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Abstract 

The allocation of trucks in open pit mines is a field with great potential for optimizing resources and 

applying advanced computer modeling techniques, mainly because many companies still choose to use 

manual allocation, which is premised on the decisions made by the operator, being subject to common 

failures and not reaching the maximum potential that the equipment can provide. Therefore, this work 

focuses on optimizing the allocation of trucks in order to increase production, reducing queue time and 

keeping ore grades within proper limits. The proposed algorithm was based on the differential evolution 

technique, where two types of mutation operators were used: rand/1/bin and best/1/bin, thus verifying 

the most suitable to solve the problem. The trucks were allocated in the ore loading and unloading process, 

aiming to improve the production capacity in a virtual mine. The results brought a convergence to the 

maximum global production, in addition to which, the allocation of unnecessary transport equipment to 

the planned routes was avoided. The two mutation operators compared had certain advantages and 

disadvantages, each better adapting to certain types of situations. The proposed technique can still be 

extended to other areas, for example, in the transport of grain on the road network or in the 

implementation of an allocation in freight cars that transport grain. 
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1. Introduction  

Optimizing resources and cutting expenses are no longer a trend and are now necessary for a company to 

achieve the goals to achieve success and generate profits. With the increasing complexity of operations, it 

became necessary to allocate resources more rationally. 

This new organizational culture has changed many business practices in recent years. The great 

technological revolution made processes more dependent on the implementation of automation and the 

development of new technologies. Process studies became more thorough and periodically revised. In the 

mining area it was no different, as companies invested heavily in research and innovation within their 

industrial processes. However, the mining area did not receive as much attention from organizations as the 

ore treatment sectors. For this reason, interest in this area has been aroused for some years, resulting in 

massive research and investments to optimize the production and extraction of ore (DE MELO et al, 2013). 
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According to Ibram (Brazilian Mining Institute) (2021), mining should receive investments in the order of 

R$ 38 billion between 2021 and 2025. This investment enables the implementation of new production and 

transport methodologies. The manual allocation of trucks at the mine is still widely used in ore transport, 

often generating losses in production due to queue time and idleness of transport equipment. Optimizing 

the dispatch of trucks on routes in open pit mines has become a new focus of investments to reduce costs 

and increase production. 

According to some statistics, transport costs are believed to account for more than 50% of the total 

operating costs in mines that use trucks for transport (ZHANG; XIA, 2015). Aiming at the high costs 

associated with problems in the dispatch of trucks, the creation of an algorithm based on differential 

evolution was proposed in the present work, aiming at increasing production and reducing expenses, 

resulting in a reduction in queue time and a smaller number of idle trucks. 

Differential evolution (DE) is an artificial intelligence method that seeks evolutionary optimization through 

natural selection mechanisms and population genetics, and uses mutation, crossing and selection operators 

to generate new individuals in search of the most adapted. It was proposed by Storn and Price in 1995 in a 

series of articles and, since then, it has attracted the interest of researchers and professionals. (OPARA; 

ARABAS, 2019). 

To develop the study of allocation of trucks in open pit mines, the mine characteristics and statistical 

production data were studied, such as capacity of ore fronts, loading and unloading time of trucks, mixture 

contents, among others. An algorithm was proposed with the main objective of increasing the production 

of ore fronts in tons per hour, but respecting the existing restrictions such as minimum and maximum 

quality of mineral content, maximum amount of trucks per route, mineral production ahead of mining, 

among others. 

With the developed mathematical model, a differential evolution algorithm was applied, obtaining results 

such as maximum number of production, maximum allocation of trucks and number of trips per route. 

Furthermore, more than one mutation operator was compared within the evolutionary algorithm. 

The proposed model can serve as a basis for implementing the automation of the entire process. Using 

embedded technology, the variables can be captured by sensors on trucks and transmitted to a central 

controller whose processing will use the mathematical model developed to determine the optimal point of 

operation of the equipment. 

2. Literature Review

The optimization of truck dispatch in mines has attracted the interest of several researchers and companies 

in the area of logistics and optimization, aiming to reduce costs. Some optimization models for this problem 

have already been developed, using different methodologies, such as heuristic methods, or models based 

on artificial intelligence taking as reference the reduction of queues, costs and increased production. Some 

of these works are already consolidated and serve as a basis for future projects. 

Chanda and Deagdelen (1995) propose a Linear Programming model with the objective of maximizing 

economic gains and minimizing deviations in ore quality and tonnage. 

Merschmann (2002) developed a model in two modules. In the first of these, a Linear Programming 
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problem is solved and in the second, the simulation that allows using the Linear Programming solving data 

as input to the simulation is presented. The objective of the simulation is to optimize the process of blending 

the ore from various ore fronts, according to the plant's quality targets, and allocating vehicles to the 

appropriate fronts. 

In Alexandre's work (2010) a multiobjective optimization was proposed, where it was possible to evaluate 

the performance of two optimization algorithms in several different scenarios generated by the virtual 

simulation system, which allowed their validation and performance analysis. In addition to computational 

modeling, the simulation environment was also developed. 

Chang et al (2015) proposes a mixed integer programming model, in a heuristic approach with two 

improvement strategies considering the different yields and capacities of trucks. In Morad et al (2019) the 

truck allocation problem is analyzed through the development of the simulation-based optimization method 

(SBO), this method provides an integrated structure by the simultaneous combination of optimization and 

stochastic simulation of discrete events. 

The work by Liu and Chai (2019) addresses a special problem of optimizing truck routes in open-pit mines, 

based on minimizing time-varying transport energy consumption. A mixed-integer programming model is 

formulated to clearly describe the engineering problem and a series of constraints are deduced to strengthen 

the model. 

Based on some optimization concepts of the previous models, mainly on the restrictions to which the 

transport vehicles will be submitted, the optimization of the mineral total production will be addressed 

using the differential evolution as a method of resolution, determining the number of trucks needed and 

trips in each ore front and route. 

 

3. Metodology 

In this section, some general characteristics of open pit mines will be discussed, as well as some 

prerogatives and restrictions of the developed mathematical model and, finally, some aspects of the 

evolutionary evolution model that was used. 

 

3.1 Mine characteristics 

To develop the model, first you must know the characteristics and loading cycle of the truck to be allocated. 

The loading and transport cycle involves activities from the extraction of material to the point of unloading 

the material from it. The equipment involved is moved according to the production of the mining front, 

which is the material extraction point. 

In the truck's loading and tipping cycle, they are allocated to different routes depending directly on the 

method of choice and management of the appropriate routes for each one of them. The truck can be directed 

to the primary crusher or to a secondary feed point. This secondary feed point shortens unloading queues 

and reduces truck travel at points away from the crusher. 

The paths of the trucks will be allocated according to the DMT (Average Transport Distance). The DMT 

can be partial, the distance that the truck will travel between loading (Mining fronts) and unloading (Criller, 

Sterile Stacks), or per cycle, which represents the total distance presented in a Loading - Weighing - 
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Loading cycle . Figure 1 presents the description of the operating and idle times of trucks inside the mine, 

surveyed in the work by De Melo et al, (2013). 

Figure 1 – Time spent per activity in the truck loading cycle 

Based on the graph presented, it can be seen that the time spent queuing trucks in the mine is high compared 

to the total cycle, being equivalent to almost a quarter of the total truck time in the mine. This formation of 

queues becomes one of the main problems in the mine's operation, as it reduces the productivity of the ore 

fronts and alters the cycle time of the trucks. 

3.2 Model development 

The main objective of the model will be to maximize the mine's production, increasing the mining rate 

(tons/hour), and respecting production restrictions, among some, ore quality and maximum feed to the 

discharge point. The material will be transported by a heterogeneous fleet of trucks, which have two 

different load capacities. 

For the development of the model, data collected from a part of the mine that undergoes an automation 

process will be used, which consists of five mining fronts and three material discharge points, one discharge 

point being the primary crusher and the other two pile points of secondary power. The Equation 1 presents 

the objective function used:  

max ∑  ∑ 𝐶𝑎𝑝 ∗ 𝑋𝑖𝑗

𝑗 ∈𝐽

  ∀𝑓, ∀𝑗  ∈ 𝐹, 𝐽

𝑓 ∈ 𝐹

 (1) 

Where F is the set of ore fronts, Xij is the number of truck trips from front f to pile j and Cap is the transport 

capacity of the allocated truck. As previously mentioned, there will be 5 ore fronts connected to 2 feed piles 

and 1 primary crusher, these paths being carried out by 9 different routes. Thus, route 1, which represents 

the displacement from front 1 to feed point 1, will be equivalent to variable X11. Similarly, Front 1 - 

Primary Crusher (X12), Front 2 - Feed Point 1 (X21), Front 2 - Primary Crusher (X22), Front 3 - Feed 
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Point 1 (X31), Front 3 - Primary Crusher (X32 ), Front 4 - Primary Crusher (X42), Front 4 - Feed Stack 2 

(X43) and Front 5 - Feed Stack 2 (X53). 

From the optimization of the number of trips carried out by the allocated trucks, the total production of the 

mine is obtained, as well as the production taken from each ore front. The calculation basis for the work 

will be one hour. 

The first restriction addressed is related to the quality of the ore, which expresses the limit in which it is 

possible to exploit the material in a given pile. This type of restriction limits large differences in travel on 

a given front in relation to others, ensuring a mix of the ore within the appropriate quality limits so that it 

reaches the beneficiation plant with maximum utilization. This restriction has a lower and upper quality 

limit. In other words, the homogenization of the ore must take place in a way that it does not have a quality 

below what is required, but also does not have a high ore content, which may indicate a high exploitation 

of rich rocks, and a decrease in the mine's useful life. The restriction can be seen in Equation 2, for lower 

limit and Equation 3, upper limit: 

 

 

∑ Vc Pf 

f ∈ F

− VMc  ∑ Pf

f ∈ F

 ≥ 0 (2) 

 VZc ∑ Pf 

f ∈ F

+  ∑ Pf Vf

f ∈ F

 ≥ 0 (3) 

 

Where VZc is the maximum admissible grade for the ore, Vf is the forward ore grade f, Pf is the mining 

rate for the f-th front, Vc is the ore grade for path C and VMc is the grade minimum allowable.  

Another restriction used limits the number of trucks in front of ore with the main function of reducing the 

queue time during loading and unloading. For this calculation, it is necessary to know the unloading, 

loading, cycle times, among others. Each route has a cycle time different from the other due to the 

equipment allocated and transport distances. 

This restriction is defined by two equations, the maximum number of simultaneous trucks on the same path, 

Equation 4, and the maximum number of trucks and trips per hour respecting the production limit of the 

mining front, Equation 5. This restriction was derived from the model of Pinto (2007). 

 

 

𝑁𝑐𝑚𝑓 ≤
𝑇𝑑𝑒𝑠

𝑇𝑐𝑎𝑟𝑔
 (4) 

 𝐶𝑎𝑝 ∗
3600

𝑇𝑐
 𝑁𝑐𝑚𝑓𝐻𝑖𝑙 −  𝑃𝑓𝑡  ≥ 0 (5) 

 

Where Cap is truck loading capacity, Tcarg is truck loading time, Tc is cycle time, Ncmf is maximum number 

of trucks for each front f, Tdes is total travel time, Pft is production from the front by path, Hil is the vehicle 
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allocation i to route l. 

The restriction associated with the material discharge limit is related to the maximum material capacity that 

the crusher or the feed point can process, that is, this restriction will, in a way, limit the rate of extraction 

of ore from the mining fronts. The restriction can be expressed by Equation 6: 

𝑃𝑡  −  ∑ 𝑃𝑓

𝑓 ∈ 𝐹

 ≥ 0 (6) 

Where Pt is the maximum allowable mining rate, and Pf is the mining rate for the f-th front. 

Every existing mining front in a mine has a maximum production rate. One of the main reasons for this 

restriction is the limit on the mining rate that the loading equipment can generate. This restriction is 

represented by the model of Equation 7: 

𝑃𝑓 −  𝑌𝑚𝑓  ≤ 0      ∀ 𝑓 ∈ 𝐹 (7) 

Where Ymf is the maximum plowing rate for the fth front. All 5 ore fronts that are part of the problem 

addressed have their own limits and each one has a specific rhythm. 

We still have restrictions on the allocation of cargo and transport equipment depending on the model and 

cargo capacity. Loading equipment will be allocated at each loading point compatible with its production 

and loading characteristics. In addition, each type of truck will operate on a single front where the loading 

equipment is compatible with its capacity. Equations 8, 9 and 10 have the restrictions: 

∑ 𝐽𝑞𝑓

𝑞 ∈𝑄

 ≤ 1  ∀ 𝑞 ∈ 𝑄 (8) 

∑ 𝐽𝑞𝑓  ≤ 1  ∀ 𝑓 ∈ 𝐹

𝑓 ∈ 𝐹

 (9) 

∑ 𝐻𝑖𝑙  ≤ 1  ∀𝑓 ∈ 𝐹

𝑓 ∈ 𝐹

 (10) 

Where Hil is the representation of truck i allocated to route l, Q is the set of load equipment and Jqf is the 

load equipment q operating in front f. The first two equations show that only one cargo equipment 

compatible with each front will be allocated for loading. The variable Hil takes value 1 if the truck is 

correctly allocated to its route. If the transport equipment is not compatible with the allocated route, this 

variable will assume a value of 0.  

3.3 Differential evolution 

From the mathematical model with the objective function and restrictions, and using the collected data, an 

evolutionary algorithm model for the optimization of the problem will be proposed. The DE adjustment is 

based on the so-called hyperparameters, which are adjustable variables necessary for the model, and the 

main ones are: the weight of the difference used (F), the probability of occurrence of recombination (CR), 
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the number of individuals/vectors maintained in the population (Np) and the number of generations carried 

out during the process. (ZINI, 2009). 

In solving the problem, methods based on penalizing infeasible individuals, who are not able to meet the 

conditions, were used. Therefore, less able individuals are penalized according to violations of the 

restrictions. 

In the case of the mutation operator, results from two different operators will be compared. The first is 

random mutation, which operates by randomly choosing three distinct individuals among all the N that 

make up the initial population. This combination gives rise to new individuals, called donor vectors, by 

adding the weighted difference between two randomly chosen individuals from the initial population to a 

third individual who is also randomly chosen with uniform distribution from the original population, given 

by the equation: 

 𝑉𝑞 =  𝑋𝛼 + 𝐹(𝑋𝛽 − 𝑋𝛾)   (11) 

 

In this equation Vq is the created vector, F is the factor that weights the difference of individuals, and Xα,Xβ 

and Xγ are the random individuals chosen from the population. We also have the crossover process that 

uses for comparison the best candidate of the current generation (Xbest), to be added and result in the 

individuals of the next generation: 

 𝑉𝑞 =  𝑋𝑏𝑒𝑠𝑡 + 𝐹(𝑋𝛽 − 𝑋𝛾) (12) 

 

After the mutation occurs the crossing operation, where the donor vectors are combined with the 

components of another vector chosen randomly, called the target vector, in order to generate the vector 

called experimental. At the end of this operation, all crossed individuals will form a new population of the 

same size and dimension as the populations obtained previously. For crossing the binary method was used. 

This method consists of crossing individual Io, selected from the original population, and Im, selected from 

the fined population, resulting in a new individual Ic, and the crossover coefficient (Cr) will be the threshold 

value to determine the origin of the gene that will be transmitted to the new individual. The crossover 

equation is defined by: 

 

 
𝐼𝑐

𝑖𝑗
=  𝐼𝑚 

𝑖𝑗
𝑠𝑒 𝑟𝑎𝑛𝑑𝑖 ≤ 𝐶𝑟 𝑜𝑢 𝑗 = 𝑘 (13) 

 
𝐼𝑐

𝑖𝑗
=  𝐼𝑜 

𝑖𝑗
 , 𝑐𝑎𝑠𝑜 𝑐𝑜𝑛𝑡𝑟á𝑟𝑖𝑜 (14) 

 

In which (j, k = 1,2,...,N) and Cr ∈ [0,1] . From the equation we can see that every time the random value 

is greater than the crossover coefficient, the gene that will be chosen is that of the fined individual Im, 

otherwise the gene of Io will be passed on. The combination of these random mutation methods with binary 

type crossover is known as rand/1/bin and, similarly, the combination of best and binary method is 

best/1/bin. After defining the mutation and crossing methods, the algorithm was developed and 

implemented, and the results are presented in the next section. 
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4. Results

To simulate the created algorithm, a graphical interface was developed using the Matlab® appdesigner, 

where it is possible to adjust the hyperparameters of the genetic algorithm. The interface makes it possible 

to choose the population, the number of generations, the crossover coefficient (Cr), the differential F value 

for mutation and choice of mutation and crossing methods. Tests were performed with the rand/1/bin and 

best/1/bin mutation method. For comparison purposes, the same crossing method was used, for both the 

binary. 

In the first test, the number of generations was set at 500, and the other variables were also set, at well-

adjusted values, with a population of 100, the F factor of 0.5, rp (Weight of penalties) equal to 1x106, and 

the Cr at 0.9. The values of F and Cr were chosen based on the suggestion of the work of Storn and Prince 

(1995) being appropriate to obtain a fast convergence. The test was performed 50 times and the average 

values of the variables were found. Using the rand/1/bin mutation method, an average value of 4337 tons 

per hour with a standard deviation of 6.81 was obtained as the maximum mine production, with the best 

value found being 4347 tons per hour. Table 1 brings the results of the average values for the allocation of 

trucks in the 9 available routes. Table 2 brings the results for the ore fronts and material discharge points. 

Table 1. Production, number of trips and trucks per route using the rand/1/bin method 

Routes 
Average 

production (tons/h) 

Number of trips 

(Average) 

 Number of trucks 

allocated (Average) 

Route 1 444,00 12,00 2,00 

Route 2 592,00 16,00 4,00 

Route 3 350,00 10,00 4,00 

Route 4 591,30 16,02 3,03 

Route 5 661,30 17,89 5,20 

Route 6 355,20 10,05 3,85 

Route 7 554,20 15,15 6,13 

Route 8 281,10 7,82 4,93 

Route 9 516,40 14,12 5,91 

Table 2. Results for material loading and unloading points using the rand/1/bin method 

Loading or unloading 

point 

Average 

production (tons/h) 

Number of trips 

(Average) 

Number of trucks 

allocated (Average) 

Front 1 1036,00 28,00 6,00 

Front 2 940,33 26,21 15,13 

Front 3 1012,56 27,82 8,94 

Front 4 837,42 23,14 11,04 

Front 5 522,10 14,52 5,82 

Feeding stack 1 1420,32 39,42 11,15 

Primary crusher 2087,41 58,92 17,17 
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Feeding stack 2 831,24 22,31 10,79 

 

From the values presented in the tables, it is possible to distinguish that the routes that are allocated to front 

1 varied less and achieved greater repeatability. Overall, the variation in total production between trials was 

very small, around 0.7%, so the difference between trips and trucks allocated per route between simulations 

was minimal or sometimes identical. Routes 5 and 4 had a higher production and a higher number of trips 

and trucks allocated. To ensure that all restrictions were respected, the penalty coefficient used (rp) was 

relatively high. To verify the variation in the allocation of trips and trucks over evolutionary generations, 

the graphs in Figure 2 were drawn. 

 

 

Figure 2. Graphs of the number of: (a) trips allocated per route and (b) trucks per route using the 

rand/1/bin method. 

 

The graphs in the figure show great variability, especially within the number of trips allocated to each route. 

The numbers of allocated trucks converged first, promoting few changes from 250 generations onwards, 

with only route 6 showing significant changes. As for the allocation of trips, there was an intense change 

in values between the routes until around 250 generations and, from this point onwards, there were still 

some changes in travel between the routes, but with less intensity. 

In the second test, the same hyperparameters were used for the differential evolution algorithm, with only 

the mutation method being changed to best/1/bin. This test was also repeated 50 times, resulting in an 

average value for total mine production of 4180 tons per hour, with a standard deviation of 275.1. The best 

result found was 4337 tons per hour. The results found varied on a much larger scale than those found in 

the previous test, and sometimes the algorithm stuck to some local maximum. Despite this, the best result 

found was very close to the method used in the first test. The results for the available routes and for the 

loading and unloading points are presented in Tables 3 and 4 respectively. 
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Table 3. Production, number of trips and trucks per route using the best/1/bin method 

Routes 
Average 

production (tons/h) 

Number of trips 

(Average) 

 Number of trucks 

allocated (Average) 

Route 1 450,30 12,70 2,21 

Route 2 565,40 13,80 3,92 

Route 3 343,20 9,50 3,75 

Route 4 567,30 15,08 2,97 

Route 5 641,30 16,39 4,89 

Route 6 342,20 9,34 3,52 

Route 7 518,20 13,10 5,89 

Route 8 272,32 7,10 4,78 

Route 9 501,20 13,00 5,75 

Table 4. Results for material loading and unloading points using the best/1/bin method 

Loading or unloading 

point 

Average 

production (tons/h) 

Number of trips 

(Average) 

Number of trucks 

allocated (Average) 

Front 1 1022,89 26,52 5,75 

Front 2 930,26 25,44 14,33 

Front 3 980,53 26,72 8,45 

Front 4 826,47 21,89 10,55 

Front 5 508,12 14,12 5,36 

Feeding stack 1 1217,31 36,21 9,75 

Primary crusher 2075,92 56,89 16,89 

Feeding stack 2 774,40 21,50 9,89 

For this mutation method, the results had a lower precision and a wider variability than the 

values obtained in the previous test. The values achieved for the average production of the 

allocated routes and ore fronts were lower, in addition to which, in some of the simulations, the 

values presented differed significantly from the average, being a point far from the convergence 

region. Some simulations reached values similar to those achieved with the mutation operator 

Rand, however, trucks were often allocated to routes that did not reflect at a point close to the 

global optimum region to maximize production. The analysis of the evolution of the allocation 

of routes and trucks over the generations is shown in the graphs in Figure 3.  



International Journal for Innovation Education and Research        ISSN 2411-2933   01-08-2021 

International Journal for Innovation Education and Research© 2021                          pg. 348 

 

Figure 3. Graphs of the number of: (a) trips allocated per route and (b) trucks per route using the 

best/1/bin method. 

 

From the graphs in Figure 4, it is possible to identify a faster convergence, in about 80 generations, where 

the algorithm stabilizes and there are no changes in the results. In some simulations values with more than 

10% of difference from the mean were found, even in these cases behaviors of fast convergence of the 

variables were observed, showing no changes even with results significantly inferior to the optimal ones. 

Thus, this type of mutation was more likely to find local maximums and present worse results for both 

production and allocation of trucks. 

In the third test, the behavior of the algorithm in cases of limitation in the number of trucks available in the 

mine was explored. Transport trucks will be allocated according to the model available for a given route, 

being adjusted according to their capacity. In this test, the number of allocated trucks ranged from 15 to 30, 

in increments of 5 in 5 trucks. To adjust the DE algorithm, the same parameters of the last tests were applied, 

modifying only the number of generations to 600, due to perceptible variations in the algorithm. The 

simulation was repeated 50 times to obtain a statistically significant mean value. The results are shown in 

Table 4. 

 

Table 4. Comparative results between the quantity of available trucks and the methods used 

Number of 

Trucks 
DE Method 

Average 

production(tons/h) 

Standard 

deviation 
Best value  

15 Rand/1/bin 2055,14 385,15 2439 

15 Best/1/bin 1996,06 303,48 2330 

20 Rand/1/bin 2679,88 126,89 2840 

20 Best/1/bin 2709,11 189,28 2986 

25 Rand/1/bin 3189,33 135,08 3414 

25 Best/1/bin 3312,12 148,88 3449 

30 Rand/1/bin 3833,23 96,02 3961 

30 Rand/1/bin 3737,45 188,08 4000 
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In this type of experiment, the standard deviation of production was decreasing while the number of 

allocated trucks grew, this behavior being more evident in the mutation of the rand type. This variability is 

great for smaller quantities of trucks due to greater freedom of choice without infringing restrictions. The 

best mutation type obtained better mean values for a smaller number of allocated trucks. With 30 trucks 

allocated the average rand/1/bin value became better and we also saw a standard deviation equivalent to 

half of the other average, resulting in better precision and reliability of the simulations compared to the 

best/1/bin method. 

5. Conclusion

The open-pit mine truck allocation algorithm using differential evolution as an optimization method that 

brought significant results for maximizing production and allocation of trips and routes, achieving 

consistent convergence, with precision and reliability, for maximum production value. 

Comparison of the mutation methods in the DE algorithm showed that each one has some benefits and 

disadvantages, and sometimes the rand/1/bin method achieved greater precision and lower standard 

deviation for simulations without restrictions for the number of allocated trucks. As for the best/1/bin 

method, some simulations achieved better results than the other method, but some simulations converged 

to results well below the average, more than 15% difference, being probably great locations, causing a 

significant increase in the value standard deviation and generating less reliability in the simulations. Despite 

this for limited values of the number of trucks available for allocation, this method achieved better results 

than the rand/1/bin method. 

From the final model developed, it will be possible to apply it in an automated truck allocation system so 

that any real mining company can implement it in their mines. The development of an embedded 

technology system will enable total control over the process, and will assist in the exchange of data between 

equipment and between operators and controllers. 
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