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Abstract 

In this study we report on the synthesis and characterization of cobalt ferrite (CoFe2O4) nanoparticles (NPs), 

synthesized by chemical co-precipitation in alkaline medium. Two samples were synthesized at two 

different temperatures, 35 and 90 oC. Both samples were characterized by Transmission Electron 

Microscopy (TEM), x-ray diffraction (XRD), and room-temperature (RT) magnetization. Two samples 

showed superparamagnetic behavior (SPM) at RT. TEM reveals morphological mean diameter increasing 

5.8 nm to 10.4 nm, with the increase of the co-precipitation temperature. XRD confirm the inverse cubic 

spinel structure. The RT magnetization curves were analyzed by the first-order Langevin function averaged 

out by a lognormal distribution function of magnetic moments. This analysis showed saturation 

magnetization and magnetic moment increases from 60.2 to 74.8 emu/g and from 3.9 x 103 to 8.2 x 103 

B, respectively. 
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1. Introduction 

Nanosized cobalt ferrite (CoFe2O4) has attracted continuous interest over the past last decades due to a 

variety of applications it has been connected with; to name a few magneto-optical devices [1], drug delivery 

systems [2], contrast agent for MRI [3], magneto hyperthermia [4], and spintronics [5]. Reduced 

dimensionality of cobalt ferrite explains differences in properties while compared to its bulk counterpart 

[6,7,8]. Size modulation of the physicochemical properties of cobalt ferrite is a typical response in the 

nanosized regime, allowing for material engineering in order to meet different requirements while 

addressing applications [9]. In addition to size and size dispersity [10], material engineering regarding core-

shell design [11], shape [12], crystallinity [13,14], surface decoration [15] and hybrid derivatives [16] open 

up a wide variety of opportunities for basic studies as well as for development and innovation. Despite 

different synthesis routes for nanosized cobalt ferrite already described in the literature optimization of 

morphology and physicochemical properties is still far from being exhausted [17,18]. In this study we 

report on the synthesis, structural characterization, morphological and magnetic properties of cobalt ferrite 

nanoparticles realized in two different temperatures. 

 

2. Experimental  

In a first step the nanosized cobalt ferrite particles were synthesized by coprecipitation in alkaline medium 

[19, 20, 21]. In addition to having a low cost this method of synthesis usually provides nanosized particles 

with relative narrow size distribution at low sintering temperatures [22,23]. In short, acidic aqueous 

solutions (0.02 molL-1 HCl) containing Fe3+ and Co2+ ions were mixed in stoichiometric 2:1 (Fe3
+:Co2

+) 

molar ratio under stirring (200 rpm) for 20 minutes, at different temperatures (35 and 90 oC). Next, 50 mL 

of sodium hydroxide (NaOH) aqueous solution (5.1 molL-1), pre-heated at the same temperature, was 

added into the reaction medium while keeping the same stirring speed (220 rpm) and temperature (35 and 

90 oC) for another 30 minutes. The repeated synthesis protocol produced two different samples, namely 

CoT35, and CoT90. After synthesis, each product was naturally cooled down to room temperature and 

separated by magnetic decantation. The supernatant was disregarded and precipitate washed with water 

several times. The resulting slurries were dried at 30 oC in order to carry on morphological, structural, and 

magnetic characterization. The TEM micrographs were collected in a Jeol model JEM-1010 electron 

microscope system (Gatan Digital Micrograph) operating at 80 kV. x-ray diffraction (XRD) was used to 

characterize the as-synthesized samples while providing estimative of the crystallite size. XRD data of all 

samples were recorded in a Shimadzu model XRD 6000 system using the Cu Kα (λ = 1.5418 Å) line 

scanning in the range of 2θ = 10 – 80o at 2 degrees/minute. A SQUID MPMS 3 system (Quantum Design, 

San Diego California - USA) was used to collect the room-temperature hysteresis cycles in the range of 

60 kOe. 
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3. Results and discussion 

A typical TEM micrograph of sample CoT35, and CoT90, and the corresponding particle size histogram 

(800 counts) are shown in Figure 1. 

 

Figure 1. Particle size histogram and the curve fitting using a log-normal distribution function. The inset 

shows a typical TEM micrograph of samples CoT35, and CoT90. 

The solid line going through the particle size histogram represents the best curve fitting using a log-normal 

distribution function, with σT and DT collected in Table 1 and representing the standard deviation and the 

mean morphological diameter, respectively [18a]. 

𝑃(𝐷) =  
exp (2𝜎𝑀

2 )

𝐷𝑇𝜎𝑇√2𝜋
exp[ln2(𝐷 𝐷𝑇⁄ ) 2𝜎𝑇

2⁄ ]   (1) 

Analysis of the XRD data shown in Figure 2 reveals typical features of cubic spinel (Fd-3m (227)) structure 

in all two produced samples and are well indexed to the cobalt ferrite spinel structure (JCPDS card No. 22-

1086). Analysis of the strongest XRD reflection peak (311 reflection) using the Scherrer’s relation shown 

below provides the average crystallite diameter [26]: 

𝐷ℎ𝑘𝑙 =
0.9λ

𝛽𝑐𝑜𝑠𝜃
   (2) 

 

where Dhkl, ,  and  represent the average crystallite diameter, X-ray wavelength, full-width at half-

maximum (FWHM) of probed XRD reflection peak and the Bragg’s angle, respectively. 
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Figure 2. Diffraction pattern of cobalt ferrite nanoparticle of samples CoT35, and CoT90. 

The average crystallite diameters (Dhkl) obtained from the (311) XRD peaks of both samples are collect in 

Table 1. 

Analysis of the room-temperature (T = 300 K) magnetization (M) versus applied field (H) data shown in 

Figure 3 (symbols) is carried over using the first-order Langevin function (L) averaged out by the lognormal 

distribution function (f) of particle’s magnetic moment (): 

𝑀(𝐻, 𝑇) = 𝑀𝑆 ∫ 𝜇𝐿 (
𝜇𝐻

𝑘𝐵𝑇
) 𝑓(𝜇)𝑑𝜇

𝜇+

𝜇−

   (3) 

𝑓(𝜇) = (
𝑁

𝜎𝜇𝜇√2𝜋
) 𝑒𝑥𝑝 {− [

𝑙𝑛2(𝜇 𝜇0⁄ )

2𝜎𝜇
2

]}   (4) 

where N represents particle/cm3, 0 is the average magnetic moment, and σ is the magnetic moment 

dispersity. Solid lines going through the symbols in Figure 3 represent the best fitting of the data using Eq. 

(3). The estimated values of the saturation magnetization (MS) and average magnetic moment (0) are 

collected in Table 1. 
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Figure 3. Magnetization loops data (symbols) of two samples (CoT35, and CoT90) and the corresponding 

curve fitting (solid lines) using a eq. 3. 

Table 1. Mean morphological diameter DT, standard deviation T of DT, Crystallite diameter Dhkl, average 

magnetic moment 0, standard deviation  of 0, and saturation magnetization Ms. 

Samples DT(nm) T Dhkl(nm) 0 (103 

B) 

 Ms(emu/g) 

CoT35 5.8 0.38 5.4 3.9 0.47 60.2 

CoT90 10.4 0.32 8.1 8.2 0.35 74.8 

The same change in average diameter assessed from both TEM and XRD data while increasing synthesis 

temperature in the saturation magnetization values and the average magnetic moment. Moreover, as the 

average particle diameter increases the saturation magnetization increases monotonically. Actually, 

enhancement of the saturation magnetization is due to the increase of the average particle diameter and 

improvement in crystallization, both working to strength magnetic ordering. 

 

4. Conclusion 

In this study cobalt ferrite nanoparticles were synthesized by coprecipitation method in alkaline medium in 

two different temperatures. Two prepared samples were structurally, morphologically and magnetically 

characterized using x-ray diffraction, Transmission Electron Microscopy and room-temperature hysteresis 

cycle. TEM and XRD data showed that all produced samples were single-phased with diameters in the 

nanosized range and below 12 nm. The first-order Lagevin function averaged out by the lognormal 

distribution function of magnetic moments provided excellent fitting of the magnetization versus magnetic 

field data. All results showed systematic evolution of mean diameter, as the synthesis temperature increases 

from 35 to 90 oC. 
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