On the Well-ordering Principle and the Principle of Finite Induction

Dinamérico P. Pombo Jr.
Instituto de Matemática e Estatística
Universidade Federal Fluminense
e-mail: dpombojr@gmail.com

Abstract

In this note the equivalence among the Well-ordering Principle, the Principle of Finite Induction and certain natural conditions concerning the set of integers is discussed, thereby clarifying facts encountered in the literature.

Keywords: set of natural numbers, set of integers, Well-ordering Principle, Principle of Finite Induction.

Introduction

Peano Postulates for the set $\mathbb{N} = \{0, 1, 2, \ldots\}$ of natural numbers [5, p. 35; 7], which may be regarded under the viewpoint of universality [3; 4; 5, Chap. 2], subsume the Principle of Finite Induction:

If U is a subset of \mathbb{N} such that $0 \in U$ and $n + 1 \in U$ whenever $n \in U$, then $U = \mathbb{N}$.

The Principle of Finite Induction ensures the validity of the Well-ordering Principle, which reads:

Every non-empty subset of \mathbb{N} admits a least element.

This is precisely the statement of Proposition 7, p. 41 of [5], in whose proof one assumes the existence of a non-empty subset V of \mathbb{N} which does not admit a least element and one shows, by induction on n, that ”$x \in V$” implies ”$x \geq n$”, from which one arrives at a contradiction.

On the other hand, the Principle of Finite Induction is a consequence of the Well-ordering Principle, as Theorem 4, p. 10 of [1] guarantees. As a matter of fact, in the proof of the just mentioned result, one takes U as above and assumes that $U \neq \mathbb{N}$, that is, $N^* = \mathbb{N} \setminus U \neq \emptyset$. If m is the least element of N^*, $m-1 \in U$, and hence $m = (m-1)+1 \in U$, which cannot occur.

In this note, motivated by results appearing in Chapter I of [1] and Chapter 1 of [6], equivalent conditions to the above-mentioned principles will be discussed. Historical comments concerning Mathematical Induction may be found, for example, in [2] and [6].

On the Well-ordering Principle and the Principle of Finite Induction

As always, \mathbb{Z} will denote the set of integers.

First we shall prove a result motivated by Exercise 5, p. 11 of [1].

Proposition 2.1. The following conditions are equivalent:
Proof. (a) ⇒ (b): Let S be a non-empty subset of \mathbb{Z} admitting an upper bound s. Since

$$X = \{s - t; t \in S\}$$

is a non-empty subset of \mathbb{N}, (a) guarantees the existence of an element u of S so that $s - u \leq s - t$ for all $t \in S$. Thus $t \leq u$ for all $t \in S$, proving (b).

(b) ⇒ (c): Let T be a non-empty subset of \mathbb{Z} admitting a lower bound. Then the non-empty subset $-T = \{-t; t \in T\}$ of \mathbb{Z} possesses an upper bound. Hence, by (b), there is a $v \in T$ such that $-t \leq -v$ for all $t \in T$, that is, $v \leq t$ for all $t \in T$. Therefore (c) is established.

(c) ⇒ (a): It suffices to observe that \mathbb{N} has a lower bound.

Before proceeding, let us introduce a few notations. Indeed, for each $z \in \mathbb{Z}$ let us write $\mathbb{Z}_z^+ = \{t \in \mathbb{Z}; t \geq z\}$. Obviously, the mapping

$$\varphi_z: t \in \mathbb{Z}_z^+ \mapsto \varphi_z(t) = t - z \in \mathbb{N}$$

is bijective. Let us also write $\mathbb{Z}_z^- = \{t \in \mathbb{Z}; t \leq z\}$. Clearly $\mathbb{Z}^-_z = -(\mathbb{Z}_z^+)$ and z is the least (resp. greatest) element of \mathbb{Z}_z^+ (resp. \mathbb{Z}_z^-).

![Figure 1: The mapping φ_z.](image)

Remark 2.2. For all $r, s \in \mathbb{Z}$, with $r < s$, the infinite sets \mathbb{Z}_r^+ and \mathbb{Z}_s^+ are quite similar, in the sense that
On the Well-ordering Principle and the Principle of Finite Induction

\[\mathbb{Z}_r^+ = \mathbb{Z}_s^+ \cup \{r, \ldots, s-1\} \]

Figure 2: The sets \(\mathbb{Z}_r^+ \) and \(\mathbb{Z}_s^+ \), \(r < s \).

Evidently we would have a similar remark for the sets \(\mathbb{Z}_z^- \).

In the example below we shall furnish an infinite family of infinite subsets of \(\mathbb{N} \), each of which does not coincide with a set \(\mathbb{Z}_z^+ \).

Example 2.3. For each prime natural number \(p \), let us consider the subset

\[X_p = \{p, p^2, \ldots, p^n, p^{n+1}, \ldots\} \]

of \(\mathbb{N} \). Since

\[p^{n+1} - p^n = p^n(p - 1) \geq p^n \geq 2 \]

for every integer \(n \geq 1 \), \(X_p \) is an infinite set whose least element is \(p \) and which does not coincide with a set \(\mathbb{Z}_z^+ \), and the distances between two consecutive elements of \(X_p \) may be taken as big as we wish. Moreover, if \(p, q \) are arbitrary prime natural numbers, with \(p \neq q \), then \(X_p \cap X_q = \phi \).

The next result was motivated by Exercise 4, p. 10 of [1] and Theorem 1.3.1, p. 25 of [6].

Proposition 2.4. The following conditions are equivalent:

(a') Principle of Finite Induction;

(b') for each \(z \in \mathbb{Z} \), if \(R \subset \mathbb{Z}_z^+ \), \(z \in R \) and \(n + 1 \in R \) whenever \(n \in R \), then \(R = \mathbb{Z}_z^+ \);

(c') for each \(w \in \mathbb{Z} \), if \(S \subset \mathbb{Z}_w^- \), \(w \in S \) and \(n - 1 \in S \) whenever \(n \in S \), then \(S = \mathbb{Z}_w^- \).

Proof. (a') \(\Rightarrow \) (b'): Put \(L = \varphi_z(R) ; L \subset \mathbb{N} \) and \(0 = \varphi_z(z) \in L \) (since \(z \in R \)). If \(m \in L \) is arbitrary, \(m = \varphi_z(n) \) for a (unique) element \(n \) of \(R \). By hypothesis, \(n + 1 \in R \) and

\[\varphi_z(n + 1) = (n + 1) - z = (n - z) + 1 = \varphi_z(n) + 1 = m + 1, \]
showing that \(m + 1 \in L \). Thus, by \((a')\), \(L = \mathbb{N} \), which is equivalent to \(R = \mathbb{Z}_x^+ \). Hence \((b')\) holds.

\((b') \Rightarrow (c')\): First \(-S \subset -(\mathbb{Z}_w^+) = (\mathbb{Z}_-w^+) \) and \(-w \in -S\). Moreover, if \(n \in S \) is arbitrary and \(m = -n, m + 1 = -n + 1 = -(n - 1) \in -S \), because \(n - 1 \in S \) by hypothesis. Therefore, by \((b')\), \(-S = \mathbb{Z}_-w^+\), which is equivalent to \(S = \mathbb{Z}_w^+ \) and proves \((c')\).

\((c') \Rightarrow (a')\): Let \(T \subset \mathbb{N} \) be such that \(0 \in T \) and \(n + 1 \in T \) whenever \(n \in T \). Then \(0 \in (-T) \subset (-\mathbb{Z}_0^+) = \mathbb{Z}_0^- \) and \(n - 1 \in (-T) \) if \(n \in (-T) \), and \((c')\) yields \(-T = \mathbb{Z}_0^-\), which is equivalent to \(T = \mathbb{Z}_0^+ = \mathbb{N} \) and proves \((a')\).

This completes the proof.

What we have seen may be summarized in

Corollary 2.5. The conditions \((a), (b), (c), (a'), (b')\) and \((c')\) are equivalent.

Conclusion

In this note the equivalence among the Well-ordering Principle, the Principle of Finite Induction and certain natural conditions has been established.

References

