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Abstract 

A finite volume method is applied to develop space-time discretizations for parabolic equations based on 

an equation error method. A space-time expansion of the local equation error based on flux integral 

formulation of the equation is first designed using a desired framework of neighboring quadrature 

points for the solution and local source terms. The quadrature weights are then determined through a 

minimization process for the error which constitutes all local compact fluxes about each centroid within 

the computational domain. In utilizing a local source term distribution to account for diffusive fluxes, the 

right minimizing weights and collocation points including sub-grid points for the source terms may be 

determined and optimized for higher accuracies as well as robust higher-order computational 

convergence. The resulting local residuals form a more complete description of the truncation errors 

which are then utilized to assess the computational performances of the resulting schemes. The 

effectiveness of the method is demonstrated by the results and analysis of the schemes. 
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1. Introduction

To achieve robust higher computational accuracies for the heat equation, the discretization method must be 

efficient in characterizing the fundamental local fluxes of the diffusion within the space-time 

computational domain in order to conserve small and large scale attributes as much as possible. This 

requires that the associated discretization error for the equation must be comprehensively formulated to 

allow for local fluxes to as many neighboring grid points as possible to mimic flow in the continuous 

system. In this article we present a space-time finite volume differencing framework for constructing one- 

and two-step higher-order finite volume schemes for the heat equation based on the distribution of local 

radial fluxes about their centroid. After rewriting the equation into a conservative flux integral form over 

the space-time cylindrical domain, it is reformulated into a general quadrature approximation form of 

undetermined coefficients. This is accomplished by utilizing general weighted quadratures to approximate 
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the flux integral operators using a unified space-time solution expansion in a comprehensive approach that 

preserves operator properties of the equation about each grid point interior to the space-time domain. 

By formulating the equation this way, the resulting numerical schemes describe a synchronized time 

evolution representation [13, 26] of the diffusion that allows for a more complete local compact flux 

characterization about each space-time grid point. This guarantees higher conservation of local fluxes in 

regulating transport and rendering the schemes more uniformly higher-order accurate compared with 

similar implementations of traditional finite difference schemes. 

The finite volume differencing formulation is very systematic in a way that allows for flexible adaptive 

control volumes which are basically identified by their centroid grid point values and the adopted 

neighboring space-time points including sub-grid points. All such neighboring grid-point values in space 

and time may be utilized to set up the weighted quadrature approximation of the integral formulation for the 

equations and therefore nearby control volumes overlap [34]. 

As part of the motivation for this work, we seek to achieve consistent higher-order convergence rates by 

utilizing unified local space-time expansions for the solution and the source terms rather than simplifying 

the discretization on space-time control volumes as discretization in space followed by a discretization in 

time [26] as in traditional semi-discretization approaches. This ensures that the right space-time flow 

characteristics governed by the equation about the centroid of the desired neighboring points are accounted 

for which ensures uniform higher-order convergence rates. That is, traditional semi-discretization methods 

fail to produce local mesh refinements in the space-time domains and as such make it difficult for such 

schemes to accurately track local regularities of the solution without the need to take small time steps [9]. 

Therefore, a unified space-time formulation that combines space and time into a single differentiable 

manifold locally eliminates the need for small time steps in order to achieve consistent higher-order 

convergence rates and hence is computationally cost effective [4,16]. The approximation of the equation on 

the local space-time manifold allows for coordinating new time steps with weighted quadratures of grid 

points within the domains of dependence to mimic the natural evolution of the continuous system [8]. 

There are similar approaches of space-time methods using finite element theory for hyperbolic systems 

[9,15] where the finite elements for the numerical methods are constructed in time and space 

simultaneously. Our approach is similar to the space-time discontinuous Galerkin method [33] but uses 

uniform spatial resolutions on finite difference stencils and allows for new time steps to be determined 

separately based on local residual error expansions in order to achieve consistent higher-order convergence 

rates. Thus, grid points for the new time steps may be determined as a function of spatial resolution and 

local flux coefficients in order to regulate growth of local errors similar to the Arbitrary 

Lagrangian-Eulerian technique [2,7,25] where grid points may be moved in a prescribed manner. In a 

similar work [14], the quadrature points are adjusted slightly from conventional points in order to reduce 

dispersion error in finite element methods. Furthermore, our approach is also similar to the ADER 

approach that involves defining numerical fluxes and numerical sources [32]. We define the numerical 

fluxes and sources using weighted quadratures of the associated grid points. Thus the overall accuracy of 

the space-time discretization of the equation increases as the number of quadrature points within the 

domains of influence used in constructing the numerical fluxes and sources about each grid point increases. 

We determine the weights to annihilate the coefficients of the partial derivatives through the minimization 
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of a space-time error expansion for the equation. As such, there is no need to use a solution reconstruction 

method per grid point to approximate partial derivatives in the solution expansion as in the ADER approach 

and thus resulting schemes have relatively less implementation costs per grid point. 

The paper is organized as follows: In Section 2, we present the general space-time finite volume 

differencing framework and the design for the schemes by describing the discretization of the parabolic 

equation in one spatial dimension where the space-time domain is two-dimensional. In Section 3, we 

provide further details on the weighted quadrature method and the constrained minimization of the 

space-time equation error expansion to determine the quadrature weights the desired schemes. In Section 4, 

we provide a generalized one-step three-point discretization of the parabolic equation as well as stability 

and accuracy analyses of the schemes. Local accuracy improvements through alternate parameterized 

schemes based on the equation error residuals are discussed. Subsequently, the source term collocations for 

a list of one-step schemes are discussed including strategies for utilizing source term distributions to 

improve solution accuracies. Numerical results demonstrating the effectiveness of the methods are 

illustrated in Section 5 where the source term collocations for improved local accuracies are compared with 

traditional methods. We briefly discuss extensions to higher spatial dimensions and present conclusions in 

Section 6. 

 

2. Space-time finite volume differencing framework.  

Consider the parabolic transport problem below of finding u = u(x, t) such that 

 

where q and g are assumed to be sufficiently smooth. We use a space-time unified framework to construct 

stable, conservative, and higher-order accurate finite volume schemes for (2.1) in a comprehensive 

approach with accuracy improvements over semi-discretization approaches. The approximation of local 

fluxes [11] needed to ensure uniform higher-order convergence rates is improved by the unified space-time 

formulation. Thus, the equation (2.1) is reformulated over a space-time domain rather than discretizing in 

separate coordinate directions [30]. 

We thus rewrite (2.1) in an integral form over the space-time domain such that

 

where ΩT is the space-time domain which is the closure of Ω × (0,T] in R2. Using the divergence theorem, 

(2.2) is rewritten into a flux integral balance form as 
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over the space-time cylinder ΩT where ν is the unit outward normal to the surface S of ΩT which is a 

function of time and space, and ηt is the component in the temporal direction. 

Now, consider the two-dimensional space-time domain ΩT as partitioned into space-time control volumes 

where each control volume is centered on a space-time grid point with a regular distribution of neighboring 

space-time grid points. Thus, each grid point has a cloud of quadrature points that describes the control 

volume which overlaps [34] with the distribution of grid points for neighboring control volumes. The 

interlocking configurations created by these overlaps help to effectively capture more local fluxes to 

neighboring points across different time levels necessary for higher level of conservation and consistent 

higher-order accuracy. Other space-time methods [4,9,27,28] describe the local partitioning as finite 

space-time slabs where balance of fluxes is considered [28]. 

Following a similar characterization of the local space-time domain [28], consider a partition of the time 

interval [0,T] by 0 = t0 < t1 < ··· < tN = T and the domain [a, b] ∈ R by a = x0 < x1 < ··· < xM = b such that the 

space-time control volume is Qn
m = [xm− h, xm + h] × [tn−1 ,tn+1] and illustrated in Figure 2.1. Each control 

volume Qn
m consists of a centroid X0 with a compact cloud of quadrature points X1, X2, X3, X4, X5, X6, X7, and 

X8 for the solution as depicted in Figure 2.1 where Qn
m overlaps with control volumes centered on all these 

surrounding grid points. 

Fig. 2.1. Control volume Qn
m centered on with local uniform compact cloud of quadrature grid 

functions φis for the solution and fis for the local source terms. Given the spatial resolution h, κ is chosen to 

regulate the leading coefficients of the residual error. The collocation points αh and αk for the source term 

are also to be determined. 

We describe the flux integral balance equation (2.3) on each control volume Qn
m by 

where νkh is the unit outward normal vector to Skh, the space-time surface of Qn
m and ηkh is the component in 

the temporal direction on Qn
m. 
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Now, the left hand side of (2.4) that describes the time rate of change of u within Qn
m depends on local 

diffusive fluxes and source term distribution on the local two-dimensional space-time manifold about 

(xm,tn). We thus rewrite (2.4) to indicate the dependence of the change in u between the initial time frame 

Γ0(h,k) and the new time frame Γf(h,k) on Qn
m by 

                     

where Γ0(h,k) and Γf(h,k) are respectively determined by the times tn − k/2 and tn + k/2 and their associated 

spatial distributions of grid points. 

On each control volume, local space-time fluxes are to be best captured by a weighted quadrature 

approximation of the flux integrals in (2.5) in order to rightly incorporate quadrature points within the 

domain of dependence on the initial time frame Γ0(h,k) subject to the distribution of grid points [31] and the 

space-time expansions adopted. We remark that the local flux integral balance set up in (2.4) is very similar 

to other work [6,10,22,23,28,30]. However, to capture the flux at a higher order accuracy we adopt a 

unified space-time expansion for u to formulate the fluxes in a multivariate sense and then utilize the 

differencing of the quadrature approximations of the integrals to capture local compact fluxes through the 

minimization of a local discretization error for (2.5). By formulating local fluxes comprehensively using all 

compact grid point function values for the solution and possibly sub-grid values for the source terms, 

control volumes of any shape (regular or irregular) in other formulations [10] work with this methodology. 

To approximate (2.5) about each centroid, we adopt a unified [24] space-time Taylor’s expansion φ to 

locally describe the local space-time manifold of u by 

 

where φ is assumed to be smooth enough. We carry out the expansion about the half-time point to ensure 

uniform discretization and to more easily formulate fluxes (diagonal transient and diffusive fluxes) about 

(tn, xm) from all neighboring points subject to available degrees of freedom. 

We then constrain the coefficients of the terms φxt, φxxt, φxtt,  etc in (2.6) by higher-order spatial and 

temporal derivatives of the equation and introduce terms like fxt, fxxt, fxtt to reflect more local regularities of 

the equation by way of the Cauchy-Kovalevskaya procedure [23]. 

To achieve the objective of obtaining a robust higher-order discretization for the equation (2.5) and to 

guarantee uniform convergence rates, the source term must be collocated effectively in order to efficiently 

capture the associated local variations in source term distribution. Hence, we use a local operator action on 

the solution expansion φ to define the source term as 
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where κ represents the action of the differential operator describing the unique local description of 2.1 such 

that 

. (2.8) 

A unified space-time equation error expansion for the flux integral representation (2.5) is then formulated 

about each centroid by using general weighted quadrature approximations for the integral operators. By 

utilizing quadratures of the grid point values of the solution and the source term to approximate the 

equation between times tn + k/2 and tn − k/2, allows for adaptive use of grid points to ensure improvements 

in local accuracies. Thus, different geometries of grid functions on the control volume may be adapted to 

suit specific situations like near irregular boundaries [1,17]. Furthermore, local physical parameters of the 

equation are efficiently represented by the source term (2.7) in accounting for local fluxes in the balance 

formulation (2.5). 

As illustrated by the distribution of the grid points about the centroid (xm,tn) in Figure 2.2, the local 

diffusive flux σ∇φ has contributions (direct or indirect) from all the neighboring solution values on the local 

space-time manifold containing the solution. We therefore approximate σ∇φ about (xm,tn) by the 

generalized quadrature rule 

where ni the number of neighboring cloud of points to be adopted, and wi is the weight for the local 

directional flux φi − φ0. 
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We now write the residual R(u) of the flux integral formulation (2.5) on each two-dimensional space-time 

control volume Qn
m as 

 

(2.10) 

Then a discrete minimax approach is sought to approximate (2.10) by minimizing a local equation error 

expansion formulated for R(u) using generalized weighted quadrature approximations of the flux integrals. 

Thus, the local equation error expansion Rkh about each centroid grid point is described as the generalized 

quadrature approximations of the flux integrals on the space-time control volume by 

 

where the weights wi, αi, βi, and vi are to be determined by eliminating the leading coefficients of the error 

(2.11). In [14], a similar modified generalized integration rule is implemented where the quadrature 

weights are assumed to be units but the quadrature points are adjusted slightly from conventional points in 

order to reduce dispersion error in finite element methods. 

Clearly, the framework for the local error expansion (2.11) allows for sub-grid collocations of the local 

source term to be utilized in the discretization. We therefore formulate the approximation of the more 

balanced flux integral form of the equation (2.11) about the centroid of the control volume Qn
m by 

  

where φi = φ(x0 + ih), fi = f(x0 + πih). While the nodes for the solution φi are fixed, the nodes for the source 

term fi are not fixed as in a generalized Gaussian quadrature approach but allowed to be symmetric about 

the centroid as schematically described in Figure 2.1. Thus, the weights  

{αi, βi, wi, vi} and the corresponding nodes αis are to be optimally determined through the minimization 

process of the local equation error expansion. 

In this work, the nodes for the solutions φi are fixed but the nodes and weights for the source term fi are to be 

determined to minimize and regulate residual error expansion Rkh which constitutes the dissipation and 

dispersion errors associated with the discretization. As additional points are introduced in the quadrature 

approximations, the level of local accuracy improves. However, given a fixed number and distribution of 

points on the control volume, we seek the optimal combination of weights and nodes to minimize the 

residual error expansion Rkh as much as possible and to stabilize the resulting schemes. Determining the 

weights to minimize the space-time error expansion ensures that the dynamic weights may be effectively 

constrained to render the resulting schemes local extremum diminishing (LED) [18]. The constraints in the 

minimization process include: 

• For a non uniform grid, the task of determining the collocation parameters is tedious as reported in a similar 

work in [12]. However, the symmetric collocations of the grid points eliminates odd powers and reduces 

the complexity of the error [31]. 

• The weights of fi and φi are constrained to ensure M-matrix property for the resulting system matrices [3] 

and to guarantee faster convergence for iterative methods in solving the resulting linear systems [3,24]. 
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• Other constraints include restrictions on the weights in order to produce desired schemes as in one-step or

two-step implicit or explicit schemes.

3. A Space-time finite volume discretization of parabolic equations in one spatial

dimension 

In this section, we provide additional details on the unified method of construction for the space-time 

discretizations. We recast the full space-time discretization of (2.5) as determining the future updates of u 

on the control volume tied with current and past distributions to describe the natural dynamics of the 

diffusion within the control volume. For the infinite dimensional settings on each control volume interior to 

ΩT ∈ R2, the balance equation for the conserved quantity u is 

where ∂Qn
mtn and ∂Qn

mtn+1 describe the initial and final time-boundaries of Qn
m, and Skh is the total 

space-time boundary surface of Qn
m. The framework of this approach is similar to the finite volume 

element method [6] and the finite-dimensional approximation of (3.1) that describes the dynamics of the 

solution expansion φ about 

(xm ,tn) is given by the local quadrature formulation 

subject to 

. 

The grid functions for the solution φi are defined by 

where κ is to be determined from the residual of the local equation error expansion (2.11) and φ0 := φ(xm,tn) 

is the grid function value for the solution at the centroid of the control volume. The parameter, κ, a 

dimensionless time measure is the diffusive rate to changes in time where a large value indicates faster 

propagation through the control volumes [29]. The grid functions for the source terms fi,  also given by 
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where the nodes for fi parameterized by αk and αh and their weights vi are to be determined and f0 := φ(xm,tn) 

is the grid function value for the source term at the centroid. To ensure robust higher-order accuracies for 

the discretization, the time step k parameterized by κ is to be determined for a given resolution h through 

the minimization to regulate the growth of the residual errors in the space-time domain. 

As discussed above, the grid function values of the source term fi on the control volume  as in Figure 2.1 

are defined by 

 

such that 

 

 

which is consistent with the strong form of the equation (2.1) at (tn,xm). Thus the source term is much more 

complicated and therefore needs an efficient quadrature approximation on the control volume to guarantee 

effective higher-order accurate discretizations of the equation. 

We recast (3.2) for a one-step implicit time discretization of the equation on the control volume illustrated 

in Figure 2.1 by 

 

The associated local equation error expansion about the centroid (tn,xm) is described as 

 

where the constraints 

 

are enforced to ensure that the differential and integral operator properties of the equation are preserved 

through the optimal set of weights for a particular discretization. 

By applying the Cauchy-Kovalevskaya procedure [23], the leading terms of the error expansion Rkh are 

reorganized in terms of the partial derivatives φt, φx, φxt, φxx, φtt, φxtt, φxxt, φxxx, ft, fx, fxt, fxx, ftt, etc where their 

coefficients are functions of κ, h, σ, αh, αk and the quadrature weights. The optimal sets of weights 

{αi,βi,wi,vi} are then determined to eliminate the leading terms of error expansion. 

4. A Family of One-Step Three-Point Discretizations 
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In this section, we present one-step three-point discretizations for the parabolic equation (3.8) based on 

constrained minimization of the local space-time equation error expansion. 

To discretize  implicitly about the centroid as indicated by the left side of (3.8),  is 

described as a weighted combination of φ2, φ3 and φ4 at time tn+1 while  is a weighted distribution 

of φ6, φ7 and φ8 at time tn. We then define a one-step implicit-time differencing of  on the 

control volume in Figure 2.2   by 

where 0 = 1, and the grid function values φ6, φ7 and φ8 are within the domain of 

dependence of the centroid. 

A one-step discretization of (3.1) using the stencil in Figure 2.1 may then be described based on (3.8) and 

(4.1) as 

where 

and Rhk as the residual error to be conditioned for a more uniform convergence of the resulting schemes. 

The parameters μk, θ, αh, and αk are to be determined to regulate the associated residual error Rhk, which is 

re-organized along a parabolic space-time curve 

σ k = κh2 (4.7) 

by 
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The local diffusive rate within the computational domain, κ, which is also referred to as the numerical 

Fourier Number may be selected to control the resulting residual errors. According to Taylor’s Theorem, 

the higher-order derivatives in (4.8) reflect the smoothness of the solution about the centroid. Therefore, for 

non-smooth data conditions [5] as well as for higher local accuracies, the remaining parameters κ, αh, αk, 

and β5 may need to be determined to regulate the leading coefficients of the residual error in order to control 

φxxxx, fxx, etc. and therefore improve local accuracies. 

 

4.1. Stability and Accuracy Analyses 

By Von Neumann stability analysis, the amplification factor, G, for the homogeneous version of the 

scheme (4.2) is determined as 

 

where   and km is the wave number. 

Clearly, any scheme with μk < κθ is implicit and unconditionally stable which includes the Backward Euler 

and the crank-Nicholson schemes while μk = κθ produces an explicit scheme as in the forward Euler 

scheme. Thus, there are several ways to come up with either an explicit scheme or an implicit scheme for 
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the parabolic equation (2.1). The key here should therefore depend on local accuracy performance which is 

connected to the functional nature of the leading coefficients of the residual error error (4.8). 

On one hand, for the case of the implicit backward-Euler scheme with θ = 1 and μk = 0, the sinusoidal 

component of the numerator is eliminated rendering the scheme more preferable for non-smooth or sharp 

data conditions in the solution profile [5]. However, for 1 and μk = 0, the coefficients of φ(4)(x), 

φ(6)(x), etc within the leading terms of the residual error stay increasingly negative and therefore 

anti-diffusive for any κ. Thus, the larger the value of κ, the higher the level of ”pollution error” for such 

schemes. 

On the other hand, the local expansion (3.9) and the leading coefficients of the residual error (4.8) offer 

alternative more locally accurate options. 

4.2. Source Term Discretizations for Higher Accurate Second Order Schemes 

In this section, we demonstrate how efficient source term discretizations may be constructed to achieve 

higher local accuracies and streamline convergence of computational errors. The derivatives of the local 

point-wise equation error 

where p = 0,1,2,3,··· and i + j = p, which may be factored into the h2 term of the error expansion (4.8) for 

instance, are of the form 

By incorporating (4.10) into (4.8), the strategy is to determine the collocation weights for the source term 

with the objective to control and regulate the residual error. Thus, we determine the collocation weights to 

first eliminate the temporal derivative ft as described in (4.12). A ratio parameter βf whose value may be 

utilized for the spatial distribution of the local source characterized by fxx to cancel out the error effects of 

φxxxx in the residual error as described in (4.11) is then introduced. That is, βf is introduced and β5 is 

determined in (4.8) such that 

where 

A For βf = 0, fxx is outrightly eliminated, 

B The value of βf  may be determined for which the computational error achieves a minimum when the 

error contributions from φxxxx are cancelled out by fxx, 

C The βf  may be chosen to regulate the natural convergence of the local point-wise equation errors as 

described in (4.10) as much as possible. 

Thus, β0 and β5 in (4.3) may then be determined as 
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in order to match the coefficient of fxx with that of φxxxx in (4.8). 

Consequently, T2 in (4.8) becomes 

                (4.14) 

and T4 is modified as 

. (4.15) 

To allow for the capacity to also regulate T4, additional points for the source term 

may be needed to control the approximation of  even for second order schemes to achieve higher 

local accuracies. In particular, for four additional coordinate directional points defined by 

 , (4.16) 

the coefficient of  in (4.20) becomes 

 

where  and βπ is the collocation weight for f1a and f5a in (4.16). Instead of outright elimination of

 may be determined as described in (4.13) by 

 

where a βπf is the ratio value at which  cancels the error effects of from the computational error. 

Clearly, the error terms (4.14) and (4.15) offer two approaches for local accuracy improvements. One 

obvious approach is through a higher-order accuracy by choosing θ and μk to eliminate T2 in which case the 

local solutions φis are manipulated as discussed in the next section. The other approach is through the 

manipulation of the local source terms fis. 

 

 

 

4.3. Implicit Fourth-order Accurate Discretizations 
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As described in the previous section, one way for a more accurate discretization of (3.1) is to choose θ and 

μk to eliminate T2. Using a finite volume quadrature differencing for between the times tn and 

tn+1 as described in (4.1), a three-point one-step implicit discretization of (3.1) obtained by determining

and  to eliminate T2 is given as 

where αh and αk may be chosen to regulate the rate of convergence by matching the leading coefficients of 

the error as discussed above. The amplification factor for the homogeneous part of the scheme is given as 

and therefore unconditionally stable [19]. The resulting residual error Ehk is reorganized as 

where αk and αh are to be determined. 

For the collocation point value of αh = 1, the leading coefficient of fxxxx in (4.20) puts a constraint on the size 

of κ [19] for local accuracies and computational convergence. This stiffness constraint may be eased with a 

sub-grid value of which creates a point-wise equation error coefficient ratios for 

. That is, a sub-grid point value of  leads to coefficient ratios in the leading term of 

the residual error that matches the point-wise equation error about the centriod (4.10) and therefore 

provides for a more uniform convergence independent of κ as resolution is refined. 

As discussed in [19], one way for improved local accuracy is a two-step method where the discretization of 

the diffusion term includes solution values at the centroid time level and uses a nine-point stencil on the 
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space-time domain in one spatial dimension. On the other hand as discussed above for the source term 

discretization, additional collocation points may be utilized to reduce or eliminate the effects of on 

computational errors. In particular, for four additional symmetric points about the centroid defined by 

the coefficient of  in (4.20) becomes 

 

where  and βπh is the collocation weight. Instead of outright elimination of  may be 

parameterized as 

 

 

where a βπf  may be determined for  to reduce the effect of   on computational error. 

5. Numerical Experiments. To demonstrate the effectiveness of the method for developing new 

higher-order efficient schemes for (2.1), we present some of the results of our tests to show accuracy 

improvements and associated uniform convergence rates. 

The p−norm of the grid function error (global) on Ω at time T, is defined as 

  (5.1) 

where u(x,t) is the exact solution at time t and φ(x,t) is the space-time numerical approximation of u(x,t) at 

time t. Thus, φ(x,T) is the numerical solution of the equation on Ω at the end of time integration based on a 

spatial resolution h. 

Consider the error eT based on a spatial resolution of h, measured at the end of a time integration T with the 

L∞ norm Ω according to 

 ) as h → 0, 

where C is independent of h. If h is sufficiently small, then 

 

where r is the order of accuracy or the convergence rate. 

Example 1. As a first example, consider the exact solution to (2.1) to be 
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With σ = 1, the initial distribution as u0(x) = cosπx, and the boundary conditions as 

Example 2. For a second example, consider the exact solution with σ = 1 to be

Example 3. As a third example, consider the exact solution with σ = 1 as 

With T = 2, we examine accuracy improvements and the higher-order convergence rates of the new 

schemes in the numerical experiments below. 

Experiment 1. The amplification factor (4.9) clearly reveals that an implicit scheme is guaranteed with μk

< κ. Therefore, the objective in this experiment is to demonstrate how the pairings of 0 ≤ μk < 1/2 with 0 ≤ 

θ ≤ 1 affect local accuracy. We consider situations when 2 in which cases the 

discretizations are second order accurate in space. 
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Figure 5.1 shows that when μk is small as in μk = 0, smaller values of θ produce better local accuracies and 

accuracy decreases as θ is increased. 

 

 

In Figure 5.2 with μk = 1/9, lowest errors are achieved when θ ia about 2/3. 
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In Figure 5.3 with μk = 1/18, lowest errors are achieved when θ ia about 1/3 but for μk = 1/6 lowest errors are 

achieved with θ = 1. Thus, as θ is increased μk must also increase and vice versa to create second order 

discretizations that produce higher local accuracies. 

Experiment 2. The purpose of this experiment is first to demonstrate the levels of local accuracy 

improvements that may be achieved with Crank-Nicholson scheme for different source term 

discretizations. In Table 5.1, column 1 with CN refers the errors for the traditional scheme with source term 

collocation as 

Column 2 with βf = βπf = 1 refers to the source term discretization where residual error (4.8) has been 

regulated by factoring in the local equation error residuals as described in (4.13) for the O(h2) term and in 

(4.17) for the O(h4) term. Column 3 with βf = −1.95 refers to the source term discretization where only the 

O(h2) term of the residual error is regulated by determining the best value of βf for the best results based on 

the relationship between the particular solution and the source term. 
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Results in Table 5.1 show that local accuracies may be improved significantly by utilizing the source term 

collocations where the residual error as determined in (4.8) is regulated over the traditional 

Crank-Nicholson collocation of the source term. Additionally, in Figure 5.4, the error distribution eT(h) for 

varying βfs clearly show that a minimum may be achieved at which  cancels the error contribution of 

 without regulating the O(h4) term of the error. However, when the O(h4) term of the error is regulated 

with βπf = 1 as described in (4.17) and illustrated by Figure 5.5, uniform convergence is demonstrated with 

consistent numerical determinations of βf. 
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f 

Fig. 5.5. Error plots are for the Crank-Nicholson discretization of φ with varying source term collocations 

based on βf for h = 1/8. The O(h4) term of the error is regulated with βπf = 1 as described in (4.17). 

Experiment 3. In this experiment we demonstrate local accuracy improvements for the Backward Euler 

scheme with different discretizations for the source term. 

In Table 5.2, column 1 refers the errors for determining the source term collocations 

∂2f to eliminate ∂x2 from the residual error. 

Column 2 with βf = βπf = 1 refers to the source term discretization where residual error (4.8) has been 

regulated by factoring in the local equation error residuals as described in (4.13) for the O(h2) term and in 

(4.17) for the O(h4) term. Column 3 with βf = −1.95 refers to the source term discretization where only the 

O(h2) term of the residual error is regulated by determining the value of βf for the best results based on the 

relationship between the solution and the source term. 

Results in Table 5.2 clearly show that the weighted quadrature approximation for the source term, , 

has been effective since the implicit backward Euler scheme can be made to achieve higher local accuracies 

at par with the Crank Nicholson scheme. By choosing βf = 0 to eliminate  as in the first column, 

accuracy performance is slightly below the Crank-Nicholson discretization. However, it performs at par 

with βf = 3/14 and outperforms with βf = 3/10 as demonstrated in the third column. Additionally, choosing βf 
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= βπf = 1 to regulate the equation error expansion ensures that convergence of the scheme stays uniform and 

more accurate at lower resolutions. 

 

Experiment 4. In this experiment, we demonstrate the computational convergence of the fourth-order 

scheme (4.18) for the traditional source term collocation with αh = 1. Since the leading coefficients of the 

residual errors (4.20) is quadratic in κ, relatively large values of κ creates a ’pollution’ effect on accuracy 

and affects the convergence rate. Results for example 1, example 2, and example 3 are shown in Tables 5.3, 

5.4, 5.4 respectively. 

 

Results from Table 5.3 show that the size of κ determines the uniformity of the rate of computational 

convergence of the scheme (4.18). As κ is lowered from 1/5 to 1/20 and then 1/40, local accuracies 

improved and the computational convergence improves toward a robust fourth-order rate. 

From Table 5.4, the convergence rate for scheme (4.18) with example 2 tends toward uniformity as κ is 

decreased from 1/20 to 1/30 and then 1/40. 
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Results from Table 5.5 for Example 3 support the notion that while it is desirable to have large time step 

sizes, consistency of results of higher-order schemes like (4.18) suffer from pollution effects for larger time 

step sizes. 

Experiment 5. The objective of this experiment is to demonstrate the robustness of the computational 

convergence for the three-point quadrature scheme (4.18) with sub-grid collocations for the source term. 

From the leading coefficients in (4.20), a value of 5 creates convergence ratios with βf = 1 as in 

(4.13) ensuring 

that converge at the same rate as the fourth-order derivative of the local equation errors 

about each centroid. 

Results from Tables 5.3 and 5.6 show that utilizing sub-grid collocations for the source term has been 

effective for improved local accuracies as well as the convergence rates. 
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Again, results from Tables 5.4 and 5.7 show that subgrid collocations for the source term has been effective 

for improved local accuracies and a more uniform computational convergence. 

 

 

Experiment 6. The objective of this experiment is to show that local accuracies may be further improved 

not only through a two-step method but also by reconfiguring the weighted quadrature approximation   

for (4.18) to include additional sub-grid points (4.23) to offset some of the effects of  on 

computational errors. 
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Again, the results in Tables 5.3, 5.6 and 5.9 demonstrate very robust convergence rates for the 

scheme(4.18) 

As demonstrated above in Experiments 4 and 6, uniform fourth-order computational convergence requires 

κ to be small to avoid ’pollution’ errors. 

6. Extensions

In a two-dimensional extension, the space-time domain is three-dimensional where the control volume is 

the cube with 26 surrounding quadrature points about each centroid [21]. The flux balance equation (2.5) is 

still valid and the time differencing is to be carried out using quadrature points on two-dimensional planes 

at the future time tn+1 and the departure times tn−1 and tn. Corner points of the cube may be to reduce the 

sizes of the coefficient matrices. However, for numerical modeling situations where high accuracies of 

certain feature are of paramount importance, corner points are needed to sufficiently represent the spatial 

dimension [20]. 

This method offers an effective way for sub-grid representations of local source terms to be accurately 

linked to the numerical solutions at grid points for multi-physics modeling problems. 
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6.1. Conclusion 

We have demonstrated the effectiveness of the space-time unified discretization method for constructing 

efficient higher-order accurate implicit and explicit schemes for parabolic equations. In particular, we have 

described the framework for obtaining higher accuracies about the centroid of space-time control volumes 

that allow for effective ways to model local space-time fluxes and include sub-grid sources to improve 

accuracy and convergence. Using a general weighted quadrature to approximate the integral formulation 

allows for flexible adaptive treatments, rigorous local error analysis about each grid point, optimal choices 

of time step-sizes, and effective source term collocations to control the growth of the residual error terms 

associated with the resulting schemes. By using unified space-time expansions to approximate the solution 

and the local source term, robust higher-order accuracies are ensured by correctly linking the time frames 

and sub-grid sources effectively through the minimization of the local error. 
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