝑠𝑖𝑛𝑐𝑒 2 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑝𝑟𝑖𝑚𝑒)we see that 

∫
𝑁2

𝑛2
1

𝑙𝑛𝑁2 2𝑁𝑑𝑁 = 
𝑑𝑡

𝑙𝑛𝑡
,  

which is the logarithmic function deduced by Riemann. Nevertheless 𝑙𝑖(𝑁2) − 𝑙𝑖(𝑛2)  is always almost 

equal to 
1

𝑙𝑛𝑁2
(𝑁2 − 𝑛2) as can be seen in the example below. 

We want to use equation 
1

𝑙𝑛𝑁2
(𝑁2 − 𝑛2) and li(x) to calculate the number of prime numbers between 

consecutive two prime squares     161272  (260 080 129) and 161112 (259564321). In the former equation 

we find 
1

𝑙𝑛𝑥
 where x is the average of the two prime squares. 

1

𝑙𝑛𝑥
= 0.0516115 

(161272 -161112)×0.0516115 = 26 621 prime numbers 

Li(260 080 129) - li(259 564 321)=26 621 prime numbers 

 

Despite equal results above, Riemann’s equation is the best in that it gives a good approximation of prime 

numbers between any two integers you can think of even if they are not consecutive prime squares. The 

author concludes this paper hoping that the reader has understood and appreciates the ultimate prime 

numbers algorithm that explains why prime numbers behave the way they do. Prime numbers are not a 

mystery but merely special members of arithmetic series patterns. The remainders pattern might be tedious 

but it gives the reader an insight about the nature of prime numbers and hopefully it would enable some 

researchers to solve their own prime numbers problems.  
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