# Prime numbers demystified 

Artwell Ncube<br>Unisa

## Introduction

There are many prime numbers algorithms that man has devised to predict the next prime number. The common denominator, however, is that none of them can predict all prime numbers to infinite with one hundred per cent accuracy. Prime numbers can best be described as semi-random or partly random because of the many bits and pieces of arithmetic series patterns that describe them. The reason why this author is writing this paper is so that he can share with you what might be the ultimate prime numbers algorithm that decisively explains why the prime numbers series are as incoherent as they are. In other words this algorithm offers simple explanations to many petty questions about prime numbers that would otherwise require complicated solutions.

### 1.1 How to calculate a prime number

One of the fastest methods of calculating prime numbers is the Eratosthenes sieve, named after Eratosthenes (276BC-194BC). Prime numbers are worked out by successively filtering out all multiples of $2 \leq x \leq \sqrt{n}$, where $x$ are the prime factors of all non-prime numbers less than $n$, where $n$ is the greatest whole number of the sieve. Table 1.1 is an example of such a sieve. Cancelling out multiples of 2, 3, 5 and 7 leaves only prime numbers less than 100 .

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| $z 1$ | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
| 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
| 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |

## Table1.1

Even though prime numbers cannot form a coherent, regular pattern, they can be arranged to make quite beautiful spirals. An example is the Ulam spiral (after Stanislaw Ulam) and many other types of spirals that can be readily viewed on mathworld.wolfram.com/PrimeSpiral.html .It is said that odd numbers cannot make spirals of patterns like prime numbers. But randomly picking odd numbers to try to form a spiral is a mathematical error since prime numbers generally exist as two distinct sets and members of each set always have a difference that is a multiple of six. That means prime numbers do not happen entirely randomly along the number line but follow a certain rule and that would be discussed in due course.

### 1.2 Pattern of remainders

There are quite a huge number of arithmetic sequences that are identifiable in prime numbers. For example $2 \mathrm{n}+1$, where n is a whole number, is a universal set that certainly includes all prime numbers. $6 \mathrm{n} \mp 1$ is another set of integers that definitely includes all prime numbers greater than or equal to 5 . The list of such polynomials is endless. For further reading see, Green-Tao theorem: An exposition, by David Conlon, Jacob Fox, and Yufei Zhao. The purpose of the next two sections is to explain in simple terms why there is an infinite number of disjointed prime numbers arithmetic series.

|  | 2 | 3 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 |  |  |  |  |  |  |
| 2 | 0 |  |  |  |  |  |  |
| 3 | 1 |  |  |  |  |  |  |
| 4 | 0 |  |  |  |  |  |  |
| 5 | 1 |  |  |  |  |  |  |
| 6 | 0 |  |  |  |  |  |  |
| 7 | 1 |  |  |  |  |  |  |
| 8 | 0 |  |  |  |  |  |  |
| 9 | 1 | 0 |  |  |  |  |  |
| 10 | 0 | 1 |  |  |  |  |  |
| 11 | 1 | 2 |  |  |  |  |  |
| 12 | 0 | 0 |  |  |  |  |  |
| 13 | 1 | 1 |  |  |  |  |  |
| 14 | 0 | 2 |  |  |  |  |  |
| 15 | 1 | 0 |  |  |  |  |  |
| 16 | 0 | 1 |  |  |  |  |  |
| 17 | 1 | 2 |  |  |  |  |  |
| 18 | 0 | 0 |  |  |  |  |  |
| 19 | 1 | 1 |  |  |  |  |  |
| 20 | 0 | 2 |  |  |  |  |  |
| 21 | 1 | 0 |  |  |  |  |  |
| 22 | 0 | 1 |  |  |  |  |  |
| 23 | 1 | 2 |  |  |  |  |  |
| 24 | 0 | 0 |  |  |  |  |  |
| 25 | 1 | 1 | 0 |  |  |  |  |
| 26 | 0 | 2 | 1 |  |  |  |  |
|  |  |  |  |  |  |  |  |

## Table 1.2

The above pattern is a tabular expression of equation $2 \leq x \leq \sqrt{n}$. To obtain the column under the bold green 2 , you divide each integer by 2 , write only the remainder, and ignore the rest of the quotient. The second column of remainders is obtained in the same way; you divide the integer by 3 (see the green bold 3 at the top of the column). Therefore the row of remainders adjacent to, say 11 , is obtained by first dividing 11 by 2 . The remainder is 1 , which is the 1 adjacent to 11 . The 2 adjacent to 11 in the second column of the remainders is obtained by dividing 11 by 3 , the remainder is 2 .

The method used above is the one used to obtain the entire pattern from 1 to 26 or the longer one at the end of this paper. The reader should also note that none-prime integers all have a row of remainders in front of them that have at least one zero, for example 20, thus indicating that they are not prime. All prime numbers greater than 9 have rows of remainders that are all devoid of zeros, e.g. 13, 1719 etc. If the column of remainders under each bold green prime is read downwards, the reader would notice that the pattern of the remainders repeats after every $n$th interval (where $n$ is the bold green prime number on top of each respective column). For example, the column of remainders under $n=5$, which begins at 25 , reads; $0,1,2$, $34,0,1$, and so on to infinite (see longer pattern at the end of the paper).
Some mathematicians would know straight away why the rows of remainders adjacent to 11 and 13(or any other row of remainders adjacent to any integer) repeat after every sixth integer right to infinite. Under the column with a bold two (see table 1.2) there are only two possible remainders; 1 and 0 . Under the second column with a bold 3 there are only three possible remainders; 0 , 1and 2 . Therefore there are $2 \times 3$ ways of forming unique rows of remainders from integers 9 to 24 of table 1.2. Therefore the "prime" rows of remainders adjacent to 11 and 13 repeat after every sixth integer right up to infinite(check the pattern at the end of the paper) and that is the phenomenon that is also responsible for twin primes since 11 and 13 are prime numbers next to each other. The two types of prime numbers have been highlighted in red and blue so that the reader can see the so-called "prime numbers race". The rows of remainders adjacent to other integers are cyclic as well.
Since the rows of remainders repeat after every sixth integer we can use that pattern to predict the next prime integer in each set of prime numbers between 8 and 25 . Indeed $11+6,11+6+6$ are prime numbers. The method can be used to predict the primes in the other set as well; $13+6$ is prime nevertheless $13+6+6$ is not prime since equation $2 \leq x \leq \sqrt{n}$ (where $x$ is 2 and3) applies to prime numbers between 8 and 25 . After 25 the method of adding intervals is no longer $100 \%$ reliable and that would be explained in due course nevertheless all prime numbers of each set would always have a difference that is a multiple of six. The repetition of rows of remainders is also noticeable in other integers. For example all multiples of 6 have a repeating row of remainders 00 . The row of remainders ( 02 ) adjacent to 8 repeats after every sixth integer from 8 to infinite as you can see at the table at the end of this paper. If we look at the table at the long table we see that the rows of remainders exist in six main sets ( $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}, \mathrm{~S}_{5}, \mathrm{~S}_{6}$ );

| $\mathbf{S}_{\mathbf{1}}$ | $00 \ldots$ | $6,12,18 \cdots \infty$ |
| :--- | :--- | :--- |
| $\mathbf{S}_{\mathbf{2}}$ | $11 \ldots$ | $7,13,19 \cdots \infty$ |
| $\mathbf{S}_{\mathbf{3}}$ | $02 \ldots$ | $8,14,20 \cdots \infty$ |
| $\mathbf{S}_{\mathbf{4}}$ | $10 \ldots$ | $9,15,21 \cdots \infty$ |
| $\mathbf{S}_{\mathbf{5}}$ | $01 \ldots$ | $10,16,22 \cdots \infty$ |
| $\mathbf{S}_{\mathbf{6}}$ | $12 \ldots$ | $11,17,23 \cdots \infty$ |

Table 1.3
In the table above, we have divided all whole numbers into six sets; set $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$ and $S_{6}$. The middle column of the table indicates the first two remainders of the repeating row adjacent to every element of each set. For example the rows of remainders of set $S_{2}\{7,13,19 \ldots\}$ all begin with 1,1 . The third column is the list of the elements (integers) of each set. We did not include whole numbers from 0 to 5 but they too can be manually included in these sets as well even though they have different rows of remainders. Whole number 0 can be manually inserted into set $S_{1}$, since $0+6=6$. Whole number 1 belongs to $S_{2}$, since $1+6=7$ and so on. We are trying to demystify prime numbers so that the reader realises that prime numbers are just members of one of the many arithmetic series based on the repetition of the row of remainders after every sixth, thirtieth integer etc. Sets $S_{2}$ and $S_{6}$ are unique because there are arithmetic
series patterns that include numbers whose rows of remainders are devoid of zeros, which we call prime numbers. Some members of these two sets are, however, not prime, for example $25,35,49$, etc. Nevertheless the reader has been given a clear proof why prime numbers can form so many arithmetic series patterns. They belong to sets $S_{2}$ and $S_{6}$, which are themselves arithmetic series patterns.

### 1.3 Arithmetic series beyond integer 24

After 24 the pattern of remainders has to include three rows because the elements of the set $2 \leq x \leq \sqrt{n}$ are now 2,3 , and 5 and that is only valid between 24 and 49 . Within that region of integers a similar row repeats after $30(2 \times 3 \times 5)$ integers. If 29 's row of reminders are of interest, such a row of remainders repeats at $29+30$ and the result would be 59 ( 59 is prime!). We can add 30 to both 31 and 37 and still obtain prime numbers even though we would be violating the equation $2 \leq x \leq \sqrt{n}$ since we used the interval 30 (which applies to integers from 25 to 48 only). After 48 the interval to be used to predict the next prime number becomes $210(2 \times 3 \times 5 \times 7)$. That interval is only relevant from 49 to 120 . Nevertheless $59+210 ; 61+210$; $67+210$ and $73+210$ are all prime (check the pattern at the end of the paper). Therefore we realize that each row of remainders does indeed repeat after a certain interval that is always a multiple of 6 or of the previous intervals but it would be having extra columns of remainders because these patterns of remainders for integers greater than 24 always overlap into other regions of integers where they do not apply. For example the rows of remainders adjacent to 29 or 31 repeat after every $30^{\text {th }}$ integer up to infinite but wherever they repeat they would be in a region of integers that have extra columns of remainders. The overlapping of intervals into intervals of the next prime squares makes it impossible to predict prime numbers greater than 24 with $100 \%$ certainty. Nevertheless each row of remainders adjacent to any integer repeats after $a \times b \times c \ldots n$, where $a, b, c$, up to $n$ are the green bold integers at the top of the remainders column (the elements of set $2 \leq x \leq \sqrt{n}$ ). Wherever a new column of remainders is introduced, each arithmetic progression subdivides or branches into even more sets.
As an example, from 9 to 24 the rows of remainders adjacent to prime numbers are only one-one $(1,1)$ and one-two $(1,2)$ see table 1.2 and table 1.3. From 25 to 48 , the one-one row of remainders subdivides into one-one-one $(1,1,1)$, one-one-two( $1,1,2$ ) and one-one-three $(1,1,3)$ rows of remainders. The one-two $(1,2)$ row of remainders beginning at integer 11 also subdivides as can be seen at the pattern of remainders at the end of the paper.
However, all the remainders repeat after an interval that is a multiple of six due to the fact that the first two elements of the set $2 \leq x \leq \sqrt{n}$ are always 2 and 3 . In fact, new sub-arithmetic series patterns begin at every prime square of the pattern of remainders; the common difference being the product of the prime numbers in the set2 $\leq x \leq \sqrt{n}$. Nevertheless, that is unimportant and cannot enable us to predict prime numbers greater than 24 with total accuracy but it enables us to easily explain why twin primes, and some other semi-regular patterns are found in prime numbers right to infinite.

### 1.4 Are prime numbers infinite?

Euclid (about 325BC -265BC) proved that there are an infinite number of prime numbers (Martin H . Weissman, why prime numbers still fascinate mathematicians 2,300 years later, April 2, 20186.47 a.m. EDT). We want to use the table/pattern of remainders at the end of this paper to show that there are an infinite number of prime numbers(let the reader refer to the table at the end of the paper). Suppose that 11 is the greatest prime number such that all other numbers greater than it are composite. Therefore that means there would not be a need to introduce the sixth column of remainders adjacent to 169 (if 11 is the greatest prime then 13 is not a prime number hence 169 cannot be a prime square). Therefore that means 169 itself would be prime! Furthermore all those prime numbers rows of remainders occurring between 121 to 168
would continue to repeat at regular intervals to infinite thus "creating" more primes! In fact the absence of the sixth row adjacent to 169 would enable a prediction of prime numbers from 169 to infinite with onehundred per cent certainty, since only the same rows of remainders would be recurring without a need to add extra columns of remainders!
Thus a termination of prime numbers along the number line causes the square of that greatest prime number to be prime and causes non-primes like 169 and 221 to be prime! Such a phenomenon creates even more prime numbers along the number line. Therefore a cessation of prime numbers along the number line means the square of the last prime number would be prime and the way these rows of remainders repeat means an occurrence of more prime numbers beyond the "last prime"! So the very cessation of prime numbers along the number line makes the square of the largest prime number prime. That is an impossibility since a square cannot be prime. Therefore the above statement is a proof that prime numbers exist right to infinite.
NB. This above proof is only valid assuming that the algorithm used at the end of this paper to calculate or identify prime numbers is as natural and obvious or solid as the whole number line itself.

### 1.5 Linear prime numbers graphs

In section 1.3 we have shown you that prime numbers can be divided into two main sets; the set whose initial prime number is 11 while the other set is a set whose smallest integer is 13 . As we showed earlier, the former set has its row of remainders that always begins with 1 and 2 . The other set has a row that always begins with 1 and 1 . That is why we call all prime numbers of the set $S_{6}$, that includes 11 , as one-two prime numbers. The other set $\mathrm{S}_{2}$, is called the one-one prime numbers set.
If you look carefully at the prime numbers at the end of this paper, you will realise that one-two and oneone prime numbers are just terms of an arithmetic series that begin at 11 and 13 respectively (all other integers are also elements of their unique arithmetic series patterns as well that continually subdivide at every prime square). The general term $a_{n}$ describing the one-two arithmetic series is
$a_{1,2}=11+6 x$, where $x$ is a whole number, and the terms being
$11,17,23,29 \cdots \infty$
The one-one arithmetic series general term is;
$a_{1,1}=13+6 x$, where $x$ is a whole number, and the terms being $13,19,25,31 \cdots \infty$
Looking at the above general terms of both equations, it becomes apparent that prime numbers are just one of the terms (maybe random) of a specific arithmetic series described by the above equations.


## Fig1.1

The graph shown above is of equations $a_{1,2}=11+6 x$ and $y_{1,1}=13+6 x$ respectively. It is a plot of prime numbers of both sets against $x$, check the table of values below. The non-prime numbers were deliberately omitted; only prime numbers were used. Due to the fact that the linear equations are too close, both graphs appear as a single line with gradient 6 . Therefore whatever prime number greater than 9 that you can think of; it will lie on either line $a_{1,2}=11+6 x$ or $a_{1,1}=13+6 x$, even if the lines are extrapolated to infinite.


|  |  | 4 |  |  | 7 |  |  | 10 |  |  | 13 |  |  | 16 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 79 | 1 | 257 |  | 1 |  | 439 | 1 | 617 | 619 | 0 | 797 |  | 1 | 977 |
|  |  | 4 |  |  | 7 |  |  | 10 |  |  | 13 |  |  | 16 |  |
| 83 |  | 2 | 263 |  | 2 | 443 |  | 2 |  |  | 1 |  |  | 2 | 983 |
|  |  | 4 |  |  | 7 |  |  | 10 |  |  | 13 |  |  | 16 |  |
| 89 |  | 3 | 269 | 271 | 3 | 449 |  | 3 |  | 631 | 2 | 809 | 811 | 3 |  |
|  |  | 4 |  |  | 7 |  |  | 10 |  |  | 13 |  |  | 16 |  |
|  | 97 | 4 |  | 277 | 4 |  | 457 | 4 |  |  | 3 |  |  | 4 |  |
|  |  | 4 |  |  | 7 |  |  | 10 |  |  | 13 |  |  | 16 |  |
| 101 | 103 | 5 | 281 | 283 | 5 | 461 | 463 | 4 | 641 | 643 | 4 | 821 | 823 | 5 |  |
|  |  | 4 |  |  | 7 |  |  | 10 |  |  | 13 |  |  | 16 |  |
| 107 | 109 | 6 |  |  | 6 | 467 |  | 5 | 647 |  | 5 | 827 | 829 | 6 |  |
|  |  | 4 |  |  | 7 |  |  | 10 |  |  | 13 |  |  |  |  |
| 113 |  | 7 | 293 |  | 7 |  |  | 6 | 653 |  | 6 |  |  |  |  |
|  |  | 4 |  |  | 7 |  |  | 10 |  |  | 13 |  |  |  |  |
|  |  | 8 |  |  | 8 | 479 |  | 7 | 659 | 661 | 7 | 839 |  |  |  |
|  |  | 4 |  |  | 7 |  |  | 10 |  |  | 13 |  |  |  |  |
|  | 127 | 9 |  | 307 | 9 |  | 487 | 8 |  |  | 9 |  |  |  |  |
|  |  | 5 |  |  | 8 |  |  | 10 |  |  | 14 |  |  |  |  |
| 131 |  | 0 | 311 | 313 | 0 | 491 |  | 9 |  | 673 | 0 |  | 853 |  |  |
|  |  | 5 |  |  | 8 |  |  | 11 |  |  | 14 |  |  |  |  |
| 137 | 139 | 1 | 317 |  | 1 |  | 499 | 0 | 677 |  | 1 | 857 | 859 |  |  |
|  |  | 5 |  |  | 8 |  |  | 11 |  |  | 14 |  |  |  |  |
|  |  | 2 |  |  | 2 | 503 |  | 1 | 683 |  | 2 | 863 |  |  |  |
|  |  | 5 |  |  | 8 |  |  | 11 |  |  | 14 |  |  |  |  |
| 149 | 151 | 3 |  | 331 | 3 | 509 |  | 2 |  | 691 | 3 |  |  |  |  |
|  |  | 5 |  |  | 8 |  |  | 11 |  |  | 14 |  |  |  |  |
|  | 157 | 4 |  | 337 | 4 |  |  | 3 |  |  | 4 |  | 877 |  |  |
|  |  | 5 |  |  | 8 |  |  | 11 |  |  | 14 |  |  |  |  |
|  | 163 | 5 |  |  | 5 | 521 | 523 | 4 | 701 |  | 5 | 881 | 883 |  |  |
|  |  | 5 |  |  | 8 |  |  | 11 |  |  | 14 |  |  |  |  |
| 167 |  | 6 | 347 | 349 | 6 |  |  | 5 |  | 709 | 6 | 887 |  |  |  |
|  |  | 5 |  |  | 8 |  |  | 11 |  |  | 14 |  |  |  |  |
| 173 |  | 7 | 353 |  | 7 |  |  | 6 |  |  | 7 |  |  |  |  |
|  |  | 5 |  |  | 8 |  |  | 11 |  |  | 14 |  |  |  |  |
| 179 | 181 | 8 | 359 |  | 8 |  | 541 | 7 | 719 |  | 8 |  |  |  |  |

Table 1.4
Equations $a_{1,2}$ or $a_{1,1}$ can be generalised to $y=6 x+c$, where $c$ is either 11 or 13 . Therefore, if you are moving along the number line of the whole numbers $\mathbb{Z}_{0}$, and you are standing right on a prime number, whether a one-one or one-two, you could use the above equation to guess the position of the next prime number of either set. For example, assume that you are standing on prime number 17 and you want to guess both the next one-one prime and the one-two prime. Knowing that 17 is a one-two prime, you would guess the next prime by adding 6 . Since the corresponding terms of these two arithmetic series have a difference of two, you would only need to add $8(6+2)$ to estimate the next one-one prime, which unfortunately would be 25 . Nevertheless if you add 6 to $17+6$, you get 29 . If you add $8(6+2)$ to 23 to guess the next one-one prime you get 31. Therefore the author assumes the reader realises again that prime numbers are just elements of an arithmetic series.

### 1.6 Modified prime numbers sieve

A typical prime numbers sieve includes all whole numbers up to a certain integer $n$. Since it is known that prime numbers are only terms of a certain arithmetic series patterns, there is no need to include every term in the sieve, check example below. Only the arithmetic series terms, $6 x+11$ and $6 x+13$ are included in the sieve.
NB
Integers from 1 to 8 have to be manually included though. Integers 1,2 and 3 have a difference of 1 . Their pattern of "prime numbers" breaks down at 4, where another pattern of prime numbers begins whose common difference is $2[5,7]$. The pattern breaks down at 9 , where two patterns of arithmetic series emerge with a common difference of six. Such a pattern breaks down at the next prime square 25 . Nevertheless 1 is not considered a prime number.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 11 |  | 13 |  |  |  | 17 |  | 19 |  |
|  |  | 23 |  | 25 |  |  |  | 29 |  |
| 31 |  |  |  | 35 |  | 37 |  |  |  |
| 41 |  | 43 |  |  |  | 47 |  | 49 |  |
|  |  | 53 |  | 55 |  |  |  | 59 |  |
| 61 |  |  |  | 65 |  | 67 |  |  |  |
| 71 |  | 73 |  |  |  | 77 |  | 79 |  |
|  |  | 83 |  | 85 |  |  |  | 89 |  |
| 91 |  |  |  | 95 |  | 97 |  |  | 100 |

## Table 1.5

### 1.7 Odd numbers Ulam spiral

It is claimed that odd prime numbers cannot form a spiral (see many failed spirals on Wolfram). Based on what you have learnt so far, you know that it is a mathematical error to highlight all odd numbers and hope to get a spiral. The odd numbers to be highlighted are one-one and one-two odd numbers of the sets; $S_{6}=$ $\{6 x+11\}$ and $S_{2}=\{6 x+13\}$ (see table below).
If we then highlight the odd numbers of the mentioned sets we obtain a pattern similar to that obtained with prime numbers. See figure 1,2 . Such a result confirms our theory that prime numbers are just elements of an ordinary arithmetic series pattern.

| x | $6 x+$ $11$ | $\begin{aligned} & 6 x+ \\ & 13 \end{aligned}$ | $\mathbf{x}$ | $\begin{aligned} & 6 x+ \\ & 11 \end{aligned}$ | $\begin{aligned} & 6 x+ \\ & 13 \end{aligned}$ | x | $\begin{aligned} & 6 x+ \\ & 11 \end{aligned}$ | $6 x+$ $13$ | x | $\begin{aligned} & 6 x+ \\ & 11 \end{aligned}$ | $6 x+$ $13$ | x | $6 x+$ $11$ | $6 x+$ $13$ | $\mathbf{x}$ | $\begin{aligned} & 6 x+ \\ & 11 \end{aligned}$ | $6 x+$ $13$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 2 |  |  | 5 |  |  |  |  |  | 11 |  |  | 14 |  |  |
|  |  |  | 9 | 185 | 187 | 9 | 365 |  | 89 | 545 |  | 8 | 725 |  | 9 | 905 |  |
|  |  |  | 3 |  |  | 6 |  |  |  |  |  | 11 |  |  | 15 |  |  |
| 0 |  |  | 0 |  |  | 0 | 371 |  | 90 | 551 | 553 | 9 | 731 |  | 0 |  | 913 |
|  |  |  | 3 |  |  | 6 |  |  |  |  |  | 12 |  |  | 15 |  |  |
| 1 |  |  | 1 |  |  | 1 | 377 |  | 91 |  | 559 | 0 | 737 |  | 1 | 917 |  |
|  |  |  | 3 |  |  | 6 |  |  |  |  |  | 12 |  |  | 15 |  |  |
| 2 |  | 25 | 2 | 203 | 205 | 2 |  | 385 | 92 |  | 565 | 1 |  | 745 | 2 | 923 | 925 |
|  |  |  | 3 |  |  | 6 |  |  |  |  |  | 12 |  |  | 15 |  |  |
| 3 |  |  | 3 | 209 |  | 3 |  | 391 | 93 |  |  | 2 | 749 |  | 3 |  | 931 |



## Table 1.6



## Fig.1.2

The reader can clearly see the regular patterns obtained in the spiral above. The spiral begins at integer 25. The reason why spirals of odd numbers usually fail is because the authors of such spirals fail to realise that prime numbers are elements of an arithmetic series and odd numbers to be used to form such spirals should be elements of an arithmetic series as well.

### 1.7 Conclusion

Despite the fact that no coherent prime numbers pattern is known beyond 24 , it is still possible to derive a general formula for calculating the probability of a prime number "occurring'" between any two known consecutive prime squares. Bernard Riemann (see proceedings of the Royal Society: The first digit frequencies of prime numbers and Riemann zeta zeros, by B. Luque and Lucas Lacasa) and Gauss each contributed significantly towards calculating the distribution of prime numbers. We will use the pattern of the row of remainders at the end of this book to derive both men's formulae.

As an example, we calculate the probability that 13 is prime( 13 lies between the prime squares 9 and 25 ) as follows:
The probability that a remainder in the first column of remainders between 9 and 25 is not zero is $1 / 2$ since in the first column (under bold 2 of table 1.2) there are only two possibilities; 0 or 1 . In the second
column there are three possibilities; 0,1 and 2 , therefore the probability that a remainder in the second column is not 0 is $2 / 3$. For an integer to be prime both remainders in both columns must not be zero. Therefore the probability that both remainders of 13 's row of remainders are not zero in both columns is $\frac{1}{2} \times \frac{2}{3}=\frac{2}{6}$. So the probability that 13 or any integer from 9 to 24 is prime is $\frac{2}{6}$. The theoretical probability of finding a prime integer between 24 and 49 is $\frac{1}{2} \times \frac{2}{3} \times \frac{4}{5}=\frac{8}{30}$
For interest sake, the theoretical probability that a number from 4 to 8 is prime is $\frac{1}{2}$ whereas the experimental one is $\frac{2}{5}$. The table 1.5 shows comparisons between experimental, theoretical probabilities, and $\frac{1}{\ln x}$ between indicated consecutive prime squares. (Experimental probability is obtained by dividing the difference between any two consecutive prime squares by the number of prime numbers within that range)

The general formula for the theoretical probability is as shown below:
$\frac{a-1}{a} \times \frac{b-1}{b} \times \frac{c-1}{c} \ldots \frac{\sqrt{x}-1}{\sqrt{x}}=\left(1-\frac{1}{a}\right) \times\left(1-\frac{1}{b}\right) \times\left(1-\frac{1}{c}\right) \ldots \times\left(1-\frac{1}{\sqrt{x}}\right) \sim \frac{1}{\operatorname{lnx}}$.
NB. The above equation is a form of Leonard Euler's product formula, where $\mathrm{a}=2, \mathrm{~b}=3, \mathrm{c}=5$ and so on $(2$, 3,5 and $\sqrt{x}$ are the bold numbers at the top of all the columns of remainders between the two consecutive prime squares of interest, see pattern at the end of this paper). As an example, the theoretical probability of finding a prime number between 49 and 120 is $\frac{1}{2} \times \frac{2}{3} \times \frac{4}{5} \times \frac{6}{7}=\frac{24}{105}$.
It is obvious that as we continue to multiply more and more fractions less than one, the product approaches zero. That is what Gauss observed in his analysis of the prime numbers.

| range | Theoretical <br> probability | Experimental <br> probability |  | $\frac{1}{\ln x}$ |  |
| :--- | ---: | ---: | ---: | ---: | :---: |
| $4-8$ | 0.5 | 0.4 | 0.558 |  |  |
| $9-24$ | 0.33 | 0.31 | 0.357 |  |  |
| $25-48$ | 0.27 | 0.25 | 0.278 |  |  |
| $49-120$ | 0.23 | 0.21 | 0.225 |  |  |
| $121-168$ | 0.21 | 0.19 | 0.201 |  |  |
| $169-288$ | 0.19 | 0.18 | 0.184 |  |  |
| $289-360$ | 0.18 | 0.15 | 0.173 |  |  |
| $361-528$ | 0.17 | 0.16 | 0.164 |  |  |
| $529-840$ | 0.16 | 0.15 | 0.153 |  |  |
| $841-960$ | 0.16 | 0.13 | 0.147 |  |  |
| $961-1368$ | 0.15 | 0.14 | 0.142 |  |  |
| $1369-1680$ | 0.15 | 0.14 | 0.136 |  |  |
| $1681-1848$ | 0.15 | 0.12 | 0.134 |  |  |
| $1849-2208$ | 0.14 | 0.13 | 0.131 |  |  |
| $2209-2808$ | 0.14 | 0.13 | 0.128 |  |  |
| $2809-3480$ | 0.14 | 0.12 | 0.124 |  |  |
| $3481-3720$ | 0.13 | 0.13 | 0.122 |  |  |
| $3721-4488$ | 0.13 | 0.12 | 0.120 |  |  |
| $4489-5040$ | 0.13 | 0.12 | 0.118 |  |  |
| $5041-5328$ | 0.128 | 0.105 | 0.117 |  |  |


| $5329-6240$ | 0.126 | 0.116 | 0.115 |
| :--- | ---: | ---: | ---: |
| $6241-6888$ | 0.124 | 0.116 | 0.114 |
| $6889-7920$ | 0.123 | 0.111 | 0.112 |
| $7921-9408$ | 0.122 | 0.11 | 0.110 |
| $9409-10200$ | 0.120 | 0.112 | 0.109 |
| $10201-10608$ | 0.119 | 0.104 | 0.108 |
| $10609-11448$ | 0.118 | 0.105 | 0.107 |
| $11449-11880$ | 0.117 | 0.097 | 0.107 |
| $11881-12768$ | 0.116 | 0.101 | 0.106 |
| $12769-16128$ | 0.114 | 0.106 | 0.104 |

## Table 1.5

Fig 1.3


The graph above is a comparison of the experimental probability, the theoretical one, and of Gauss's equation $\frac{1}{\ln x}$. We have modified Gauss's equation so that instead of just dividing positive integer $n$ by $\ln x$, the chosen range is only between two consecutive prime squares just like we do with the theoretical probability formula. If you compare the values of table $1.5, \frac{1}{\ln x}$ is an excellent approximation or best fit of the (oscillating) experimental probability graph. To calculate $\frac{1}{l n x}$, for any range of prime squares, we take the average of those consecutive prime squares and calculate their natural logarithm. The reciprocal of $\ln x$ is the probability of finding a prime number within that region between any two integers.

Nevertheless the theoretical approximation is also a good approximation of the prime numbers distribution but our inclusion of it is so that the reader can see the origins of Gauss and Riemann's equations.


Fig.1.4
Figure 1.4 is a plot of probabilities between randomly selected consecutive prime pairs using equation $\frac{1}{\ln x}$ and the theoretical one. As you can see they are fairly parallel nevertheless the former is always a better approximation.

| range | theoretical | $\frac{1}{\ln x}$ |
| :--- | ---: | ---: |
| $2^{\wedge} 2-\left(3^{\wedge} 2-1\right)$ | 0.5 | 0.56 |
| $7^{\wedge} 2-\left(11^{\wedge} 2-1\right)$ | 0.23 | 0.23 |
| $13^{\wedge} 2-\left(17^{\wedge} 2-1\right)$ | 0.19 | 0.18 |
| $23^{\wedge} 2-\left(29^{\wedge} 2-1\right)$ | 0.16 | 0.15 |
| $31^{\wedge} 2-\left(37^{\wedge} 2-1\right)$ | 0.15 | 0.14 |
| $43^{\wedge} 2-\left(47^{\wedge} 2-1\right)$ | 0.1417 | 0.1313 |
| $107^{\wedge} 2-\left(109^{\wedge} 2-1\right)$ | 0.1169 | 0.1068 |
| $173^{\wedge} 2-\left(179^{\wedge} 2-1\right)$ | 0.10720 | 0.0967 |
| $233^{\wedge} 2-\left(239^{\wedge} 2-1\right)$ | 0.10159 | 0.09151 |
| $283^{\wedge} 2-\left(293^{\wedge} 2-1\right)$ | 0.09745 | 0.08829 |
| $373^{\wedge} 2-\left(379^{\wedge} 2-1\right)$ | 0.09405 | 0.08432 |
| $439^{\wedge} 2-\left(443^{\wedge} 2-1\right)$ | 0.09154 | 0.08211 |
| $503^{\wedge} 2-\left(509^{\wedge} 2-1\right)$ | 0.08943 | 0.08030 |
| $587^{\wedge} 2-\left(593^{\wedge} 2-1\right)$ | 0.08766 | 0.07837 |
| $647^{\wedge} 2-\left(653^{\wedge} 2-1\right)$ | 0.08611 | 0.07720 |
| $733^{\wedge} 2-\left(739^{\wedge} 2-1\right)$ | 0.08462 | 0.07574 |
| $821^{\wedge} 2-\left(823^{\wedge} 2-1\right)$ | 0.08332 | 0.07450 |
| $883^{\wedge} 2-\left(887^{\wedge} 2-1\right)$ | 0.08225 | 0.07369 |
| $971^{\wedge} 2-\left(977^{\wedge} 2-1\right)$ | 0.08129 | 0.07266 |
| $1009^{\wedge} 2-\left(1013^{\wedge} 2-1\right)$ | 0.08088 | 0.07226 |

## Table 1.6

If you go back to table 1.5 and compare $\frac{1}{\ln x}$ versus the experimental probability you cannot help to be impressed by its accuracy. Multiplying the difference between two consecutive prime squares by the probability corresponding to the range between those prime squares gives you an approximation of the number of prime numbers. For example the logarithmic probability between 16128 and 12769 is 0.104 whereas the theoretical one is 0.114 . Since the difference between 16129 and 12769 is 3360 . Multiplying 3360 by each probability gives 383 and 349 respectively. The actual number of prime numbers between this range is 357 ! The reason why the theoretical method is important is that it leads to Bernard Riemann's formula as we will prove below.
Going back to the Gauss's equation, we see that the number of prime numbers between any two prime squares $N^{2}$ and $n^{2}$ is;
$\frac{1}{\ln N^{2}}\left(N^{2}-n^{2}\right)$, where $\frac{1}{\ln N^{2}}$ is the probability of finding a prime number within two consecutive prime squares (which is also the method you use to estimate the number of prime squares using the theoretical probability method).

$$
\frac{1}{\ln N^{2}}\left(N^{2}-n^{2}\right) \text { can be re-written as } \frac{1}{\ln N^{2}}(N+n)(N-n)
$$

As $N$ and $n$ get closer and closer $N+n$ approaches $2 N$ while $N-n$ reduces to $d N$
Thus equation $\frac{1}{\ln N^{2}}\left(N^{2}-n^{2}\right)$ becomes

$$
\int_{n^{2}}^{N^{2}} \quad \frac{1}{\ln N^{2}} 2 N d N .
$$

Taking $N^{2}=t$, and $d t=2 N d N$ ( where $\ln N^{2} \geq 2$, since 2 is the smallest prime) we see that
$\int_{n^{2}}^{N^{2}} \quad \frac{1}{\ln N^{2}} 2 N d N=\frac{d t}{\ln t}$,
which is the logarithmic function deduced by Riemann. Nevertheless $l i\left(N^{2}\right)-l i\left(n^{2}\right)$ is always almost equal to $\frac{1}{\ln N^{2}}\left(N^{2}-n^{2}\right)$ as can be seen in the example below.
We want to use equation $\frac{1}{\ln N^{2}}\left(N^{2}-n^{2}\right)$ and $\operatorname{li}(\mathrm{x})$ to calculate the number of prime numbers between consecutive two prime squares $16127^{2}(260080129)$ and $16111^{2}(259564321)$. In the former equation we find $\frac{1}{\ln x}$ where $x$ is the average of the two prime squares. $\frac{1}{\ln x}=0.0516115$
$\left(16127^{2}-16111^{2}\right) \times 0.0516115=26621$ prime numbers
$\mathrm{Li}(260080$ 129) $-\operatorname{li}(259564321)=26621$ prime numbers

Despite equal results above, Riemann's equation is the best in that it gives a good approximation of prime numbers between any two integers you can think of even if they are not consecutive prime squares. The author concludes this paper hoping that the reader has understood and appreciates the ultimate prime numbers algorithm that explains why prime numbers behave the way they do. Prime numbers are not a mystery but merely special members of arithmetic series patterns. The remainders pattern might be tedious but it gives the reader an insight about the nature of prime numbers and hopefully it would enable some researchers to solve their own prime numbers problems.

## References

1. J.J O'Connor and E. F. Robertson. January 1999. History of Eratosthenes, http://www-groups.dcs.st-and.ac.uk/history/Biographies/Eratosthenes.html
2. mathworld.wolfram.com/PrimeSpiral.html
3. David Conlon, Jacob Fox, and Yufei Zhao. Green- Tao theorem; An Exposition. http://people.maths.ox.ac.uk/~conlond/green-tao-expo.pdf
4. J.J O'Connor and E. F. Robertson. Euclid of Alexandria. http://www-history.mcs, standrews.ac.uk/Biographies/Euclid.html. JOC/EFR ©January 1999
5. B. Luque and Lucas Lacasa. Proceedings of the Royal Society, 2009, The first digit frequency of prime numbers and Riemann zeta zeros.
6. Martin Weissman. April 2, 2018. 6.47 a.m. EDT Why prime numbers still fascinate mathematicians, 2300 years later.
