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ABSTRACT 

The Algebraic Arithmetic of Remainder or The Non-Modular Arithmetic of Remainder has the purpose of 

describing the demonstrations of Modular Arithmetic in a different language, providing its theorems and 

axioms in a totally new and different way, with no necessity of the use of modulus anyway, from what 

has been done until now. This article is not about which language is better or not to express this topic of 

Pure Mathematics, but about a new language that was developed to give a different approach to the 

Arithmetic developed at present, and to get equal results in a different form and with new propositions 

of the theorems developed by many mathematicians who created this branch of Pure Mathematics over 

the last three hundred years. 

INTRODUCTION 

The Non-Modular Arithmetic of the Remainder (NMAR) or Algebraic Arithmetic of the Remainder 

(AAR) emerged as an alternative to the so-called  Arithmetic of Remainder or Modular Arithmetics with 

the notion of congruence by the present author. This area is so important for Pure and Applied 

Mathematics, much needed for Cryptography. And in this new language presented by the author known 

as AAR or NMAR, the notion and use of the term congruence is required no more.  

About that, it should be noticed that the term congruence, for this case, was used for the first time 

by Gauss himself in his work entitled Disquisitiones Arithmaticae (Arithmetic Investigation) in 1801. Such 

a book is considered the initial milestone of modern Number Theory. “In it, [Gauss] compiled the work of 

his predecessors and gave the field a new life, developing the thoeries of quadratic congruences, forms 

and residues” (Mol, 2003, p.125). 

In many Discrete Mathematics textbooks, the symbology "mod", can be presented as laid out in 

Schienerman (2017), book below: Let 𝒂 𝑎𝑛𝑑 𝒃 ∈  ℤ, with 𝒃 > 𝟎 there exist a unique pair of numbers 

𝒒 𝑎𝑛𝑑 𝒓, so that 𝒂 = 𝒒𝒃 + 𝒓 and 𝟎 ≤ 𝒓 < 𝒃. Hence the expression,  

𝒂 𝒎𝒐𝒅 𝒃 = 𝒓. 

This means, this operation describes, and taking any number 𝒂 ∈  ℤ divide it by 𝒃, and take the 

remainder 𝒓. 

Therefore, when making 𝑎 = 10, 𝑏 = 13 𝑎𝑛𝑑 𝑟 = 1, we have: 

𝟏𝟎 𝒎𝒐𝒅 𝟑 = 𝟏 

For, when dividing the integer  𝒂 = 𝟏𝟎 by 𝒃 = 𝟑, it leaves remainder  𝒓 = 𝟏. Since 𝟏𝟎 can be 

described arithmetically by 𝟏𝟎 = 𝟑 ∙ 𝟑 + 𝟏. 

As the symbology of the operation "𝒎𝒐𝒅"  appears distinctly and employed in Modular 

Mathematics, as shown in the book by Hefez (2008), which defines congruence and application of the 

symbology "𝒎𝒐𝒅", as: 

Let m be a nonzero number. We will say that two natural numbers 𝒂 𝒂𝒏𝒅 𝒃 are congruent modulo 𝒎 

if the remainders of Euclidean division by 𝒎 are equal. When the integers  𝒂 𝒂𝒏𝒅 𝒃 are congruent 

modulo 𝒎, we write 

𝒂 ≡ 𝒃 𝒎𝒐𝒅 𝒎 
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   For example, when 𝒂 = 𝟐𝟏, 𝒃 = 𝟏𝟑,  and 𝒎 = 𝟐  you have 𝟐𝟏 ≡ 𝟏𝟑 𝒎𝒐𝒅 𝟐 , where the 

remainders of the division of 𝟐𝟏 and 𝟏𝟑 divided by 𝟐 leave the same remainder 1. As we can easily 

conclude that, according to the definition denoted above to "𝑚𝑜𝑑", now is denoted as a congruence 

relation. So, we have: 

𝒂 ≡ 𝒃 𝒎𝒐𝒅 𝒎 → 𝒂 𝒎𝒐𝒅 𝒎 = 𝒓 𝑎𝑛𝑑 𝒃 𝒎𝒐𝒅 𝒎 = 𝒓 

So, 

𝒂 ≡ 𝒃 𝒎𝒐𝒅 𝒎 → 𝒂 𝒎𝒐𝒅 𝒎 = 𝒃 𝒎𝒐𝒅 𝒎 

As 𝒂 ≡ 𝒃 𝒎𝒐𝒅 𝒎  is a language used to express the division 𝒂 𝑎𝑛𝑑 𝒃 by 𝒎  leave the same 

remainder 𝒓. And, if it leave the same remainder, than 𝒂 = 𝒎𝒂′ + 𝒓, 𝒃 = 𝒎𝒃′ + 𝒓, such that 𝒂 −

𝒃 = 𝒎(𝒂′ − 𝒃′) 𝑠𝑖𝑛𝑐𝑒 𝒂′𝑒 𝒃′ ∈  ℤ. 

Topics of the Non-Modular Arithmetic of the Remeinder 

Therefore, the following properties of Modular Arithmetic use the Symbol "mod" to express several 

properties to the Theory that support Modular Mathematics. And, this paper will be addressed the 

Language of Non-Modular Arithmetic, not only to present this new Language but to prove properties as: 

Algebraic Arithmetic of the Remainder’s Definitions, Axiom of Algebraic Arithmetic of the Remainder, 

Property of the Neutral Element of Addition. 

Proof by Reduction to absurdity or Contradiction of the Neutral element of Addition, Algebraic 

Formalism Arithmetic Property of the Remainder, Commutative Property of Addition, Proof of 

Commutative Property, Neutral Element Property of Multiplication, Product Prorperty, Power Property, 

Commutative property of multiplication, Inverse Element of Multiplication. 

 As well as, Consequences of the Existence of the Neutral Element of Multiplication, Conditions of 

Existence of the Remainder w(ax)n, A Unique Property of the Product of Remainders. Demonstration of 

Fermat’s Little Theorem by Operator W, Proof of Fermat’s Little Theorem, Direct Proof of Fermat Little 

Theorem, Property of the Sum of the Remainder with Diferent Bases. 

 And finally, Proof of Catalan Conjecture, Function for Finding All the Numbers pk divisible by p, 

Function that Enumerate all values of pk  with respect to a given q ∈  ℕ , 0 < q < pk , where 

gdc(pk, q) = 1; The sum of Equal Bases with Different Kernel and A Relation of the Sum of Different 

Kernel and Congruence. 

It should be noted that, once the axiom of the Algebraic Arithmetic of the Remainder is exposed, all 

the rest will be a consequence of this axiom, and from which all others follow. And, its development will 

lead to a New Language that can be used for this Theory of Pure Mathematics. 

Algebraic Arithmetic of the Remainder’s Definitions 

The first axiom (a basic property took as evidente) of the Non-Modular Arithmetic is designed to 

replace (in this text) the usual Arithmetic. Let’s look the property of multiplication like that 𝒂 = 𝒏𝒌 + 𝒓. 

And extract some new terms. 

Where : 𝒂: 𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑 𝑜𝑟 𝐾𝑒𝑟𝑛𝑒𝑙, 𝒏: 𝐵𝑎𝑠𝑒, 𝒌: 𝑄𝑢𝑜𝑡𝑖𝑒𝑛𝑡 𝒓: 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟. 
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Axiom of Algebraic Arithmetic of the Remainder 

Definition: 𝒂 𝒎𝒐𝒅 𝒏 = 𝒘(𝒂 − 𝒏𝒌)𝒏 = 𝒓, 𝒊𝒇 𝒂𝒏𝒅 𝒐𝒏𝒍𝒚 𝒊𝒇, 𝒂 ≠ 𝒌𝒏 𝒆 𝟏 ≤ 𝒓 < 𝒏 𝒂𝒏𝒅 𝒌 ∈  ℤ. 

So, 𝒘(𝒂 ± 𝒏𝒌) = 𝒓, 𝒊𝒇 𝒂𝒏𝒅 𝒐𝒏𝒍𝒚 𝒊𝒇, 𝒂 ≠ 𝒌𝒏 𝒆 𝟏 ≤ 𝒓 < 𝒏 𝒆 𝒌 ∈  ℤ. 

An immediate consequence of the definition of the Non-Modular Arithmetic of the Remainder’s 

Operation, which will be called 𝒘 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 , and it will be precisely that: 𝒘(𝒌𝒏)𝒏 =

𝟎, 𝑡𝑜 𝑎 𝑛𝑢𝑚𝑏𝑒𝑟 𝒌 ∈  ℤ  𝑡ℎ𝑎𝑡, 𝒘(𝒂)𝒏 = 𝒓 𝑓𝑜𝑟 𝑎𝑙𝑙 𝒂 ≠ 𝒌𝒏 𝑒 𝟏 ≤ 𝒓 < 𝒏 𝒆 𝒌 ∈  ℤ. It’s easy to prove this 

proposition, since: 𝒘(𝒂 − 𝒏𝒌)𝒏 = 𝟎. If  𝒂 = 𝒏𝒌,  so   𝒘(𝒏𝒌 − 𝒏𝒌) = 𝒘(𝟎)𝒏 = 𝟎. Therefore, we can 

state the following property of the Non-Modular Arithmetic of the Remainder, such as: 

Lemma 1.1  

If, 𝒘(𝒂 − 𝒏𝒌)𝒏 = 𝒘(𝒏𝒌)𝒏.  𝑺𝒐, 𝒘(𝒏𝒌)𝒏 = 𝟎, 𝒕𝒐 𝒂𝒏𝒚 𝒌 ∈  ℤ. 

I. Property of the Neutral Element of Addition

𝒘(𝒏𝒂)𝒏 = 𝒏𝒂, 𝒕𝒐 𝒂𝒏𝒚  𝒏 ∈  ℤ 

The proof is immediate, therefore, by the definition of the Algebraic Arithmetic of the Remainder, 

since, if 𝒏 𝒏𝒂 𝑎𝑛𝑑 𝒏⁄ 𝒏𝒂⁄ − 𝒏𝒌.  Therefore, this division of (𝒏𝒂 ÷ 𝒏) = 𝒂 𝒐𝒓 (𝒏𝒂 − 𝒏𝒌) ÷ 𝒏 = 𝒂 −

𝒌, leaves no remainder. For,(𝒏𝒂 − 𝒏𝒌) = 𝒏(𝒂 − 𝒌), which makes it a multiple of 𝒏. Hence, 𝒘(𝒏𝒌)𝒏 =

𝟎 𝒆 𝒘(𝒏𝒂 − 𝒏𝒂)𝒏  can be rewritten by 𝒘(𝒏(𝒂 − 𝒂)𝒏 = 𝒘(𝒂 ∗ 𝟎)𝒏 = 𝒘(𝟎)𝒏 = 𝟎.  Therefore, it is 

proved that 𝒘(𝒏𝒂)𝒏 = 𝒓 = 𝟎.  

Proof by Reduction to the Absurd of the Neutral Element of Addition. 

 Let,  𝒘(𝒏𝒂)𝒏 = 𝒓, mean that 𝒘(𝒏𝒂)𝒏 = 𝒏𝒂. Hence , 𝒂𝒏 = 𝒓. However,  𝒓 = 𝒏𝒂  means that 

𝒏 is a multiple of 𝒓,  resulting in 𝒓 > 𝒏. Because, 𝒘(𝒂)𝒏 exists, by the very definition of the Algebraic 

Arithmetic of the Remainder, if and only if,  𝒓 ≠ 𝒏𝒂 𝑎𝑛𝑑 𝟏 ≤ 𝒓 < 𝒏.     

Theorem 2. Sum of the Terms of Non-Modular Arithmetic. 

The sum of the remainder´s terms is equal to the sum of the terms separated. 

𝒘(𝒂 + 𝒃)𝒏 = 𝒘(𝒂)𝒏 + 𝒘(𝒃)𝒏 

Proof of Theorem 2. 

 Let 𝒘(𝒂)𝒏 = 𝒓𝟏 𝒂𝒏𝒅  𝒘(𝒃)𝒏 = 𝒓𝟐.  So, 𝒘(𝒂 − 𝒏𝒌)𝒏 + 𝒘(𝒃 − 𝒏𝒌)𝒏 = 𝒓𝟏 + 𝒓𝟐 . Because, 𝒂 −

𝒏𝒌𝟏 = 𝒓𝟏 𝒂𝒏𝒅 𝒃 − 𝒏𝒌𝟐 = 𝒓𝟐. Therefore, applying the operation of the remainder, we have that 𝒘(𝒂 −

𝒏𝒌𝟏)𝒏 + 𝒘(𝒃 − 𝒏𝒌𝟐)𝒏 = 𝒓𝟏 + 𝒓𝟐 . And, the sum of the values of 𝒓𝟏 + 𝒓𝟐  > 𝒏,  has the remainder 

operation applied again. Hence, 𝒘(𝒂)𝒏 + 𝒘(𝒃)𝒏 = 𝒘(𝒓𝟏 + 𝒓𝟐)𝒏 = 𝒘(𝒓)𝒏 = 𝒓.  

 Now we can calculate the value of   𝒘(𝒂 + 𝒃)𝒏. Since, 𝒘(𝒂 + 𝒃)𝒏 = 𝒘(𝒂 − 𝒌𝒏 + 𝒃 − 𝒏𝒌)𝒏 𝑤. 

And, as 𝒂 − 𝒌𝒏 = 𝒓𝟏 𝒆 𝒃 − 𝒏𝒌 = 𝒓𝟐,  it implies that, 𝒘(𝒂 − 𝒏𝒌𝟏 + 𝒃 − 𝒏𝒌𝟐)𝒏 =  𝒘(𝒓𝟏 + 𝒓𝟏 +

𝒏(𝒌𝟏 − 𝒌𝟐))𝒏 = 𝒓. Therefore, it is proven that, 𝒘(𝒂 + 𝒃)𝒏 = 𝒘(𝒂)𝒏 + 𝒘(𝒃)𝒏. 
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II. Commutative Property of Addition.

 𝒘(𝒂)𝒏 + 𝒘(𝒃)𝒏 = 𝒘(𝒃)𝒏 + 𝒘(𝒂)𝒏

Proof of Commutative property 

 As 𝒘(𝒂)𝒏 = 𝒂′ and 𝒘(𝒃)𝒏 = 𝒃 that is, their respective remainders. There is if, 𝒘(𝒂)𝒏 + 𝒘(𝒃)𝒏 =

𝒂′ + 𝒃′ . Applying the remainder property of the AAR, again we have:  w( 𝒘(𝒂)𝒏 + 𝒘(𝒃)𝒏 =

𝒘(𝒂′ + 𝒃′)𝒏.  Now, let's do, 𝒘(𝒃 + 𝒂)𝒏. So, as 𝒘(𝒃 + 𝒂)𝒏 = 𝒘(𝒃′ + 𝒂′). And, by the property of

addition of remainder, we have that:  𝒘(𝒂′)𝒏 + 𝒘(𝒃′)𝒏 = 𝒘(𝒃′ + 𝒂′)𝒏 = 𝒘(𝒃′) + 𝒘(𝒂)′ . And, as

𝒘(𝒂′)𝒏 + 𝒘(𝒃′)𝒏 = 𝒘(𝒃′)𝒏 + 𝒘(𝒂′),  then replacing 𝒂′ = 𝒂 − 𝒏𝒌𝟏 𝒂𝒏𝒅 𝒃′ = 𝒃 − 𝒏𝒌𝟐, we have:

𝒘(𝒂 − 𝒏𝒌𝟏)𝒏 + 𝒘(𝒃 − 𝒏𝒌𝟐)𝒏 = 𝒘(𝒂 − 𝒏𝒌𝟏 + 𝒃 − 𝒏𝒌𝟐). Therefore, applying the property of the sum 

of the remainder, there is, 𝒘(𝒂)𝒏 − 𝒘(𝒏𝒌𝟏)𝒏 + 𝒘(𝒃)𝒏 − 𝒘(𝒏𝒌𝟐)𝒏 = 𝒘(𝒂)𝒏 + 𝒘(𝒃)𝒏 − 𝒘(𝒏(𝒌𝟏 +

𝒌𝟐)𝒏. Canceling the portions of the remainder where we have multiples of n, it follows that: 

 𝒘(𝒂)𝒏 + 𝒘(𝒃)𝒏 = 𝒘(𝒃)𝒏 + 𝒘(𝒂)𝒏 

The generalization of the property above for more terms, is up to the reader 

Commutative Property Generalized. 

 (𝐰(𝐚)𝐧 + 𝐰(𝐛)𝐧) + 𝐰(𝐜)𝐧 = 𝐰(𝐚)𝐧 + (𝐰(𝐛)𝐧 + 𝐰(𝐜)𝐧) 

Proof of Commutative Property 

 Let (𝐰(𝐚)𝐧 + 𝐰(𝐛)𝐧) = 𝒘(𝒂 + 𝒃)𝒏 = (𝒓𝟏 + 𝒓𝟐)𝒏  and 𝒘(𝒄)𝒏 = 𝒓𝟑 . So, (𝐰(𝐚)𝐧 + 𝐰(𝐛)𝐧) +

𝐰(𝐜)𝐧 = 𝒘(𝒓𝟏 + 𝒓𝟐)𝒏 + 𝒘(𝒓𝟏)𝒏 = 𝒘(𝒓𝟏 + 𝒓𝟐 + 𝒓𝟑) . When doing  𝒓𝟐 + 𝒓𝟑 = 𝒓  and, applying the 

property of sum of remainders in (𝐰(𝐚)𝐧 + 𝐰(𝐛)𝐧) + 𝐰(𝐜)𝐧 , we have: 𝒘(𝒓𝟏 + (𝒓𝟐 + 𝒓𝟏))𝒏 =

𝒘(𝒓𝟏 + 𝒓)𝒏 = 𝒘(𝒓𝟏)𝒏 + 𝒘(𝒓)𝒏 . Hence, it can be verified that 𝒘(𝒓𝟏)𝒏 + (𝒘(𝒓𝒏)) = 𝒘(𝒓𝟏)𝒏 +

(𝒘(𝒓𝟐 + 𝒓𝟑)). Thus, so now, we have that, (𝐰(𝐚)𝐧 + 𝐰(𝐛)𝐧) + 𝐰(𝐜)𝐧 = 𝐰(𝐚)𝐧 + (𝐰(𝐛)𝐧 + 𝐰(𝐜)𝐧), 

demonstrating the desired property. 

III. Property of the Neutral Element of Multiplication.

 𝒘(𝒏𝒌 + 𝟏)𝒏 = 𝟏 

Proof: Suppose 𝒘(𝒂)𝒏 = 𝟏.  So, by the property of the NMAR, we have that,   𝒘(𝒂)𝒏 = 𝒘(𝒂 −

𝒏𝒌)𝒏 = 𝟏. So, let 𝒂 = 𝟏  implies that, 𝒘(𝒂 − 𝒏𝒌)𝒏 = 𝒘(𝟏)𝒏 − 𝒘(𝒏𝒌)𝒏 = 𝒘(𝟏)𝒏 = 𝟏 . That's the 

trivial solution. However, if 𝒂 ≠ 𝟏, we have that, 𝒘(𝒂 − 𝒏𝒌)𝒏 = 𝒘(𝒂)𝒏 − 𝒘(𝒏𝒌)𝒏 = 𝟏.  

 Hence, 𝒘(𝒏𝒌)𝒏 = 𝟏 + 𝒘(𝒂) and as  𝒘(𝒏𝒌)𝒏 = 𝟎, implies that 𝒘(𝒂)𝒏 is 𝟎 or a multiple of n. 

Hence, 𝒂 = 𝒏𝒌.  Therefore, it is proved that the neutral element of the sum arithmetic is 

𝒘(𝒏𝒌 + 𝟏)𝒏 = 𝟏. 

 Subsequently we will have all remainders of the form 𝒘(𝒏𝒌 + 𝒓)𝒏 since,  𝒓 ≠ 𝒏𝒌. That is, there 

will always be a remainder, as long as 𝒓 is not a multiple of 𝒏. That is, the set of possible remainders, 

represented by 𝒓𝒏, will be: 

 𝒓𝒏 = { 𝒏𝒌 + 𝟏, 𝒏𝒌 + 𝟐 … + (𝒏𝒌 + (𝒏 − 𝟏))} 
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IV. Product Property of Non-modular Arithmetic

 𝒘(𝒂)𝒏 ∗ 𝒘(𝒃)𝒏 = 𝒘(𝒂 ∗ 𝒃) 

Like  𝒘(𝒂 − 𝒏𝒌𝟏)𝒏 = 𝒂′ and 𝒘(𝒃 − 𝒏𝒌𝟐)𝒏 = 𝒃′. Then, the product property of the remainder,

𝒘(𝒂)𝒏 ∗ 𝒘(𝒃)𝒏 = 𝒘(𝒂′)𝒏 ∗ 𝒘(𝒃′)𝒏 = 𝒓𝟏 ∗ 𝒓𝟐 = 𝒘(𝒓𝟏 ∗ 𝒓𝟐)𝒏 . Recall that, in the Non-Modular

arithmetic of Remainder, 𝒘(𝒓)𝒏 = 𝒓 . For this reason,  𝒓𝟏 ∗ 𝒓𝟐 =  𝒘(𝒓𝟏 ∗ 𝒓𝟐)𝒏. Now let 𝒘(𝒂 ∗ 𝒃)𝒏 =

𝒘((𝒂 − 𝒏𝒌𝟏) ∗ (𝒃 − 𝒏𝒌𝟐))
𝒏

. So, applying the property of sum of remainders, it is easy to see that, as

𝒘( (𝒂 − 𝒏𝒌𝟏)  +  (𝒃 − 𝒏𝒌𝟐) )𝒏  =  𝒘( 𝒂 ∗ 𝒃 −  𝒂𝒏𝒌𝟐  −  𝒃𝒏𝒌𝟏  −  𝒏𝟐𝒌𝟏𝒌𝟐 )𝒏  =  𝒘(𝒂′ ∗ 𝒃′)𝒏. Hence,

𝒘((𝒂 − 𝒏𝒌𝟏) ∗ (𝒃 − 𝒏𝒌𝟐))
𝒏

= 𝒘(𝒂′ ∗ 𝒃′)𝒏 = 𝒘(𝒓𝟏 ∗ 𝒓𝟐)𝒏 = 𝒓. Therefore, in this way, it is proved that,

𝒘(𝒂)𝒏 ∗ 𝒘(𝒃)𝒏 = 𝒘(𝒂 ∗ 𝒃).  

V. Power Property of Non-modular Arithmetic.

𝒘(𝒂)𝒏
𝒎 = 𝒘(𝒂)𝒏 ∗ … ∗ 𝒘(𝒂)𝒏 = 𝒘(𝒂 ∗ … ∗ 𝒂) = 𝒘(𝒂)𝒎

𝒏

Let  𝒘(𝒂)𝒏 = 𝒓.  Hence, 𝒘(𝒂)𝒏
𝒎 = 𝒓𝒎  ∴ 𝒘(𝒂)𝒏 = 𝒓 ∗ 𝒓 ∗ 𝒓 … 𝒓. So, we have  𝒘(𝒂)𝒏 = 𝒓 ∗ 𝒓 ∗

𝒓 … 𝒓 = 𝒘(𝒂)𝒏 ∗ 𝒘(𝒂)𝒏 ∗ 𝒘(𝒂)𝒏 … 𝒘(𝒂)𝒏, so we have  𝒘(𝒂)𝒏 = 𝒓. And, according to the transitive 

property of arithmetic, it says that: if 𝒂 = 𝒃 𝒆 𝒃 = 𝒄 →  𝒂 = 𝒄.  In this way, it is proved that 𝒘(𝒂)𝒏
𝒎 =

𝒓 ∗ 𝒓 ∗ 𝒓 …  𝒓 = 𝒘(𝒂)𝒏 ∗ 𝒘(𝒂)𝒏 … 𝒘(𝒂)𝒏.  So,  𝒘(𝒂)𝒏
𝒎 = 𝒘(𝒂)𝒏 ∗ 𝒘(𝒂)𝒏 … 𝒘(𝒂)𝒏  Now, notice that,

𝒘(𝒂)𝒏 ∗ 𝒘(𝒂)𝒏 … 𝒘(𝒂)𝒏 = 𝒘(𝒂 ∗ 𝒂) ∗ 𝒘(𝒂) … 𝒘(𝒂) = 𝒘(𝒂𝟐)𝒏 ∗ 𝒘(𝒂)𝒏 … 𝒘(𝒂)𝒏  and that, when

generalizing the property of the product of remainders, term a term, we will have, 𝒘(𝒂)𝒏 ∗

𝒘(𝒂)𝒏 … 𝒘(𝒂)𝒏 = 𝒘(𝒂 ∗ 𝒂 ∗ 𝒂 … 𝒂)𝒏 = 𝒘(𝒂𝒎)𝒏. Therefore, it is shown that  𝒘(𝒂𝒎)𝒏 = 𝒘(𝒂)𝒏 ∗ … ∗

𝒘(𝒂)𝒏 = 𝒘(𝒂 ∗ … ∗ 𝒂) = 𝒘(𝒂)𝒏
𝒎.

VI. Commutative Property of Multiplication.

 𝒘(𝒂)𝒏 ∗ 𝒘(𝒃)𝒏 = 𝒘(𝒃)𝒏 ∗ 𝒘(𝒂)𝒏 

 This property, commutative property, is immediate. Suppose that  𝒘(𝒂)𝒏 = 𝒓𝟏 𝑎𝑛𝑑 𝒘(𝒃)𝒏 =

𝒓𝟐. So, 𝒘(𝒂)𝒏 ∗ 𝒘(𝒃)𝒏 = 𝒓𝟏 ∗ 𝒓𝟐 = 𝒘(𝒓𝟏 ∗ 𝒓𝟐)𝒏 . Likewise, notice that 𝒘(𝒃)𝒏 ∗ 𝒘(𝒂)𝒏 = 𝒘(𝒃 ∗

𝒂)𝒏 = 𝒘(𝒓𝟐 ∗ 𝒓𝟏)𝒏. Therefore, we have that,  𝒂 ∗ 𝒃 = 𝒃 ∗ 𝒂, follows that, 𝒘(𝒂 ∗ 𝒃)𝒏 = 𝒘(𝒃 ∗ 𝒂)𝒏  ∴

𝒘(𝒂)𝒏 ∗ 𝒘(𝒃)𝒏 = 𝒘(𝒃)𝒏 ∗ 𝒘(𝒂)𝒏.  Therefore, by the product property of NMAR, we have 𝒘(𝒂)𝒏 ∗

𝒘(𝒃)𝒏 = 𝒘(𝒃)𝒏 ∗ 𝒘(𝒂)𝒏.  

VII. Inverse Element of Multiplication.

Suppose that, there is a solution for 𝒘(𝒂𝒙)𝒏 = 𝟏, Therefore, by the property of the existence of the

Non-Modular Arithmetic of Remainder, we have that:  𝒘(𝒂𝒙)𝒏 = 𝒘(𝒂𝒙 − 𝒏𝒌)𝒏 = 𝟏. So, applying the 

Property of the Sum of Remainders, we have:  𝒂𝒙 − 𝒏𝒌 = 𝟏.  When applying the Property of the 

Remainder to Base  𝒏  on both sides of the equality, we have that: 𝒘(𝒂𝒙)𝒏 − 𝒘(𝒏𝒌)𝒏 = 𝟏 ∴

𝒘(𝒂𝒙)𝒏 = 𝟏, that is, if  𝑎𝒙 < 𝒏 implies that  𝒂𝒙 = 𝟏. So, for the expression 𝒂𝒙 = 𝟏 to be true it is 

necessary that 𝒂 = 𝒙. Which is a trivial solution to the problem, since  𝒘(𝟏)𝒏 = 𝟏 𝑎𝑛𝑑, 𝑖𝑓  𝒏 ≠ 𝟏.  

Now, when applying again the Existence Remainder’s Property in the equation 𝒂𝒙 − 𝒏𝒌 = 𝟏 with 

the base 𝒂, we have then: 𝒂𝒙 − 𝒏𝒌 = 𝟏 → 𝒘(𝒂𝒙)𝒂 − 𝒘(𝒏𝒌)𝒂 = 𝟏. Therefore, 𝒘(𝒏𝒌)𝒂 = −𝟏. So, 
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for the expression  𝒘(𝒏𝒌)𝒏 = −𝟏 𝒏𝒌 ≠ 𝒂𝒕, 𝒕 ∈  ℤ.  Hence we can conclude that: se 𝒂 ≢ 𝒏𝒌 and 

𝒏 ≢ 𝒕𝒂. Therefore, 𝒈𝒅𝒄(𝒂, 𝒏) = 𝟏. Therefore, we can conclude that: 

𝑻𝒉𝒆𝒐𝒓𝒆𝒎 𝟒. 𝒘(𝒂𝒙)𝒏 = 𝟏  𝒊𝒇 𝒂𝒏𝒅 𝒐𝒏𝒍𝒚 𝒊𝒇 𝒈𝒅𝒄(𝒂, 𝒏) = 𝟏. 

 Therefore, once theorem 4 is defined, it is easy to demonstrate that the expression 𝒘(𝒂𝒙)𝒏 =

𝒂𝒙 − 𝒏𝒌 = 𝟏 exists, if and only if, 𝒘(𝒂𝒙)𝒏 = 𝟏 exists. If,  𝒈𝒅𝒄(𝒂, 𝒏) = 𝟏 𝑡ℎ𝑒𝑛, 𝒘(𝒂𝒙)𝒏 = 𝒂𝒙 − 𝒏𝒌 =

𝟏. Like – 𝒌 can be rewritten as  𝒚. So, 𝒂𝒙 − 𝒏𝒌 = 𝒂𝒙 + 𝒏𝒚 = 𝟏 So here's the next corollary, 

𝑪𝒐𝒓𝒐𝒍𝒍𝒂𝒓𝒚 𝟒. 𝟏 𝑰𝒇  𝒈𝒅𝒄(𝒂, 𝒏) = 𝟏, 𝒕𝒉𝒆𝒏 𝒂𝒙 + 𝒏𝒚 = 𝟏 𝒉𝒂𝒔 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏. 

Since the expression 𝒂𝒙 + 𝒏𝒚 = 𝟏 is a linear Diophantine equation, because in accordance with 

Burton (2007), we have: 

The linear Diophantine Equation  𝒂𝒙 + 𝒃𝒚 = 𝒄 has a solution if and only if 𝒅|𝒄, where, 𝒅 =

𝒈𝒅𝒄(𝒂, 𝒃).  

Where it results, made the due substitutions of integer variables for Non-Modular Arithmetic, that 

the existence of the neutral element  𝒘(𝒂𝒙)𝒏 = 𝟏  is guaranteed, and implies that the linear 

Diophantine equation, in the form 𝒂𝒙 + 𝒏𝒚 = 𝟏 has solution. Since,  𝒘(𝒂𝒙)𝒏 = 𝒂𝒙 + 𝒏𝒌 = 𝟏. So, 

we can conclude that the existence of the neutral element implies a direct proof of the Bézout Relation. 

For, by the Bézout Relation, we have that, 𝒂𝒎 + 𝒃𝒏 = 𝟏  if and only if 𝒈𝒅𝒄(𝒂, 𝒃) = 𝟏.  This 

formulation of the Bézout Relation is analogous to the formulation of the neutral element, where 

𝒘(𝒂𝒙)𝒏 = 𝒂𝒙 − 𝒏𝒌 = 𝟏, if and only if, , 𝒈𝒅𝒄(𝒂, 𝒏) = 𝟏.  

CONSEQUENCES OF THE EXISTENCE OF THE NEUTRAL ELEMENT OF MULTIPLICATION 

 Suppose you have a Diophantine Equation of type 𝒂𝒙 + 𝒃𝒚 = 𝟏 , so the neutral element 

𝒘(𝒂𝒙)𝒃 = 𝟏 exists. So, by multiplying the equation by 𝒄 on both sides, we have that, 𝒂𝒄𝒙 + 𝒃𝒄𝒚 = 𝒄. 

So when doing 𝒂𝒄 = 𝒎 𝑎𝑛𝑑 𝒃𝒄 = 𝒏, we have, 𝒎𝒄 + 𝒏𝒚 = 𝒄, 𝑤ℎ𝑒𝑟𝑒  𝒄 = 𝒈𝒅𝒄(𝒎, 𝒏).  

Therefore, if there is any Diophantine Equation, in general, such that the remainder is different from 

𝟏. There will be a 𝒄 such that 𝒎 and 𝒏 are multiples of  c.  In other words, the remainder when 

there is a Diophantine Equation, of type, 𝒎𝒙 + 𝒏𝒚 = 𝒄, which is the same as the operator 𝒘(𝒎𝒙)𝒚 =

𝒓. It will have a solution, if and only if,  𝒘(𝒎𝒙)𝒚 = 𝒄. 

Proof: Let 𝒘(𝒎𝒙)𝒚 = 𝒄, then, there is 𝒎𝒙 + 𝒏𝒚 = 𝒄 So, for this equation to have a solution, we have 

that the expression 𝒎𝒙 + 𝒏𝒚 = 𝒄,  when divided by 𝒏,  results in,  𝒂𝒙 + 𝒃𝒚 = 𝟏 . Therefore, if 

𝒈𝒅𝒄(𝒂, 𝒃) = 𝟏, then  𝒘(𝒂𝒙)𝒃 = 𝟏 has a solution. Hence, 𝒘(𝒎𝒙)𝒚 = 𝒘(𝒄𝒂𝒙)𝒚 = 𝒘(𝒄)𝒚 ∗ 𝒘(𝒂𝒙)𝒚 =

𝒄.  Likewise, it can be verified that, for the equation 𝒎𝒙 + 𝒏𝒚 = 𝒄, has a solution, the necessary and not 

sufficient condition is that m and n are multiples of 𝒄. That is,  𝒎 = 𝒂𝒄 𝑎𝑛𝑑 𝒏 = 𝒃𝒄 𝑓𝑜𝑟  𝒂 𝑎𝑛𝑑 𝒃 ∈

 ℤ. Therefore, we have a test for the existence of Diophantine Equations, as follows in the next corollary. 

Corollary 4.2 If the 𝒈𝒅𝒄(𝒎, 𝒏, 𝒄) = 𝒄  a Diophantine equation 𝒎𝒙 + 𝒏𝒚 = 𝒄.  So, this equation 

admits a solution. 

Conditions of Remainder Existence (𝒂𝒙)𝒏. 
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 For 𝒘(𝒂𝒙)𝒏 = 𝒓 to have remainder, there must be 𝒓 ≠ 𝟎. If 𝒓 = 𝟎, the division is exact and has 

no remainder. Hence, 𝒂𝒙 − 𝒏𝒌 = 𝒓 → 𝒂𝒙 ≠ 𝒏𝒌 so that 𝒓 ≠ 𝟎. Hence, by the Product’s Property of 

remainder in base 𝒏 , we have, 𝒘(𝒂)𝒏 ∗ 𝒘(𝒃)𝒏 = 𝒓  implies that 𝒂 ≠ 𝒏𝒌 𝒆 𝒃 ≠ 𝒏𝒌 . And, how 

𝒘(𝒂)𝒏 ∗ 𝒘(𝒙)𝒏 = 𝒘(𝒂𝒙)𝒏 , hence 𝒂𝒙 ≠ 𝒏𝒌. Where, 𝒌  can take any value, as long as 𝒌 ∈  ℤ . Let 

𝒌 = 𝒂 → 𝒂𝒙 ≠ 𝒏𝒂, so, 𝒂𝒙 − 𝒏𝒂 = 𝒓. And,  𝒘(𝒂𝒙)𝒏 − 𝒘(𝒏𝒂)𝒏 = 𝒘(𝒂𝒙)𝒏 = 𝒓 since 𝒂𝒙 ≠ 𝒏𝒌, so 

𝒘(𝒂𝒙)𝒏 = 𝒓 𝑒𝑥𝑖𝑠𝑡𝑠. Likewise, it can be demonstrated for 𝒌 = 𝒙, and it stays as an exercise. Therefore, 

the theorem below can be stated. 

Theorem 5. If 𝒘(𝒂𝒙)𝒏 = 𝒓 exists. So the base 𝒏 does not 𝒂 ad the product  𝒂𝒙. Then, 𝒏 does not 

divide 𝒙. 

Although Theorem 5 shows the Conditions of Existence of Remainder, we can ask ourselves what 

happens when 𝒂𝒃 < 𝒏. Well, let's make the product 𝒂𝒃 = 𝒂′, then, 𝒘(𝒂′)𝒏 = 𝒓, because by the

Conditions of Existence of the Remainder, 𝒓 exists, as long as  𝒂′ < 𝒓. Hence, the remainder 𝒓 = 𝒂𝒃. 

Therefore, 𝒘(𝒂𝒙)𝒏 = 𝒓 exists. And Theorem 5 guarantees its existence completely. 

 By the Property of the Product of the Remainder, we have  𝒘(𝒂𝒙)𝒏 = 𝒂𝒙, when 𝒂𝒙 < 𝒓. Hence, 

by doing 𝒓 = 𝟏 → 𝒂𝒙 = 𝟏 ∴ 𝒂 = 𝒙.  That is 𝒘(𝟏)𝒏 = 𝟏.  And, when 𝒘(𝒂𝒙)𝒏 = 𝟏 , it follows that 

𝒂𝒙 = 𝒏 + 𝟏 , because 𝒘(𝒂𝒙)𝒏 = 𝒘(𝒏 + 𝟏)𝒏 = 𝟏 . Therefore, for 𝒘(𝒂𝒙)𝒏 = 𝟏 , 𝒂𝒙 = 𝒏𝒌 + 𝟏 , and 

whatever the value of k, the 𝒈𝒅𝒄(𝒂𝒙, 𝒏) = 𝟏 . Since, 𝒈𝒅𝒄(𝒏𝒌 + 𝟏, 𝒏) = 𝟏.  Whence we reach the 

following conclusion about existence. 

Corollary 5.1 If  𝒘(𝒂𝒙)𝒏 = 𝟏 exists. Then, 𝒈𝒅𝒄(𝒂𝒙, 𝒏) = 𝟏. 

What has to be very clear, at this point, is that the remainder of the product 𝑎𝑥  of base 𝒏, 

𝒘(𝒂𝒙)𝒏 = 𝟏  exists, since, 𝒂𝒙 − 𝒏𝒌 = 𝟏   are satisfied, and that according to the theorem 4 

𝒘(𝒂𝒙)𝒏 = 𝟏  if and only if  𝒈𝒅𝒄(𝒂, 𝒏)𝒏 = 𝟏. Therefore, this result has an immediate consequence, 

since we can reach the conclusion demonstrated by Theorem 5. 

 And, for 𝒘(𝒂𝒙)𝒏 = 𝟏 to exist, the values of  𝒂𝒙 can only be the family of values represented by 

the infinite sequence of terms, such that, 𝒔 = {𝟏, 𝒏 + 𝟏, … , 𝟐𝒏 + 𝟏 … , 𝒌𝒏 + 𝟏}. In which we have the 

most general test, 𝒂𝒙 = 𝒌𝒏 + 𝟏. Se 𝒌 = 𝟎, it implies that 𝒂𝒙 = 𝟏 𝒂𝒏𝒅 𝒙 = 𝒂 = 𝟏. And, without the 

loss of generality, another, possibility would be the general form, 𝒂𝒙 = 𝒏𝒌 + 𝟏 and as 𝒈𝒅𝒄(𝒏𝒌 +

𝟏, 𝒏𝒌) = 𝟏, it is shown that  𝒈𝒅𝒄(𝒂𝒙, 𝒏) = 𝟏. Which is a more general way to obtain the multiplicative 

inverse for the product 𝑛 of n elements, which can be generalized to the nth product, is an exercise, since 

this the  𝒈𝒅𝒄(𝒂 ∗ 𝒃 … , 𝒏)𝒏 = 𝟏. 

A Special Property of the Remainder Product. 

 At this point, the existence of an inverse multiplicative element of remainders, called 𝒂−𝟏. will be 

addressed. Although it is not defined in the set of natural numbers, it has applications that will be 

important for the proof of several important theorems that will emerge.  

Definition of the Inverse of Element of Multiplication of the Remainder 𝒂−𝟏. 

For  ∀𝒂 ∈  ℕ, 𝑒𝑥𝑖𝑠𝑡𝑠 𝒂−𝟏  ∈  ℚ, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝒘(𝒂)𝒏 ∗ 𝒘(𝒂−𝟏)𝒏 = 𝟏

It is worth remembering that, by the property of the remainder product, we have: 

𝒘(𝒂)𝒏 ∗ 𝒘(𝒂)𝒏 ∗ 𝒘(𝒂−𝟏)𝒏 = 𝒘(𝒂 ∗ 𝒂−𝟏)𝒏 = 𝒘(𝟏)𝒏 = 𝟏.
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Proof of Fermat's Little Theorem by the W operator. 

  According to Fermat's Theorem, we have: Let  𝒂𝒑 where 𝒑 is prime, then, 𝒂𝒑 ≡ 𝒂 (𝒎𝒐𝒅 𝒑). That 

is, written, according to the language of the 𝒘, we have: let 𝒂𝒑 where the base  𝒏 = 𝒑.  So, 𝒘(𝒂𝒑)𝒑 =

𝒘(𝒂)𝒑 admits solution. 

Proof of Fermat's Little Theorem. 

By defining the existence of the remainder, 𝒘(𝒂𝒑)𝒑 = 𝒂 if and seed if  𝒂 ≠ 𝒌𝒑. So if 𝒘(𝒂𝒑)𝒑 =

𝒂 → 𝒂𝒑 − 𝒌𝒑 = 𝒂. Because, when applying the property of the rectum, we have 𝒘(𝒂𝒑)𝒂 − 𝒘(𝒌𝒑)𝒂 =

𝒘(𝒂)𝒂 → 𝒘(𝒌𝒑)𝒂 = 𝟎 and as  𝒑 ≠ 𝟎, then 𝒌 = 𝟎 𝑜𝑢 𝒌 = 𝒂. Therefore, there must exist an  𝒙 ≠ 𝒌𝒑, 

such that 𝒘(𝒙𝒂𝒑)𝒑 = 𝟏.  Then, 𝒙𝒂𝒑 − 𝒌𝒑 = 𝟏  according to corollary 5.1 has a solution, since

𝒈𝒅𝒄(𝒙𝒂𝒑, 𝒑) = 𝟏. So, it is shown that 𝒘(𝒂𝒑)𝒑 = 𝒂  exists for all 𝒂 ≠ 𝒌𝒑.

An important fact about the existence of the Neutral Element is that we can choose the values of  𝒙, 

such that 𝒙 ≠ {𝒑}. That is, if the Neutral Element is of the type 𝒙 = 𝒑 + (𝒌 + 𝟏), then there is an 

𝒙,  such that 𝒘(𝒙𝒂𝒑)𝒑 = 𝟏. For, the 𝒈𝒅𝒄(𝒙 ≠ 𝒌𝒑, 𝒑) = 𝟏. Which leads us to the conclusion that, for

𝒘(𝒂𝒑)𝒑 = 𝒂, it is enough that there is a number 𝒙 ≠ 𝒌𝒑. Therefore, the following theorem is proved

in relation to the property of the remainder. 

𝑻𝒉𝒆𝒐𝒓𝒆𝒎 𝟔. 𝑰𝒇 𝒈𝒅𝒄(𝒂𝒑, 𝒑) = 𝟏. 𝑻𝒉𝒆𝒏, 𝒘(𝒂𝒑)𝒑 = 𝒘(𝒂)𝒑.

Remember that, 𝒘(𝒂𝒑)𝒑 = 𝒂 → 𝒂𝒑 ≡ 𝒂 (𝒎𝒐𝒅 𝒑).

 Hence, let 𝒂𝒑 and 𝒙, such that, 𝒈𝒅𝒄(𝒙𝒂𝒑, 𝒑) = 𝟏. Then, in the same way, we can conclude that 

𝒈𝒅𝒄(𝒂𝒙, 𝒑) = 𝟏.  For, 𝒑 being prime does not divide the product 𝒂𝒙. 

Direct proof of Fermat's Little Theorem. 

Assuming that 𝒘(𝒂𝒑)𝒑 = 𝒘(𝒂)𝒑 exists. Then, 𝒂𝒑 − 𝒌𝒑 = 𝒂 → 𝒂𝒑 − 𝒂 = 𝒌𝒑 𝑜𝑟 𝒂(𝒂𝒑 − 𝟏) = 𝒌𝒑.

And, applying the property of the remainder, with the base 𝑝, we have, 𝒘(𝒂(𝒂𝒑−𝟏 − 𝟏)𝒑 = 𝒘(𝒏𝒑)𝒑   ∴

𝒘(𝒂)𝒑𝒘(𝒂𝒑−𝟏 − 𝟏)𝒑 = 𝒘(𝒏𝒑)𝒑 = 𝟎.  nnd, how  the value of (𝒂)𝒑 ≠ 𝟎  implies that,  𝒘(𝒂𝒑−𝟏 −

𝟏)𝒑 = 𝟎 ∴ 𝒘(𝒂𝒑−𝟏)𝒏 = 𝟏.  At this moment, as the equation 𝒘(𝒂𝒑−𝟏)𝒑 = 𝟏 exists. Because,

𝒈𝒅𝒄(𝒂𝒑−𝟏, 𝒑) = 𝟏. So, 𝒘(𝒂𝒑)𝒑 = 𝒂 is true. And in the same way, as 𝒈𝒅𝒄(𝒂𝒑−𝟏, 𝒑) = 𝟏, implies that,

𝒘(𝒂𝒑−𝟏)𝑷 = 𝟏. Since  𝒘(𝒂𝒑−𝟏)𝑷 = 𝒘(𝒂−𝟏)𝒑𝒘(𝒂𝒑) = 𝟏, we can multiply both sides of the equation by
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𝒘(𝒂)𝒑 . And , 𝒘(𝒂)𝒑𝒘(𝒂−𝟏)𝒑𝒘(𝒂𝒑) = 𝒘(𝒂)𝒑 . So, 𝒘(𝒂𝒂−𝟏)𝒑 = 𝟏, because 𝒘(𝒂𝒑)𝒑 = 𝒘(𝒂)𝒑.

Therefore, Fermat's Little Theorem is demonstrated by the Algebraic Arithmetic of the Remainder, so we 

can state the following theorem. 

𝑻𝒉𝒆𝒐𝒓𝒆𝒎 𝟕. 𝑰𝒇 𝒑 𝒊𝒔 𝒂 𝒑𝒓𝒊𝒎𝒆 𝒏𝒖𝒎𝒃𝒆𝒓 𝒂𝒏𝒅 𝒑 ≠ 𝒂. 𝑻𝒉𝒆𝒏 𝒘(𝒂𝒑)𝒑 = 𝒘(𝒂)𝒑.

One of the immediate consequences of Theorem 7 is about the condition of existence of the theorem. 

For, as 𝒘(𝒂)𝒑𝒘(𝒂𝒑−𝟏 − 𝟏)𝒑 = 𝒘(𝒏𝒑)𝒑 Therefore, as 𝒘(𝒂𝒑−𝟏 − 𝟏)𝒑 = 𝟎, that is, 𝒂𝒑−𝟏 − 𝟏 = 𝒑𝒌.

𝑪𝒐𝒓𝒐𝒍𝒍𝒂𝒓𝒚 𝟕. 𝟏 𝑰𝒇 𝒑  𝒊𝒔 𝒂 𝒑𝒓𝒊𝒎𝒆 𝒏𝒖𝒎𝒃𝒆𝒓 𝒂𝒏𝒅. 𝑻𝒉𝒆𝒏, 𝒂𝒑−𝟏 − 𝟏 = 𝒑𝒌. 

Property of the Sum of the Remainder with Different Bases 

The sum of the operation of the remainder with the same dividend 𝒂  and bases 

𝒎 𝑎𝑛𝑑 𝒏, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝒎 ≠ 𝒏 is equal to the sum of the general value, where 𝒂𝟎 is the particular case 

that satisfies the individual operations of different bases. Hence,  𝒂 = 𝒂𝟎 + 𝒎𝒏𝒌. 

𝑻𝒉𝒆𝒐𝒓𝒆𝒎 𝟖. 𝑰𝒇  𝒘(𝒏, 𝒎)𝟏.  𝑻𝒉𝒆𝒏,    𝒘(𝒂)𝒏 + 𝒘(𝒂)𝒎 = 𝒘(𝒂𝟎 + 𝒏𝒎𝒌)𝒏 + 𝒘(𝒂𝟎 + 𝒏𝒎𝒌)𝒎 

Proof: Let 𝒘(𝒂)𝒏 = 𝒓𝟏 𝑎𝑛𝑑 𝒘(𝒂)𝒎 = 𝒓𝟐, hence, 𝒘(𝒂)𝒏 + 𝒘(𝒂)𝒎 = 𝒓𝟏 + 𝒓𝟐  ∴ 𝒓𝟏 + 𝒓𝟐 = 𝒓. So let's 

check the values of  𝒘(𝒂)𝒏 = 𝒓𝟏. That is, 𝒘(𝒂)𝒏 = 𝒓𝟏 → 𝒂 = 𝒏𝒌𝟏 + 𝒓𝟏  and likewise,  𝒘(𝒂)𝒎 =

𝒓𝟐 → 𝒂 = 𝒎𝒌𝟐 + 𝒓𝟐 , as 𝒂 = 𝒂 →  𝒏𝒌𝟏 + 𝒓𝟏 = 𝒎𝒌𝟐 + 𝒓𝟐 . Therefore, by regrouping the equation 

𝒏𝒌𝟏 + 𝒓𝟏 = 𝒎𝒌𝟐 + 𝒓𝟐 we obtain a Diophantine equation such like that 𝒏𝒌𝟏 − 𝒎𝒌𝟐 = 𝒓𝟐 − 𝒓𝟏 = 𝒓.  

 And, if 𝒈𝒅𝒄(𝒎, 𝒏) = 𝟏, implies that the equation 𝒏𝒌′ − 𝒎𝒌′′ = 𝟏 has a solution. Therefore, the 

equation  𝒏𝒓𝒌𝟏 − 𝒎𝒓𝒌𝟐 = 𝒓 has a solution as well. Where 𝒓𝒌′ = 𝒌𝟏 𝑎𝑛𝑑 𝒆𝒌′′ = 𝒌𝟐. Therefore, the

initial value of  𝒂𝟎 = 𝒏𝒌𝟏 + 𝒓𝟏 = 𝒎𝒌𝟐 + 𝒓𝟐 is determined. And, when obtaining the particular solution 

𝒂𝟎 there is a subsequence of values that satisfies the following equation  𝒘(𝒂)𝒏 + 𝒘(𝒂)𝒎 = 𝒓𝟏 + 𝒓𝟐. 

And for that, you can take all the generic values of 𝒂, such that  𝒂 = 𝒂𝟎 + 𝒎𝒏𝒌. 

 Let 𝒘(𝒂)𝒏 = 𝒓𝟏  and  𝒘(𝒂)𝒎 = 𝒓𝟐  satisfy 𝒘(𝒂)𝒏 + 𝒘(𝒂)𝒎 = 𝒓𝟏 + 𝒓𝟐  . There is only one 

solution for this system, and that solution is to do  𝒂 = 𝒂, which implies that 𝒂𝟎 − 𝒏𝒌𝟏 = 𝒂𝟎 − 𝒎𝒌𝟐 

or that 𝒏𝒌𝟏 = 𝒎𝒌𝟐. However, as 𝒎 𝒂𝒏𝒅 𝒏 are not only different, as 𝒈𝒅𝒄(𝒏, 𝒎) = 𝟏.  

So, the only form of  𝒏𝒌𝟏 = 𝒎𝒌𝟐  is equating  𝒌𝟏 = 𝒎𝒌 𝒂𝒏𝒅 𝒌𝟐 = 𝒏𝒌, that is , 𝒎𝒏𝒌 = 𝒎𝒏𝒌. 

Thus, we can obtain the general form of the equality of the sum of remainder with different bases where 

𝒘(𝒂𝟎 + 𝒎𝒏𝒌)𝒏 = 𝒓𝟏  and 𝒘(𝒂𝟎 + 𝒎𝒏𝒌)𝒎 = 𝒓𝟐 . Hence it is proven that, if 𝒘(𝒏𝒙)𝒎 = 𝟏,  or the 

𝒈𝒅𝒄(𝒏, 𝒎) = 𝟏.  Then,  𝒘(𝒂)𝒏 + 𝒘(𝒂)𝒎 = 𝒘(𝒂𝟎 + 𝒏𝒎𝒌)𝒏 + 𝒘(𝒂𝟎 + 𝒏𝒎𝒌)𝒎 = 𝒓𝟏 + 𝒓𝟐.  So this 

result was exactly the theorem we wanted to prove. Note that, the Theorem 8 has the same application 

as the Chinese Remainder Theorem. 

The generalization of Theorem 8 about the Sum of Remainders with Different Bases can be 

generalized, taking the permutation of all sums two by two. Therefore, it can be stated like this. 

𝑰𝒇 𝒕𝒉𝒆 𝒔𝒆𝒕 𝒏𝟏, , , 𝒏𝒎 ∈ ℤ, 𝒂𝒏𝒅  𝒈𝒅𝒄(𝒏𝟏, 𝒏𝟐, … 𝒏𝒎) = 𝟏.  𝑻𝒉𝒆𝒏, 𝒕𝒉𝒆 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 (𝒂)𝒏𝟏 + 𝒘(𝒂)𝒏𝟐
+ 𝒘(𝒂)𝒏𝟑

+

⋯ + 𝒘(𝒂)𝒏𝒎 = 𝒓𝟏 + 𝒓𝟐 + ⋯ + 𝒓𝒎  𝒂𝒅𝒎𝒊𝒕𝒔 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏. 
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Proof of the Catalan Conjecture 

 According to corollary 7.1 the algebraic equation 𝒂𝒑−𝟏 − 𝟏 = 𝒑𝒌  admits a solution since the 

exponents are predecessors of any prime number. Hence, 𝒂𝒑−𝟏 − 𝟏 = 𝒑𝒌 can be regrouped to  𝒂𝒑−𝟏 −

𝒑𝒌 = 𝟏 Therefore, there is only a solution for even exponents, if the exponent 𝒏 = 𝒑 − 𝟏, where  𝒑 

is a prime number. 

Therefore, for the expression 𝒂𝒑−𝟏 − 𝒑𝒌 = 𝟏 to be in the form of the Catalan conjecture, it is 

necessary that   𝒑𝒌 = 𝒃𝒏. However, rewriting this expression as 𝒑𝒌 = 𝒃𝒑 → 𝒃 = √𝒑𝒌
𝒑

 implies that 

𝒌 = 𝒑𝒏−𝟏. So we have that 𝒂𝒑−𝟏 − 𝒑𝒑 = 𝟏 is the only solution. 

And since, 𝒑 − 𝟏 is the predecessor of E, como 𝒑. The only solution to the Catalan equation in the form 

𝒑 − 𝟏 is true, as long as m and n are consecutive primes. And, the only natural prime number that has 

the property of having an ancestor is the number 𝟑. Therefore, the only consecutive primes that exist are 

𝟐 and 𝟑. So the only solution to the Catalan equation is: 𝒂𝒎 − 𝒑𝒏 = 𝟏. So, making 𝒑 = 𝟑 we have, 

𝒂𝒑−𝟏 − 𝒑𝒑 = 𝟏, 𝒂𝟐−𝟏 − 𝟐𝟑 = 𝟏, 𝒂𝟏 − 𝟐𝟑 = 𝟏, and finally 𝒂 = 𝟗 . 

However, when making  𝜶 = √𝟗  → 𝜶 = ±𝟑, which substituting in the equation, since, 𝒂 = 𝜶𝟐 we 

have: 𝜶𝟐(𝒑−𝟏) − 𝒑𝒑 = 𝟏. Which admits the only solution since , 𝒂 = ±𝟑.  So Catalan's Conjecture is 

proved. 

Function to Find All Numbers of 𝐩𝛌 Divisible by 𝒑. 

Let 𝒘(𝒑𝝀)
𝒏

= 𝟎 then, the base 𝒏 = 𝒑, can be made since there is no remainder. Therefore, we 

have that,, 𝒘(𝒑𝝀 − 𝒏𝒌) = 𝟎, implying that,  𝒑𝝀 = 𝒏𝒌, and as  𝒏 = 𝒑, there is if 𝒑𝝀 = 𝒑𝒌, then 

𝒌 =
𝒑𝝀

𝒑
= 𝒑𝝀−𝟏.

 Therefore, the function that enumerates all the numbers that are divisors of 𝒑𝝀  with respect to 𝒑 

is 𝒌 = 𝒑𝝀−𝟏.  

Because, all divisors of 𝒑𝝀  by 𝒑 can be listed in a sequence 𝑺𝒏  such that 𝑺𝒏 =  {𝒑, 𝟐𝒑, …  𝒑 ∗

𝒑𝝀−𝟏}, which in turn, when making a subsequence 𝑺𝒎 such that 𝑺𝒎 = 𝑺𝒏/𝒑, so we have that,

𝑺𝒎 =  {𝟏, 𝟐, … ,  𝒑𝝀−𝟏}.

And, this subsequence, which has the total amount of terms that can be divided by 𝒑 and whose 

value, when enumerated, is equal to  𝒑𝝀−𝟏, provided that  𝒑𝝀 ∩ 𝑺𝒎 = 𝟎.

Therefore, by doing 𝒌 = 𝜹(𝒑𝝀), we then have a function that enumerates all the values of  𝒑𝝀 that 

satisfy the desired property between p and  𝒑 𝑎𝑛𝑑 𝒑𝝀. Therefore, we can state the following property 

of divisors of 𝒑𝝀 with respect to 𝒑. 

THEOREM 9. If the base 𝒏 is a prime number 𝒑. Then, the function that enumerates all the values of 

a power of 𝒑, such that, 𝒈𝒅𝒄(𝒑𝝀, 𝒒) ≠ 𝟏 can be defined by 𝜹(𝒑𝝀) = 𝒑𝝀−𝟏 𝒐𝒏𝒅𝒆 𝝀 𝝐 ℕ. 
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 Function that enumerates all values of 𝒑𝒌, with respect to a given  𝒒 ∈ ℕ, 𝟎 < 𝒒 < 𝒑𝝀, provided 

that 𝒈𝒅𝒄(𝒑𝝀, 𝒒) = 𝟏 And if the function 𝜹(𝒑𝝀) = 𝒑𝝀−𝟏  enumerates all divisors of  𝒑𝒌  with 

respect to 𝒑 , then all numbers q, 0 < 𝒒 < 𝒑𝝀 whose 𝒈𝒅𝒄(𝒑𝝀, 𝒒)
𝒏

= 𝟏  can be expressed as the

difference between 𝒑𝝀 − 𝒑𝝀−𝟏.  Therefore, by making 𝜹(𝒑𝝀) = 𝒑𝝀 − 𝒑𝝀−𝟏 we can represent a 

function that enumerates all the values of  𝒑𝝀  with respect to a given 𝒒,  𝟎 < 𝒒 < 𝒑𝝀, such that 

𝒈𝒅𝒄(𝒑𝝀, 𝒒) = 𝟏 and regrouping the terms in this expression  𝜹(𝒑𝝀) = 𝒑 ∗ 𝒑𝝀−𝟏 − 𝒑𝝀−𝟏 = 𝒑𝝀−𝟏(𝒑 −

𝟏). Therefore, the given expression 𝜹(𝒑𝝀) = 𝒑𝝀−𝟏(𝒑 − 𝟏) is the function that enumerates all terms 

𝒒, 𝒒 ⊃ ] 𝟎,  𝒑𝝀[ such that 𝒈𝒅𝒄(𝒑𝝀, 𝒒) = 𝟏.  

Theorem10. If 𝒑, 𝒒 𝒂𝒏𝒅 𝝀 ∈ ℕ, and 𝒑 prime.  So, the function  𝜹(𝒑𝝀) = 𝒑𝝀−𝟏(𝒑 − 𝟏) enumerates 

all natural numbers such that 𝒈𝒅𝒄(𝒑𝝀, 𝒒) = 𝟏. 

Sum of Equal Bases with Different Kernel. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟏𝟏.  𝐈𝐟  𝐰(𝐚)𝐧 = 𝐰(𝐛)𝐧 𝐞𝐱𝐢𝐬𝐭𝐬. 𝐓𝐡𝐞𝐧, 𝐧|𝐚 − 𝐛. 

Proof of the Theorem 11.  

 Let 𝒘(𝒂) = 𝒓 𝑎𝑛𝑑  𝒘(𝒃)𝒏 = 𝒓. We have that, 𝒘(𝒂)𝒏 − 𝒘(𝒃)𝒏 = 𝟎. And, by the property of the 

sum of the remainder, we have that, 𝒘(𝒂)𝒏 − 𝒘(𝒃)𝒏 = 𝒘(𝒂 − 𝒃)𝒏 = 𝟎, and this implies that,  𝒂 − 𝒃 =

𝒏𝒌  for a 𝒏𝒌 ≠ 𝟎. 𝐵𝑒𝑐𝑎𝑢𝑠𝑒, 𝒂 ≠ 𝒃. Then,  𝒂 − 𝒃 = 𝒏𝒌.  Now, it only remains for us to prove that 

𝒏|𝒂 − 𝒃.  

Therefore, when applying the property of the remainder with base 𝑛 on 𝒂 − 𝒃 = 𝒏𝒌 we have: 

𝒘(𝒂 − 𝒃)𝒏 = 𝒘(𝒏𝒌)𝒏. So, 𝒘(𝒂)𝒏 = 𝒘(𝒃)𝒏,  and 𝒂 ≠ 𝒃 we have 𝒂 = 𝒏𝒌′ + 𝒓 𝑎𝑛𝑑  𝒃 = 𝒏𝒌′′ − 𝒓.

Therefore, 𝒂 − 𝒃 = 𝒏𝒌′ − 𝒓 − 𝒏𝒌′′ + 𝒓. Hence , 𝒂 − 𝒃 = 𝒏(𝒌′ − 𝒌′′)  and doing 𝒌′ − 𝒌′′ = 𝒌  we 

have that, 𝒂 − 𝒃 = 𝒏𝒌. So, 𝒏|𝒂 − 𝒃. And, Theorem 11 is proved. 

Important information about the Property of the Sum of Different Kernel in relation to the same base 

is verified in proposition 11.1. 

Corollary 11.1  If 𝒘(𝒂)𝒏 = 𝒘(𝒃)𝒏.  𝑻𝒉𝒆𝒏, 𝒘(𝒂)𝒏 − 𝒘(𝒃)𝒏 = 𝒏𝒌, 𝒏𝒌 ≠ 𝟎 

In fact, the need for 𝒏 ≠ 𝟎, is already guaranteed by the Axiom of the Existence of the Remainder. 

What can be deduced about 𝒌 ≠ 𝟎 is the simple consequence of 𝒌′ ≠ 𝒌′′, since,  𝒌 = 𝒌′ − 𝒌′′. And, 

obviously, this is what guarantees 𝒂 ≠ 𝒃.  

The important thing is to be clear about the following proposition 

𝐼𝑓 𝒘(𝒂)𝒏 = 𝒘(𝒃)𝒏.  𝑇ℎ𝑒𝑛, 𝒂 − 𝒃 = 𝒏𝒌, 𝑤ℎ𝑒𝑟𝑒 𝒌 ∈ ℤ. 
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A Relation of the Sum of Different Kernel and Congruence 

The property of the sum of equal bases with a different kernel directly implies the notion of 

congruence. Because, just to make an analysis of Modular Arithmetic in relation to Non-Modular 

Arithmetic, just check that, 𝒂 ≡ 𝒃 𝒎𝒐𝒅 𝒏, 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡, 𝒘(𝒂)𝒏 = 𝒘(𝒃)𝒏. 

According to Rosen (2010), there is a notation to indicate that two whole numbers have the same 

remainder when they are divided by the positive whole number m. That is, 

DEFINITION: if 𝒂 and 𝒃 are integers and 𝒎 (which in this work will be replaced by n) is a positive 

integer, then 𝒂 is congruent to 𝒃 modulo m if 𝑚 divides 𝐚 − 𝐛. 

This implies that if 𝒂 ≡ 𝒃 𝒎𝒐𝒅 𝒏, it means to say that both 𝑎 𝑎𝑛𝑑 𝑏 are divisible by 𝑛 leaving the 

same remainder 𝒓, that is, 𝒏|𝒂 − 𝒃. And if 𝒏|𝒂 − 𝒃, then 𝒘(𝒂)𝒏 = 𝒘(𝒃)𝒏. Despite being different 

languages, modular arithmetic and non-modular arithmetic express the same result, although using 

different arguments. 

 So it is clear that if 𝒏|𝒂 − 𝒃, then  𝒘(𝒂)𝒏 − 𝒘(𝒃)𝒏 = 𝟎. So we have the return of theorem 11. 

Which can be stated like this, 

 𝒘(𝒂)𝒏 − 𝒘(𝒃)𝒏 = 𝟎 ⟺  𝒏|𝒂 − 𝒃.   

The proof of the return of Theorem 11, as it is trivial, is up to the reader. 

Final Considerations 

Finally, it is expected that this new language of Algebraic Arithmetic of Remainders can be used as an 

analytical and complementary tool to Modular Mathematics, for all those who can see in it a way to 

express themselves algebraically, in this branch of Pure Mathematics. And, I hope that, the reader may 

appreciate the properties that were made with great effort and dedication to have another form of 

language that could be viable to demonstrate the arithmetic properties coherently and with all possible 

mathematical rigors. 

It is also worth noting that the study of Non-Modular Arithmetic of the Remainder does not remove 

the cyclical character of its operations, but it has applications in various areas of Pure and Applied 

Mathematics. From Commutative Groups, applications in Groups of Permutations and in Non-Modular 

Analytic Geometry with a new approach to Non-Modular Vector Space that will be applied. As well as a 

new interpretation of the character of Function Operations used in Crystallography and Symmetries, 

which it will be addressed in the next articles. 
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