3D PRINTING AS A TOOL IN ANATOMY TEACHING: AN INTEGRATIVE REVIEW

João Erivan Façanha Barreto ^{1,3}, Bruna Sobreira Kubrusly², Cezar Nilton Rabelo Lemos Filho², Renata Souza e Silva ¹, Samuel de Osterno Façanha^{3,1}, Júlio Cézar Claudino dos Santos ³, Gilberto Santos Cerqueira^{3,1}

 1Postgraduate Program in Morpho functional Sciences, Faculty of Medicine, Department of Morphology, Federal University of Ceará, Fortaleza, Brazil
 2 Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
 ³ Medicine Course, Centro Universitário Christus, Fortaleza Brazil

Abstract

Anatomy is essentially a three-dimensional content and learning its structures, through 3D impressions, for example, is of notable importance. In this context, traditional teaching methods, despite being highly effective, still have some limitations. Therefore, 3D printing has been introduced in the teaching of Anatomy, bringing several advantages, such as accuracy, personalized study and easy handling. Based on these premises, the objective of this work was to carry out an integrative review on the use of 3D printing in the teaching of human anatomy. A study was carried out in science direct, PUBMED, Scielo databases between 2010 and 2021 using the following descriptors 3D printing and teaching of anatomy. It was found that among the benefits of using 3D parts, there are: accuracy, durability, ease of production, good costbenefit ratio and reduction of security risks linked to the fixation of cadaver and plastinated specimens. It was observed that in some studies most students preferred the use of 3D printing to traditional methods. Other studies have shown the importance of the use of 3D printing as a teaching tool may reduce the demand for bodies and overcome some of the governmental legal and ethical problems in the cadaver study, further studies should be carried out to assess the long-term impact of using 3D printing.

Keywords: Anatomy. Print 3 D, Education, Morphology, Teaching.

1. INTRODUCTION

Modern medical education has a wealth of educational resources as one of the key elements in the development of students' clinical skills and abilities. The acquisition of these teaching resources represents a considerable challenge for many medical schools, not only for financial reasons, but also for a variety of other reasons, including ethical, legal, cultural and pedagogical innovation [1].

3D printing represents the different forms of low-cost manifestations that characterize morphological structures and disease, and can be used as a possible teaching-learning tool for anatomical education [2].

In studies carried out in Brazil, a critical analysis of contents for teaching topographic anatomy, intends to implement new teaching technologies with the possibility of adaptations which meet the expectations of students and the real needs of the course and the job market. It is important to mention that the morphological characteristics of an organic anatomical structure, in a synthetic object, in the construction of 3D didactic models involves virtual and physical steps [3], [4].

Also, 3D printing has, in the last two decades, been used successfully in different medical fields, including education. In anatomy, high-quality 3D-printed replicas of cadaveric material have recently been produced for teaching purposes [5], [6].

Furthermore, according to Soares-Neto (2021) [7], to incorporate technologies, such as 3D printing in the teaching of anatomy, it is necessary to dare, overcome challenges, articulate and innovate knowledge, creating and untying the knots that relate to the inclusion of different digital technologies, educational theories, student learning, teacher practice and change in their practice, at the university and in society.

For many universities, it is neither easy nor quick to demonstrate certain anatomical structures in cadaveric pieces, given the scarcity of bodies for anatomical study and research. Still, there is financial difficulty in acquiring a 3D printer, including the process of training and rapid prototyping of 3D models for teaching anatomy [5].

3D printing in anatomy education in Brazil is a relatively new technology, mainly in an integrated and multimodal way in the interdisciplinary modules of anatomy, histology, embryology and physiology. Based on these premises, the objective of this work was to carry out an integral review on the teaching of anatomy using 3D printing as a tool.

2 METHODLOGY

Therefore, the terms 3D printing and anatomy learning were searched in the PubMed, Scielo and Science Direct databases from January 2010 to July 2021.

From a total of 499 articles identified, 03 were excluded because they were duplicates. Subsequently, the process of selection of articles began with the application of screening tests, which were initially applied to 496 studies. After analyzing the titles and abstracts of each of the articles that were candidates for exclusion at this stage of the screening, 466 articles were excluded according to the criteria. Of this total, there were 30 eligible articles, which were read in full, and the respective criteria previously defined for this review were analyzed, which did not allow for the additional exclusion of other works. Therefore, the

articles included in the qualitative synthesis to be worked on the theme of this study were represented in a number of 30 articles. There were no restrictions regarding the study gender.

For the elaboration of the Prism Flow diagram using as reference the work of Carmo et al., 2020 with some adaptations (Figure 1).

Figure 1. Methodology of the literature review Prisma Flow Keywords: "3D Printing", "Anatomy", "Learning" and "Teaching". Sources: (PUBMED, Science Direct and SciELO).

Figure 1. Study selection flow diagram for integrative review. Adapted from Carmo et al., (2020).

3. RESULTS

At this point, the main results of the integrative review on 3D printing are presented. The texts were systematized and detailed for better understanding.

After the Characteristics of the eligible studies, we searched the relevant databases and read the abstracts and full texts of articles found during this search. Thus, thirty studies were included in the analyses.

Table 1 demonstrates the articles selected for inclusion, deeper comprehension and summarization in this integrative review.

AUTOR/ANO	OBJETIVO	RESULTADOS	CONCLUSÃO	PERIÓDICO	BASE
					DE
					DADOS
Erolin, 2019	Discuss the use of interactive	They discussed the	Adding 3D tools to	Advances in	PubMed
	3D tools in anatomy and	history, creation,	traditional anatomy	Experimental	
	medical education.	distribution and use of	teaching is extremely	Medicine and	
		3D tools.	helpful.	Biology	
AbouHashem et	Talk about the effective use of	They described the	The use of 3D bone	Medical	PubMed
al., 2015	3D printing in anatomy	resources used, 3D	printing was a success	Education	
	education.	printing and its	and, probably, its use	Online	
		application based on two	will expand to other		
		Australian medical	anatomical structures, as		
		schools.	it was very useful.		
Backhouse,	Assess students' perception of	Most students preferred	The use of 3D printing	Anat. Scienc.	PubMed
Taylor e	the impact of using 3D orbit	the use of 3D printing to	was well received as a	Education	
Armitage, 2019	printing on the learning	traditional methods.	form of multimodal		
	process.		teaching, for its		
			availability and positive		
			impact on learning.		
Fasel et al.,	Introduce an innovative	A qualitative comparison	The innovative method	Surgical and	PubMed
2016	method in anatomy teaching:	was made between 3D	can be applied in	Radiologic	
	3D printing.	printing and the	authentic teaching of	Anatomy	
		traditional method.	anatomical structures.		
		Satisfaction with the 3D			
		models was 5.8 on a			
		scale of 1-6.			
Garas et al.,	Investigate the use of 3D	Most students (85%) got	The study showed the	Annals of	PubMed
2018	printing as an anatomy	more questions right with	use of 3D printing as a	Anatomy	
	learning tool and secondarily	the use of 3D models,	complement to		
	assess the effectiveness of	74% considered 3D			

Table 1. Main articles used in the integrative review between 2010 to 2021.

International Journal for Innovation Education and Research

ISSN 2411-2933

01-06-2022

	different specimens and the method students prefer.	printing more useful for identifying structures and 45% preferred the 3D method over the traditional one.	traditional methods in teaching anatomy.		
Kong et al., 2016	Develop a 3D model of the liver segments as an anatomical teaching tool for these structures.	3 types were developed using quizzes, with differences between them depending on the chosen aspects.	The type with segmented partitions has been shown to improve teaching about liver segments.	World Journal of Surgery	PubMed
McMenamin et al., 2014	Detail how the fabrication of 3D printing based on specimens and anatomical parts works.	The application of 3D prints is illustrated and compared to plastination and cadavers.	3D printing has been shown to have several advantages compared to traditional methods: effective reproducibility, accuracy, ease of implementation and reduction of ethical-legal issues.	Anatomical Sciences Education	PubMed
Smith et al., 2018	Assess different methods of teaching anatomy.	The use of 3D models has increased knowledge compared to 2D images.	CT-based 3D printing of a donated body was performed effectively. 3D models have proven to be a useful tool either when used alone or in addition to traditional methods.	Anatomical Sciences Education	PubMed
Thomas et al., 2016	Present the fabrication of models based on the cartilage of a fish and a frog.	The result of the prints was quite true to reality, although some details are not expressed in the models.	Minimal preparation and equipment are required for the fabrication of the models, being a great tool for teaching anatomy.	Journal of Anatomy	PubMed
Young et al., 2019	Introduce the use of 3D printing, such as replicas of real humans, for practical lessons and exposure on human development.	Several replicas of different stages of human development were produced and used in a large teaching group.	The use of this technology has enormous potential for teaching embryology with international replications and different gestational ages.	Anatomical Sciences Education	PubMed

International Journal for Innovation Education and Research

Vol:-10 No-06, 2022

Chytas et al.,	Investigate the evidence	3D printing was	The implementation of	Surgical and	PubMed
2020	supporting the effectiveness of	statistically significantly	3D printing in the	Radiologic	
	using 3D prints in teaching	superior to two-	teaching of anatomy	Anatomy	
	human anatomy.	dimensional images.	shows promising results.		
		Comparison between 3D	There is a lack of studies		
		printing and cadaver	comparing 3D tools and		
		dissection did not occur	cadaver dissection.		
		in any study.			
Lim et al., 2016	Evaluate the effectiveness of	Post-test scores were	The use of 3D prints does	Anatomical	PubMed
	3D printing in relation to	significantly higher for	not harm students in	Sciences	
	cadaveric materials in	the group of students	relation to cadaveric	Education	
	teaching external cardiac	who used 3D	materials. The results		
	anatomy.	impressions compared to	suggest that 3D may		
		those who used cadaveric	confer certain benefits on		
		materials or combined	learning anatomy and		
		materials.	support its use and		
			ongoing assessment as		
			supplements to cadaver-		
			based curricula.		
Chen et al.,	Compare the learning	Students who used the	3D printing facilitates	Scientific	PubMed
2017	effectiveness of 3D printed	3D printed models had	basic cranial education,	Reports	
	skulls with that of cadaver	better results in the post-	aiding in structure		
	skulls and cadaver atlases.	test.	recognition, compared to		
			cadaver skulls and		
			atlases. It also has		
			advantages related to		
			ethics, cost, hygiene and		
			repair of fragile		
			structures.		
Wilk et al., 2020	Determine knowledge about	Students appreciated the	Medical education	PLOS ONE	PubMed
	the use of 3D printing in	value of 3D printing for	should be extended to		
	medicine in medical school	accurate anatomical	include issues related to		
	students.	models useful in	using 3D printing for		
		learning. However, they	medical applications		
		do not consider the			
		possibility of totally			
		abandoning human			
		corpses in anatomy			
		classes.			

ISSN 2411-2933

01-06-2022

				1	1
Mogali et al.,	Examine the educational value	The 3D printed	3D models are a valuable	Anatomical	PubMed
2017	of the 3D printing model from	anatomical features were	resource for anatomical	Sciences	
	the student's perspective.	rated as accurate by all	education and an	Education	
		students. However,	excellent complement to		
		students reported that	cadaveric, wet or		
		anatomical features in	plastinated parts.		
		3D models are less			
		realistic compared to			
		plastinated specimens.			
Clifton et al.,	Compare static and flexible	The flexible 3D model	Dynamic 3D models	Clinical	PubMed
2020	3D models in teaching	was more successful in	provide educators with a	Anatomy	
	kinematic and physiological	teaching the	good innovative and		
	concepts beyond surface	physiological concepts of	cost-effective educational		
	anatomy.	spinal canal changes	tool for not only		
		during flexion and	instruction in surface		
		extension than the static	anatomy but also in case-		
		3D model to a cohort of	specific physiological		
		students.	and pathological		
			conditions.		
Low et al., 2019	Describe the technology and	Seven unique exams	This document describes	The	PubMed
	process required to create 3D	from unidentified	the technology and	Neuroradiolog	
	printed models of the frontal	patients were selected as	process required to create	y Journal	
	sinus.	the basis for the models	these models.		
		so that all frontal cell			
		types described in the			
		International Frontal			
		Sinus Classification			
		(IFAC) scheme are			
		represented among all			
		3D printed models.			
Hochman et al.,	Compare isomorphic and	The physical	The isomorphic 3D	The	PubMed
2015	cadaveric 3D models in	characteristics of the 3D	model proved to be a	Laryngoscope	
	temporal bone education.	model were quite similar	valuable adjuvant		
		to those of the cadaveric	training tool with a		
		model, with cortical and	realistic mechanical and		
		trabecular bone bur	visual character.		
		quality highly rated, in			
		addition to having			
		respectable air cell			
		reproduction and having			

		internal constructions			
		roted as satisfactory			
		Taleu as satisfactory.			
Fleming et al.,	Evaluate the effect of 3D	3D models were	3D models have been	Journal of the	PubMed
2020	printed models in relation to	associated with higher	shown to have a positive	American	
	traditional 2D methods for	anatomy exam scores for	impact on medical	Collegue of	
	teaching anatomy.	medical students (P <	students.	Radiology	
		0.0001), but for resident			
		physicians they were not			
		statistically significant (P			
		= 0.53).			
Tripodi et al.,	Evaluate the implementation	Students felt strongly	Overall, the models were	Anatomical	PubMed
2020	of a set of anatomy learning	that using the models	an effective way to	Sciences	
	activities centered on 3D	inspired greater	increase engagement and	Education	
	models of upper limb bones.	academic confidence and	learning, and they		
		better overall	reinforced previous		
		performance in their	research findings in		
		assessments.	medical education.		
Coles-Black et	Describe the technology and	They explained about the	3D printing is booming	The Medical	PubMed
al., 2017	process required to create	advantages, applications	in the medical field,	Journal of	
	printed models, as well as	and limitations of	where new approaches to	Australia	
	their applications.	implementing 3D tools.	complex anatomical		
			relationships have helped		
			in therapeutic		
			interventions.		
Drake e	Show how anatomy teaching	In some places there are	In cases of unavailability	Anatomical	PUBME
Pawlina, 2014	resources through 3D printing	no cadavers available to	of cadavers or when their	Sciences	D
	can be used.	carry out the anatomical	use is not possible, 3D	Education	
		study directly on them,	prints may be an accurate		
		requiring other	and effective substitute		
		technologies or tools to	for teaching Anatomy.		
		make this study possible,			
		such as body painting			
		exercises, image exams			
		or 3D printed anatomical			
		replicas.			

International Journal for Innovation Education and Research ISSN 2411-2933

01-06-2022

Casciato, Builes	Show in detail the production	In addition to being	The cost-effective	Journal of the	PUBME
e Singh, 2018	of 3D-printed cross-sections	relatively inexpensive,	inclusion of 3D printing	American	D
	of the lower limbs,	3D printing for cross-	in Anatomy classes can	Podiatric	
	highlighting its usefulness and	sectional studies of the	help students understand	Medical	
	advantages in teaching	lower limbs proved to be	the spatial structures of	Association	
	anatomy in this region and its	safe and reproducible.	the lower limbs, as well		
	low cost compared to		as enhance their clinical		
	traditional methods.		skills, through better		
			interpretation of imaging		
			and surgical exams.		
O'Reilly et al.,	Describe the fabrication of	There was no statistical	Printable templates have	Anatomical	PUBME
2016	anatomically accurate blood	difference between the	increased anatomy	Sciences	D
	vessels (femoral vessel) and	number of correct	teaching capabilities.	Education	
	lower limbs, showing their	answers between	Furthermore, the printed		
	application for teaching	students who had	lower limbs models were		
	anatomy.	practiced on cadavers	not inferior to the		
		and those who used	cadaveric models, which		
		three-dimensionally	was seen through		
		printed models.	standardized tests of		
			anatomical knowledge.		
Wu et al., 2018	Compare the use of 3D printed	There was no significant	Students' understanding	Annals of	PUBME
	models with radiographic	difference between both	of the spatial anatomy of	Translational	D
	images as teaching techniques	methods for upper and	bones and fractures,	Medicine	
	for medical students about	lower limbs, either in	particularly in complex		
	bone spatial anatomy and	score or time, however,	locations, can be		
	fractures.	there was a difference in	improved with the use of		
		the pelvis and spine tests,	3D printed models.		
		with the traditional			
		method having			
		significantly lower			
		results and even longer			
		time to perform the test.			
Jones, 2019	Evaluate the ethical	The dynamics presented	It is concluded that the	Anatomical	PUBME
	dimensions of using three-	by digital technology	scientific content of 3D	Sciences	D
	dimensional pieces for	raise questions about the	processes represents a	Education	
	teaching anatomy.	nature of the body	distancing from the		
		donor's consent, the	human person, so that		
		reasons for 3D printing,	efforts are needed to		
		the extent to which it will	avoid the accentuation of		
		be commercialized and	depersonalization and		

		its comparative	commodification of data		
		advantages over other	for 3D printing based on		
		available teaching	these people.		
		resources.			
Chen et al.,	Investigate the effects of 3D	There was an	The 3D model of the	Journal of	PUBME
2020	printing on interns'	improvement in the	trunk of Henle or celiac	Surgical	D
	understanding of the celiac	scores of both groups,	is a very effective tool	Education	
	trunk compared to two-	being higher in the 3D	for internal students to		
	dimensional images.	printing group compared	understand the anatomy		
		to the 2D group.	of this structure. Thus,		
		Participants also reported	the use of 3D technology		
		an improvement in	proves to be of great		
		satisfaction with the	value for teaching the		
		three-dimensional	anatomy of complex		
		methods, but less	vascular structures,		
		interaction between them	deserving to be		
		and the teacher, as well	popularized in university		
		as less teaching time	hospitals.		
		with the 3D model.			
Skrzat et al.,	Detail the production of a	Virtual and physical 3D	Temporal bone 3D	Folia Medica	PUBME
2019	durable physical replica of the	models accurately	prototypes can be used	Cracoviensia	D
	adult human temporal bone,	reproduced the external	for educational purposes		
	manufactured using 3D	anatomy of the temporal	in order to supplant the		
	printing technology.	bone in all its parts:	use of damaged or fragile		
		squamous, tympanic,	human temporal bones.		
		petrous and mastoid.			
				1	

4. Discussion

Anatomy education is facing challenges mainly due to reduced curriculum time and lack of cadavers [8]. Thus, active methodologies, gamification and 3D printing can be an important teaching strategy alongside 3D printing.

3D printing has become more popular in medical education in recent years in northern hemisphere countries. In Brazil, the spread of use is in its infancy due to lack of financial resources and academic training [9]. Despite the limited number of studies comparing the use of three-dimensionally printed pieces with the classical methodology for teaching Anatomy, the use of such tools has shown to be promising [10]. As an example of anatomical structures that have already been used in scientific studies for comparative purposes of the aforementioned methods, we find bone structures such as skulls [11] and

neurocranial bones [12], internal organs, such as hepatic segments [13] and even vascular structures such as the gastrocolic trunk of Henle and aortic segments [14].

Another example of a study evaluating the efficiency of 3D impressions in relation to cadaver studies, conducted by Lim et al., (2016), divided first-year medical school students into three groups: studies on three-dimensional models, cadavers and both combined. The object of study used in this experimental model with robust methodology was the external cardiac anatomy, showing surprising results: the group of students who used only 3D models had a statistically significant superior performance in the post-test than the group who used cadavers and, also, than the group that used the combined material. Thus, it was concluded that, in addition to being innovative in the teaching of anatomy, 3D printed models can, even when there is no need for replacement due to lack of cadavers, be an important supplement in the teaching of cadaver-based curricula, bringing good results and benefits in relation to cadaveric material [15].

According to Fleming et al. (2020) [16], 3D impressions also showed better results in post-tests carried out with medical students, corroborating the experimental model described above, this difference, however, was not statistically significant in a group of resident physicians.

3D printing, however, does not have its benefits restricted to teaching surface anatomy. Using dynamic models, this teaching methodology provides teachers with innovative and cost-effective teaching apparatus for case-specific physiological and pathological kinematic conditions [17].

Regarding the advantages of using 3D printing over traditional methods, firstly, the use of such methodologies does not compromise student learning in relation to the traditional way of teaching [15]. Added to this, the results found in comparative studies suggest other benefits of using 3D printing, such as: efficiency in the reproducibility of models, accuracy of these materials and fidelity to original anatomical structures, whether static or dynamic, possibility of representations of common pathologies of a location to another through the availability of files containing the spatial content of these changes, which can be obtained through CT scans and surface scanning, ease of deployment and reduction of ethical-legal issues [6], [15], [17]–[19].

Thus, using 3D printers suitable for rapid prototyping, in addition to the aforementioned benefits, the cost can be increasingly reduced through the production of multiple structurally identical anatomical models, fractionating the amounts spent with conventional printing. This makes it even possible to produce personalized and individual study accessories for students, enabling them to study in a location and time flexible to the needs and availability of academics [20].

The use of 3D printing has taken promising directions and progress has been made in the area of teaching not only anatomy, but also other morphofunctional sciences. The production of three-dimensional real human models used during embryology classes with accurate replicas of different gestational ages showed significant potential for the study of this other discipline, in addition to reducing the adverse reactions of the student when faced with embryonic models of more advanced ages, as well as reducing the loss of original data [21].

It is worth emphasizing here that the association of 3D technologies with Fedathi Sequence allows for a better qualification in the teaching in question, in addition to emphasizing the importance of as a methodological resource to be incorporated in the health area [22]. Therefore, this study aims to evaluate the impact of 3D impressions on the teaching-learning process of the anatomy, as a way to meet the need for studies on this topic.

5. Final Considerations

The results of the aforementioned studies support the hypothesis that the implementation of 3D printed models in the teaching of human anatomy improves the effectiveness of the learning process of morphological structures. The 3D printing technique has proven to be a powerful pedagogical tool in medical education and future studies will be able to further investigate the impact of its use. More studies are needed to deepen the learning mechanisms using 3D printing as a tool.

6. Acknowledgement

We would like to thank CNPQ and FUNCAP for the scientific initiation grants provided through the PIBIC program of Federal University of Ceará.

Conflict of interests

The researchers declare that there is no conflict of interest between the research members.

7. References

- [1] Y. AbouHashem, M. Dayal, S. Savanah, and G. Štrkalj, "The application of 3D printing in anatomy education," Medical Education Online, vol. 20, no. 1, 2015, pp. 29847.
- [2] K.E.M. Rodrigues, K.A. Lucas, A.L.L. Cordeiro, R.P.M. Silva, F.G.A. Santos, and Y.K. de Carvalho, "3D models of nonunion fractures in long bones as education tools," Brazilian Journal of Veterinary Medicine, vol. 43, no. 1, 2021, pp. e114820.
- [3] R.C. Lazinho, M.A. Miglino, and J.R. Ferreira, "Análise crítica e subjetiva dos conteúdos da anatomia topográfica ensinados na Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo e uma proposta de adequação baseada na realidade profissional contemporânea," Brazilian Journal of Veterinary Research and Animal Science, vol. 41, no. 3, 2004, pp. 173–182.
- [4] C.H.A.L. Massari, Y.K. de Carvalho, and M.A. Miglino, "3D printing of brachycephalic and dolichocephalic canine skulls and mandibles: a complement to traditional osteotechnique," Acta Veterinaria Brasilica, vol. 15, no. 2, 2021, pp. 173–179.
- [5] J.W. Adams, L. Paxton, K. Dawes, K. Burlak, M. Quayle, and P.G. McMenamin, "3D printed reproductions of orbital dissections: a novel mode of visualising anatomy for trainees in ophthalmology or optometry," British Journal of Ophthalmology, vol. 99, no. 9, 2015, pp. 1162– 1167.

- [6] P.G. Mcmenamin, M.R. Quayle, C.R. Mchenry, and J.W. Adams, "The production of anatomical teaching resources using three-dimensional (3D) printing technology," Anatomical Sciences Education, vol. 7, no. 6, 2014, pp. 479–486.
- J. Soares Neto, M.L.L. Barbosa, H.L. Matos, A.R. Xavier, G.S. Cerqueira, and E.P. de Souza,
 "Um estudo sobre a tecnologia 3D aplicada ao ensino de anatomia: uma revisão integrativa,"
 Research, Society and Development, vol. 9, no. 11, 2020, p. e7489119301.
- [8] P.S. Oliveira, J.D. Lucena, F.R.O. da Silva, K.M.B. Leal, J.N.F.M. Gusmão, O.P.C. Sobrinho, J.E.F. Barreto, D.V.S. Costa, A.G. Scafuri, D.V. Gondim, G.S. Cerqueira, "The teaching of human anatomy in Brazil: the reality of northeast Brazil" International Journal of Anatomy and Research, vol. 5, no. 4.2, 2017, pp. 4623–4629.
- [9] Z. Ye, A. Dun, H. Jiang, C. Nie, S. Zhao, T. Wang, j. Zhai, "The role of 3D printed models in the teaching of human anatomy: A systematic review and meta-analysis," BMC Medical Education, vol. 20, no. 1, 2020, pp. 335-344.
- [10] D. Chytas, E.O. Johnson, M. Piagkou, G. Tsakotos, G.C. Babis, V.S. Nicolaou, K. Markatos, K. Natsis, "Three-dimensional printing in anatomy teaching: current evidence," Surgical and Radiologic Anatomy 2020 42:7, vol. 42, no. 7, 2020, pp. 835–841.
- [11] S. Chen, Z. Pan, Y. Wu, Z. Gu, M. Li, Z. Liang, H. Zhu, Y. Yao, W. Shui, Z. Shen, J. Zhao, H. Pan, "The role of three-dimensional printed models of skull in anatomy education: a randomized controlled trail," Scientific Reports 2017 7:1, vol. 7, no. 1, 2017, pp. 1–11.
- [12] J. Skrzat, M. J. Zdilla, P. Brzegowy, and M. Hołda, "3D printed replica of the human temporal bone intended for teaching gross anatomy," FOLIA MEDICA CRACOVIENSIA, vol. LIX, 2019, pp. 23–30.
- [13] X. Kong, L. Nie, H. Zhang, Z. Wang, Q. Ye, L. Tang, W. Huang, J. Li, "Do 3D Printing Models Improve Anatomical Teaching About Hepatic Segments to Medical Students? A Randomized Controlled Study," World Journal of Surgery, vol. 40, no. 8, 2016, pp. 1969–1976.
- [14] Y. Chen, C. Qian, R. Shen, D. Wu, L. Bian, H. Qu, X. Fan, Z. Liu, Y. Li, J. Xia, "3D Printing Technology Improves Medical Interns' Understanding of Anatomy of Gastrocolic Trunk," Journal of Surgical Education, vol. 77, no. 5, 2020, pp. 1279–1284.
- [15] K. H. A. Lim, Z. Y. Loo, S. J. Goldie, J. W. Adams, and P. G. McMenamin, "Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy," Anatomical Sciences Education, vol. 9, no. 3, 2016, pp. 213–221.
- [16] C. Fleming, M. S. Sadaghiani, M. A. Stellon, and R. Javan, "Effectiveness of Three-Dimensionally Printed Models in Anatomy Education for Medical Students and Resident Physicians: Systematic Review and Meta-Analysis," Journal of the American College of Radiology, vol. 17, no. 10, 2020, pp. 1220–1229.
- [17] W. Clifton, A. Damon, C. Soares, E. Nottmeier, and M. Pichelmann, "Investigation of a threedimensional printed dynamic cervical spine model for anatomy and physiology education," Clinical Anatomy, vol. 34, no. 1, 2021, pp. 30–39.

- [18] C. Erolin, "Interactive 3D Digital Models for Anatomy and Medical Education," Advances in Experimental Medicine and Biology, vol. 1138, 2019, pp. 1–16.
- [19] M. Vaccarezza and V. Papa, "LETTER TO THE EDITOR 3D printing: a valuable resource in human anatomy education," Anat Sci Int, vol. 90, no. 1, 2014, pp. 64–65.
- [20] S. Backhouse, D. Taylor, and J. A. Armitage, "Is This Mine to Keep? Three-dimensional Printing Enables Active, Personalized Learning in Anatomy," Anatomical Sciences Education, vol. 12, no. 5, 2019, pp. 518–528.
- [21] J. C. Young, M. R. Quayle, J. W. Adams, J. F. Bertram, and P. G. McMenamin, "Three-Dimensional Printing of Archived Human Fetal Material for Teaching Purposes," Anatomical Sciences Education, vol. 12, no. 1, 2019, pp. 90–96.
- [22] SOARES NETO, J. .; SANTOS, M. J. C. dos .; CERQUEIRA, G. S. .; SOUZA, E. P. de . The Fedathi Sequence and the use of 3D digital technologies as methodological resources for teaching human anatomy: an integrative review. Research, Society and Development, [S. l.], v. 9, n. 10, p., 2020

Copyright Disclaimer

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).