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Abstract  

Studies on the size spectrum allow indirect inferences of how the energy flows from one organism to another. 

Assuming that the bottom-up is more intense than the top-down mechanism along the cascade of reservoirs, 

which limits the growth and development of individuals, we investigated the effect of a cascade of reservoirs 

in a neotropical basin on the stock and distribution of the population of Oligosarcus longirostris, a species at 

the top of the food chain. Samples were conducted quarterly in five reservoirs, from March 2004 to December 

2008. Stock size was estimated by catch per unit effort (CPUE); to establish the size spectra slopes of fish, we 

used Pareto I model, and data was analyzed using univariate analysis of variance followed by Tukey's test. 

There was a higher proportion of smaller individuals in the first reservoir of the cascade, with a decline in this 

proportion along the succession of reservoirs in the cascade. It can be concluded that there is an effect of the 

reservoir cascade on the abundance and size of individuals of Oligosarcus longirostris. 
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1. Introduction 

River impoundments are important agents in reorganizing aquatic communities, with different influences 

on population structure and causing several direct impacts on the environment. Aside from changes in physical 

and chemical properties of water (Agostinho et al., 1999; Jinpeng Li et al., 2013; James et al., 2015; Cooper 

et al., 2016; Fearnside, 2016), disturbances caused by dams lead to changes in the species habitat, altering 

community composition with negative effects on flora and fauna, including the decline in species richness 

(Richter et al., 2010; Tonella et al., 2022) and prevent mass migration for reproduction (Fearnside, 2014).  

 While large dams generate electricity, they bring serious consequences for populations located 

downstream of dams for hundreds of kilometers (Richter et al., 2010). These environmental and social impacts 

should be considered during planning and decision making (Fearnside, 2016).   

 Tools have been developed to elucidate the actual impacts dams have on aquatic populations, including 

studies associating the abundance of individuals with their body size, called size spectrum. These studies 

indirectly predict the way the energy flows through organisms, providing information on the dynamics of food 

webs. The pioneer work of Sheldon et al., (1972) demonstrated the distribution of biomass of bacteria and 

whales, sparking the theory that biomass could be distributed in logarithmic scales. Studies have been 

conducted used the size spectrum freshwater (Sprules et al., 1983; Echevarría & Rodríguez, 1994; Asaeda & 

Rashid, 2012, Tarling et al., 2012), and several other researchers studied the dynamics of marine and aquatic 

food-webs (Andersen & Pedersen, 2010; Blanchard et al., 2009; Boit et al., 2012; Jennings et al., 2008, 

Moloney & Field, 1991; Law et al.,2012; Tarling et al., 2012, Watson et al., 2015). 

There are several ways of measuring the size of individuals; the most accepted measure is biomass 

because it efficiently presents the range of weight classes in logarithmic scale, allowing the observation of the 

integrations between physiological characteristics of organisms and their relationship to ecosystem 

functioning (Han & Straskraba, 1998; Dickie et al., 1987; Boudreau et al., 1991). Studies of body size allow 

us to predict predator-prey interactions, reflecting biomass of the trophic structure (Thiebaux & Dickie, 1993).  

Also, to predict the patterns of energy transfer, since the biological properties of individuals change with 

size, which is often a good indicator of trophic level of the species (Jennings & Brander, 2010; Jennings et al., 

2001). Understanding the processes that act upon individual success and survival is crucial to understand the 

population dynamics (Poulos & McCormick, 2015). 

The construction of reservoirs in cascade along the course of a single river can generate cumulative 

impacts throughout the ecosystem, as it changes the relationship between rivers and their basins (Cooper et 

al., 2016) by retaining nutrients; thus, causing oligotrophication of the river and severe changes in fish fauna. 

These developments change markedly the local landscape, causing economic, social, and environmental 

changes, drastically altering the natural dynamics of fisheries (Agostinho et al., 2007; Graeb et al., 2009; 

Petesse & Petrere Jr, 2011) and are exacerbated by climate change (Guo et al., 2022). 

The variation in the biomass spectrum is an efficient method because it indicates human interference and 

its effects on the energy flow of the ecosystem (Rice & Gislason, 1996). Organisms of the same size are treated 
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as energetic equivalents regardless of the taxa, attesting the anthropogenic impacts on biological production 

(Kerr & Dickie, 2001), since it reduces the complexity of the food web into a single quantitative variable. 

Piscivorous species are essential for the maintenance and balance of ecosystems, by regulating the 

abundance of species at the top of the food chain and their prey (Novakowski et al., 2007), controlling the 

natural fish stocks and increasing the mortality rate among individuals (Link & Garisson, 2002).  

The present study sought to identify the effect of the cascade of reservoirs in a neotropical basin (Iguaçu 

River basin) on the stock and length distribution of the population of the piscivorous Oligosarcus longirostris 

Menezes & Gèry (Osteichthyes, Acestrorhynchinae). The central hypothesis is that the of the stock size is 

reduced along the reservoirs in the cascade (downwards) due to the retention of nutrients and its effects on the 

dynamics of the size spectrum of this population. 

 

2. Material and Methods 

2.1 Study area 

The Iguaçu River basin has an area of 72,000 km2 approximately, of which 79% belongs to Parana State, 

19% to the Santa Catarina State and 2% to Argentina. It flows 1,060 km, with an east-west direction from its 

headwaters on the western slope of the Serra do Mar, near Curitiba, to its mouth on the Parana River (Eletrosul, 

1978). 

Parana river is located on the third plateau and exhibits a high slope in its watershed, which gives it an 

enormous potential for hydroelectric power generation. Currently, there are five major power plants in its bed, 

turning the stretch into a succession of large lakes, which led to a series of changes in the hydrological regime 

(655 Km²). The studied reservoirs and their coordinates are: Foz do Areia (FA, 26° 0'35.40"S/ 51°39'44.39"W), 

Salto Segredo (SE, 08°48'04.0" S/6356'59.8"W), Salto Santiago (SS 25°51′19″S /52°31′46″W), Salto Osório 

(SO, 25°36’33.04”S/52º18’ 33.94”W), Salto Caxias (SC 25°32’35’’ S/ 53°29’43’’W).  

The reservoirs of these power plants show different degrees of human occupation, different limnological 

characteristics and include environments with variable depths and areas (Table 1). 

 

2.2 Data collection 

Fish were sampled through quarterly collections conducted in the reservoirs, from March 2004 to 

December 2008. Simple gill nets were used to capture the specimens (meshes from 2.4 cm to 16 cm) and 

trammel nets (6 cm to 8 cm between opposite knots), which were assembled in three layers (margin, surface, 

and bottom) and remained exposed for 24 hours with inspection every 8 hours. 

After sampling, fish were anesthetized with benzocaine hydrochloride (250 mg/L), as required by the 

Resolution 714/CFMV from July 20th, 2002, which regulates the procedures and methods of euthanasia in 

animals (CFMV, 2002); and then fixed in 10% formalin and 70% ethanol (Shibatta & Cheida, 2003). 

These individuals were identified to species level, based on identification keys proposed by Eschmeyer 

(1990), Britski et al., (1999) and Graça & Pavanelli (2007). Each sampled individual was measured (total and 

standard length, in cm) and weighed (in grams). All species caught have voucher specimens deposited in the 

Ichthyological Museum of Nupélia/State University of Maringa (NUP 11856). 
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2.3 Data analysis 

The stock size was estimated by catch per unit effort (CPUE), in number of individuals per 1000m2. The 

net was exposed for 24 hours for each collection month and assessed by univariate analysis of variance 

followed by Tukey's test for comparison of means to check for possible differences (P <0.05) between the 

reservoirs of the cascade. 

Size distribution of the population of O. longirostris was evaluated by two population parameters: the 

average size of individuals and the size spectrum of the population. Both parameters were tested by a 

univariate analysis of variance followed by Tukey's test for comparison of means to check for possible 

differences (p <0.05) between the reservoirs. The size spectra for each month of collection in each reservoir 

was obtained according to Pareto type I model (Vidondo et al., 1997). This model was selected, in a 

complementary way to the average size of individuals, once it is less sensitive to the presence of missing size 

classes, i.e, without capture of fish (Benoît & Rochet, 2004). 

According to Pareto type I model, the probability of finding an individual of size s superior to a given 

size S decreases linearly on a logarithmic scale size insofar as the individual size increases, which is 

represented by the following equation:  

log2 [Prob(s ≥ S)] = c * [log2(K) – log2(S)] 

In this model, Prob(s ≥ S) is estimated by the proportion of individuals (s) larger than a certain size taken 

at random (S). The constant c, or slope of the linear relationship is, in this case, the rate of decrease in the 

probability of finding larger individuals so far as the individual size increases. In other words, it is a measure 

that represents the frequency distribution of the body size of fish. Thus, if c is equal to -1, the individual 

frequency distribution is uniform between fish of different sizes; if c is smaller than -1, the frequency of 

individuals is greater for smaller sizes; and when c is higher than -1, the frequency of individuals is greater 

for larger sizes. The constant c was estimated by linear regression between the log2[Prob(s ≥ S)] and the 

log2(S) by the least squares method in Statistica® 7.0 (Stat Soft, 2004). 

 

3. Results and Discussion 

The catch per unit effort (CPUE – ind.1000m2net-1.day-1) was different among the reservoirs. The 

reservoir upstream in the cascade (FA) showed the highest CPUE, while the following reservoirs showed 

increasingly lower values, according to the succession of reservoirs in the cascade (Fig. 1). 
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Figure 1. Catch per unit effort – CPUE ± 95% confidence interval obtained for each reservoir: FA, SE, SS, 

SO and SC, from January 2004 to October 2008. 

 

As to the size distribution of O. longiostris population, the average size of individuals and the size 

spectrum of the population showed a significant effect of reservoirs, unlike the result of stock size. Both 

average weight and the constant c of Pareto type I model indicated a greater proportion of smaller individuals 

in the first reservoir of the cascade. The second reservoir had a high number of individuals with longer standard 

length, which has been reduced according to the succession of reservoirs in the cascade (Fig. 2). 

 

 

 

Figure 2. Mean values ± 95% confidence interval for the weight of individuals (A) and constant c of Pareto 

type I model (B), obtained for each reservoir: FA, SE, SS, SO and SC, from January 2004 to October 2008. 

Different letters over the bars indicate significant differences by Tukey's test. 

These results suggest that the first reservoir (with 41.5% of individuals ≤ 32 g) had high levels of 

recruitment, but only a small proportion achieved larger sizes. This may occur due to death or emigration of 

large individuals. Reservoirs in the sequence of the cascade (with 21.3% of individuals ≤ 32 g), (with 29.8% 

of individuals ≤ 32 g) (with 38.7% of individuals ≤ 32 g) exhibited high proportions of larger individuals, 

indicating a possible downward migration. The last reservoir (with 47.2% of individuals ≤ 32 g), in turn, at 

the end of the sequence, showed a greater proportion of smaller individuals (Fig. 3). 
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Figure 3. Frequency of weight of individuals caught in the reservoirs of FA, SE, SS, SO and SC, from 2004 

to 2008. The first line corresponds the total catch in each reservoir. 

The combination of temporal and spatial variables along the river revealed marked changes in the dynamic 

of the size spectrum of fish population in the five reservoirs. The expected value for the constant c for the 

assemblage was close to -1, for a population in which a higher value was expected. This was possibly due to 

high positive asymmetry in fish populations. Most species show a positive symmetry in body size distribution 

when analyzed on a regional scale, regardless of the ecological or taxonomic group (May, 1986; Brown & 

Maurer, 1989; Lawton 1991; Knouft, 2004). 

Population body size distribution in the first reservoir showed a high proportion of individuals (CPUE) 

with low biomass (≤32 g) compared to other reservoirs. The reduced body condition can make individuals 

vulnerable, particularly in early stages of the life cycle, when they have lower reserve levels and metabolic 

rate (Donelson et al., 2009), and affect the fecundity and mortality of the population (Booth & Beretta, 2004). 

The proliferation of small fish suggests the presence of favorable conditions of food and shelter. This 

observation is explained by the Cascading Reservoir Continuum Concept (CRCC), which states reservoirs 

located at the beginning of a series present higher nutrient availability due to changes in abiotic factors, 

providing high production at all trophic levels (Barbosa et al., 1999). Additionally, the reservoir receives all 

the nutrients from a metropolitan urban area generating a high aquatic production (Gubiani et al., 2008).  

Along the succession of reservoirs, the proportion of smaller individuals in a large number was replaced 

gradually for smaller amounts of larger fish. This can provide information on size-based predation dynamics 

as from predator-prey models (Thiebeaux & Dickie,1993) and may represent trophic positions (Goyke, 1995).  
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Body condition affects competitiveness and survival, animals with larger body sizes are more likely to 

rule the territory (Poulos & McCormick, 2015). Thus, body size can determine the vulnerability of individuals, 

populations and communities (Rice & Gislason, 1996). The high body size condition, usually acquired with a 

higher consumption of food, determines the level of aggression and territoriality of organisms with a lower 

body size condition is more difficult to start fights and have higher rates of mortality and it is the main factor 

affecting survival (Donelson et al., 2009; Poulos & McCormick, 2015; Nawrocki et al.,2022). Larger 

individuals tend to be more territorial and competitive reflecting fewer specimens, but with a high body 

condition, as found in this study. 

The high productivity can greatly influence the fish community. In such environments, the pressure 

generated by competition could determine the size distribution of the stock, since there are high numbers of 

individuals competing for resources. These competitive interactions directly affect species abundance (Stevens 

& Willing, 2000). Nevertheless, the high frequency of piscivores can be justified by the proliferation of 

opportunistic species, which are usually small and common in reservoirs, being an important food resource in 

this type of environment (Agostinho et al., 2007).   

Besides that, the large number of individuals with low biomass may be related to the amount of spatial 

niche available, which probably resulted in the observed positive skewness (Hutchinson & MacArthur, 1959). 

These authors suggest that the environment, by failing to provide enough space for large animals, creates more 

space for the abundance of smaller species. This theory explains the high number of species of smaller size, 

but it does not elucidate why smaller species are numerous. It is known that body size is related to evolutionary 

aspects, relative size of the ancestor, and factors associated with regional distribution which must include at 

least some historical information (Knouft, 2004). Meanwhile, Stanley’s (1973) argues that the trends in size 

are the result of responses of species to environmental conditions and that this response may influence the 

formation of a frequent distribution; hence, the influences of the particularities of each impoundment on the 

aquatic community have to be considered (Agostinho et al., 1999). 

The reservoirs showed a pattern consistent with the Cascading Reservoir Continuum Concept (CRCC), 

where there is a longitudinal gradient in the cascade of four reservoirs, with a progressive increase in CPUE 

along the series. The patterns of size distribution exhibited an inverse pattern of CPUE, with a reduction along 

the cascade, being observed a relationship between the increasing number of individuals and the decrease in 

size and biomass of the population. In agreement with Agostinho et al., (1999), over time and depending on 

the reservoir area, the dammed environments typically show a decline in fish abundance. According to these 

authors, after the initial phases of the impoundment, when there is a large productivity, a drop in its values is 

observed, being more pronounced especially with reservoir aging. 

The significant change in the structure of size spectra of the studied population size, which shows a large 

increase in population biomass in the second reservoir compared with the first, may be related to the 

availability of prey. According to Pelicice et al., (2005), with greater biomass of prey species, it would be 

possible to maintain greater biomass of piscivorous species. The biomass of piscivorous species is positively 

correlated with the biomass of prey species (Pelicice et al., 2005). 

Nevertheless, the number of species (CPUE) in the second reservoir was smaller than in the first. The 
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primary productivity in this reservoir is lower, since the organic material possibly settles down in the first 

reservoir of the cascade, thus reducing the amount of nutrients in the second reservoir, affecting the fertility 

of the other levels of the chain. Cascading reservoirs commonly have a reduction in the concentration of 

nutrients throughout the series, which reduces productivity downstream (Miranda et al., 2008).  

Thus, the decrease in the number of prey works limiting the growth of predators over the reservoir cascade, 

pointing to the bottom-up mechanism, since the availability of prey has a direct and vital influence on the 

population dynamics of the predator (Frederiksen et al., 2006). Piana et al., (2005) investigated the mechanism 

regulating fish biomass in different reservoirs of Parana State and found that the phytoplankton productivity 

had a predictor role in fish biomass, occurring discreetly the bottom-up mechanism (abundance determined 

by resources). 

There is a great possibility of, along the longitudinal gradient of the reservoirs, an inversion in the 

mechanisms regulating the trophic structure of the environment, because the fish biomass keeps decreasing 

(SS, SO and SC). Aspects related to changes in water level can produce environmental disturbances that alter 

the biotic interactions and energy dynamics (Tundisi et al., 2003). 

The relative effectiveness of the top-down versus bottom-up mechanisms in food webs depends partially 

on the efficiency of predators in consuming their prey. Reversing mechanisms can occur according to the 

interaction between consumers, consumers and resources and between less similar trophic levels and thus 

modify the top-down forces in food webs (Power, 1992; Liu et al., 2018). 

 

5. Conclusion 

 The results presented herein show changes in O. longirostris population structure, regarding the size spectra 

along the five reservoirs studied. The main mechanism involved in these changes of biomass and number of 

individuals is possibly related to the effects generated by the productivity of ecosystems, causing changes in 

the efficiency of energy transfer between the different trophic levels. 
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Appendix 

TABLE 1. Summarized information of the five cascading reservoirs in the Iguaçu River.  

Source: IAP (2009) and Copel (2009). 

Technical data Foz do Areia 

(FA) 

Segredo 

(SE) 

Salto 

Santiago 

(SS) 

Salto 

Osório 

(SO) 

Salto Caxias 

(SC) 

Operation  1980 1982 1979 1975 1998 

Catchment area 

(Km²) 

29,800 34,100 43,330 45,800 57,000 

Reservoir area (Km²) 139 

 

82,5 208 55 141 

Normal maximum 

level (level) (m) 

744 607 506 397 325 

Mean depth (m) 41.6 36.6 35.0 25.5 25.3 

Residence time 

(days) 

102 47 51 16 31 

Classification (ONS) Regulation Run-off-

river 

Regulation Run-off-

river 

Run-off-river 

Length (Km) +- 80 +-70 +-80 +-70 +-80 

Depletion (m) Up to 20 Up to 5 Up to 25 Up to 2.5 Up to 2.0 

Classification 

(IQAR) 

III III II II II 

Dam Height (m) 160 145 80 56 67 

Dam Length (m) 160 145 80 56 67  
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