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Abstract

Specker groups are subgroups of group of all finite values sequences of integers. Fuchs ([5]) developed many
theorems about Specker groups. Here | want to use lattice-ordered group approach to develop the lateral
completion of Specker groups and Specker spaces. The main goals of this research paper are to prove theorem
2.9 and corollary 2.10.

Introduction

I gather some terms and fundamental results about I-groups. For additional background, refer to [1], [4], and
[6]. I follow tradition and use additive notation for the group operation even though most of groups may not be
abelian. A partially ordered group (po-group) is a group (G, +) that has a partially order, <, defined on it such
thata <bimpliesx +a<x+banda+x<b+x forall a, b, x of G. If the order is also a lattice order or a total
order, then G is called a lattice-ordered group (I-group) or a totally-ordered group (o-group), respectively. The
symbols A, and v are used to denote the greatest lower bound and the least upper bound.

A subgroup A of G is an I-subgroup if A is also a sub-lattice of G. An I-subgroup A is convex, of 0 <g<q € A
implies g € A. Suppose H is an I-subgroup of an I-group G, H is large in G or G is an essential extension of H
if for each convex I-subgroup L# 0 of G, L N H # 0. An I-group G is Archimedean if 0 <ng <h foralln € N
implies g = 0. For an Archimedean I-group G, if G admits no proper essential extension then G is essentially
closed. An essentially closed essential extension of I-group G is called essential closure of G and is denoted by
G®. An I-group G is complete (laterally complete), if every bounded (disjoint) subset M of G*, v M € G. An |-
group H is a completion (lateral completion) of G if H is complete (lateral complete), and G is I-isomorphically
dense in H, and no proper I-subgroup of H containing an I-isomorphic copy of G is complete (lateral complete).
The completion (laterally completion, divisible hull) of G will be denoted by G (G-, GY). An element h < g is
called a component of g if (g —h) A h=0; an element g > 0 of G is called singular if for any 0 < x < g then x is
a component of g. An I-subgroup H of G is saturated if for all h of H, the components of h belong to H.

Forge G,g =gV 0 (g =(-g) Vv O0)is called the positive (negative) part of g, and |g| = g* + g is called the
absolute value of g. The principal convex I-subgroup of G that is generated by g is denoted by G(g), which is
the subset G(g) = {x € G| 0 <|g|< n|g| for some 0 <n € N}. Finally the notation R®, G represents the tensor

product of R and G.

Specker Groups
Let I be any index set. The set of all functions f : I — Z such that f assumes but a finite number of distinct

values in Z is clearly an abelian group, namely, the group of all bounded functions of integers. Manifestly,
every f € G can be uniquely written in the form
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(D) = nlhX1 +...+ nkhXk (k >0) where ny, ..., nkare nonzero distinct integer, the subset x, ..., xx of | are
. . _ . ) lif iex
pairwise disjoint, while the hys are characteristic functions of subset x of I: h, (i) = 0if |
if igx
A subgroup S of G is said to be a Specker group if f € S implies hyi € S forall =1, ..., k, where fis in the
form of (1).

Let I be any index set. The set of all functions f : I — R such that f assumes but a finite number of distinct
values in R is clearly an abelian group, namely, the group of all bounded functions of real numbers. Manifestly,
every f € G can be uniquely written in the form
(2) f= rlhxl .41 hXk (k>0) where 1, ..., rcare nonzero distinct reals, the subset x, ..., xk of | are pairwise
. . . . . lif iex
disjoint, while the hys are characteristic functions of subset x of I: h, (i) = 0if |
if igx
A subgroup S of G is said to be a Specker space if f € S implies hyi € S forall I=1, ..., k, where f'is in the
form of (2).

Definition 1.0. A relative complemented distributive lattice with the least element is called a generalized
Boolean algebra.

Proposition 1.1 ([4]) An I-group is a Specker group if and only if it is generated as a group by singular
elements. In this case the set of singular elements forms a generalized Boolean algebra.

The following theorems are well-known and the main results in the topic of Specker groups.

Theorem 1.2. (Fuchs, [5]) For a subgroup S of the group G = []:Z, the following conditions are equivalent:
(@) Sisa Specker group;

(b) f € Simplies hyi € S, where X is the support of f;

(c) Sispurein G and is a subring of G.

Theorem 1.3. ([4]) Let G be a subgroup of []iZ that is generated by characteristic functions of subsets of I.
G is an I-group if and only if the meet of any characteristic functions in G is also in G. In this case, the
characteristic functions are precisely the singular elements of G and so G is a Specker group.

Lateral Completion of Specker Groups

Definition 2.1. A generalized Boolean algebra (or Boolean algebra) B satisfies the countable chain condition,
denoted by CCC, if every pairwise disjoint subset is countable.

Remarks: Let B be a Boolean algebra, then

(a) B satisfies the CCC if and only if the completion B” satisfies the CCC.

(b) Let [B] be the Specker space generated by B, then [B]" = [BA]" and hence [B]® = [B/]¢, where [B]¢is
the essential closure of [B].
Proof: [B] is dense in [B~] hence [B]" c [B/.

On the other hand, If g € [BA] theng =rix1 + ... + rmXn, Whereri€ Rand xi e B fori=1,2, ...,

n. For each 1 <i <n, xi = V{yij | yij € B"and y;j< xi} so xi € [B]* which implies rixi € [B]" for aall | and
hence g € [B]".
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Now [B”] < [B]" implies [BM" < [B]™
Finally [B]° = ([B]")" = ([B"]")" = [B"]".

(c) [B]”is not a Specker space.
(d)A complete Specker space is a cardinal sum of reals.

Let B be a generalized Boolean algebra and B” be the completion of B. Let E be the set { f = vnixi | i€ | €
N, x; € B"?, and pairwise disjoint, nj €Z}. Forf,ge E,thenf=v {nixi|ie |l c N}, g=Vv{{nxj|jeJ c
N}, define
f+ g =VviVvi(ni + m)(Xi Ay;) +Vini(xi\vay;) + vami(y;\vixi) and > g if vix >Vviyjand for i, j, if xi Ay #0
then ni > m;. Then (E +) is an I-group.

Lemma 2.2. E is complete.
Proof: LetF={f, o€ A} beabounded subset of E. We want to prove the l.u.b. of F exists.

Case 1: If F is bounded b nx for all a € A, where n € N and x € B, then f,, has finite ranges. So f, €
[B“] for all o € A and hence Vaf, € E.

Case 2: If F is bounded by g = vi {nixi | i€ I, nj EN, xj € B"*}, then for all o € A, that f, < g implies the
characteristic function on support f, < Vi Xi.
For eachi €1, for all a € A, define g. = fu A NiX;j then g, < nix;. By case 1, gi = Vag« € E. Also if i then gi A
g; =0, hence vigi € E and vigi > f, for all o € A, then k A nixi > f, A nixi. That implies k A nixi > Va(fe A nNix;) =
gi. Thatis to say k > gj for all i€ I, so k > Vv, gi. Therefore vaf,= Vi gi € E.

Lemma 2.3. Let {nux. |a € A, n, € N, X, € B""} be disjoint subsets of E, then Vanu.x, € E.

Proof: For each i€ N, letyi = V{ X | n. =i} then y; € B"*. Let gi =i yi then g; belongs to [B"*]  E and if i#
then giA g;=0. Thereforeg=V gi € E. Ifh € E and h > nuX, for all a € A, first we can write h = m;S; V myS;v
oo VMESt L. I st A Xo # 0 then me> ng, SO for i€ N since yi <characteristic function on the support of h (=Vs), Vi
A st #0 for some t. That implies m¢ > i and h > g;, and hence h > g. This shows g = Va(nuX.) € E.

Lemma 2.4. E is laterally complete.
Proof: Let {0 <g.|a € A} be disjoint subsets of E. Forall a € A, let gu =v, {n,;X, [n,; € N, X, € B“"}.
Then M = {neiX.i | I€ lo, o € A} is a disjoint subset of E. By lemma 2.3, v g, € E.

Lemma 2.5. E is the lateral completion of [B]
Proof: Since [B] is dense in E, [B] “<E" = E. On the other hand, if g € [B], g = Vi(nixi) where xi € B“*< [B]
implies g € [B} - and hence E < [B]".

Corollary 2.6. If G is a Specker group then G is complete.

Remark: Let G = [B] be the Specker group generated by B. Then [B""] is the maximal essential extension of G
that is Specker.

Proposition 2.7. If B is not an atomic Boolean algebra that satisfies the CCC then the lateral completion of the
Specker space generated by B is not essential closed.

Proof: Since B is not atomic there is a x € B such that no atom is below x. We can have a decreasing sequence
U>Xx>x1>...>00fB.
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Consider the subset C = {u, X, X1, ...} as a linearly ordered subset of B, take the completion C* of C then C
satisfies the following conditions:

1) C~ has countable dense subordering

2) C”iscomplete

3) C has no first or last element
Hence C” is order isomorphic to R. So there is an isomorphic map ¢ from [0, 1) onto C” such that if r <s in R
then ¢(r) < ¢(s) in C*.
Define gr = ro(r) € [B]” for each r € [0, 1), then { gr | r € [0, 1)] does exist in [B]*. But g & [B]" since every
element in [B] - only has countable range. Therefore [B]® # [B]".

Corollary 2.8. Let G be the set of all periodic sequences of real numbers, then G G'.

Proof: Let B be the set of all periodic sequences of {0, 1} then B is a countable atomless Boolean algebra and
hence a free Boolean algebra. Consequently, B satisfies the CCC. Since G = [B], by the proposition 2.7, G®#
G-

Theorem 2.9. Let G = [X] be a Specker group generated by the generalized booleab algebra X and R be the
ring of real numbers then R®_ Gis isomorphic to the Specker space generated by X.

n

Proof: Let F be the Specker space generated by X, i.e. for all f € F, f can be written as Z r,X, where ri € R and
i=1

Xi € X such that if i#j then xi A X; = 0.

n
Define a: RxG — Fby a: (r,g) —»rg=r Z i X

i1
Then a(r+s,g) = a(r,g) +a(s,g) and a(r, g+h) = o(r,g) + a(r,h).
Therefore, there is o : R®, G— F such that a"(r&g) = rg.

Define B: F—> R®, G by B(D r,x;)= >'r,®x € R®, G. Then

i=1 i=1

1) B is well-defined

Proof: Suppose f has two representations: f= »_s;y, and f= >"r,x; we want to show B(D_s,Y;
i=1 i1 i1

) =B 6%).
Notice that

@ VXi = Vyiso forall I=1, 2, ...n, xi = Vj(XiAy;) = in AYjandforallj=1,2,..m,yj

= ixi A yj
(b) If )I:/\ yj # 0 then sj =ri.
B(inxi )zﬁ(n(ixl AV +rn<2xn AY,))

QD X AY) o A ®(D X, AY;))
= =

:Sl®(zxi A Y1)+ +Sm®(zxi ANYn )
i=1 i=1
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:B(Sl(ixi AY) T +Sm(ixi AYnm))

ZB(Zm:Siyi)

2 B is a group homomorphism.
For if f =rx and g = sy and x and y are disjoint then
B(rx + sy) = r@xX + sQy = B(rx) +Pp(sy). If x Ay #0,thenletw=x-XAy,u=XAy,andv =
y - X Ay then we have
B(rx + sy ) = B(rw +(r+s)u + sv)
=r@w + (r+s)Qu +s@Qv = B(rx) + P(sy).

In general, if g = Zsiyi and f = Z I X; then the set zks obtained by disjoinfying xis and yjs,
i=1 i=1

t t
are a finite disjoint subsets of X and we can write f = Z rz,andg= Zsi z; . Then B(f+ g) =p(
i=1

i=1

Zt:(rl +si)zi )

= Zt:ri®zi+ Zt:si(@zi
=B(f) + B(g)
Also a/\B(Zn:riXi )=0L/\(Zn:ri ®X; )= ia/\(ri ®X,)= Zn:rixi

BorNr@g) = P(rg) = rQg. So o/ is a one to one homormorphism from REG onto F as a Z-modules.
Therefore RQzG £ F as vector spaces.

n
Now define f = Z rx.>0ifri>0forallI=1,2,...,n. Then RQzG is a vector lattice since in

i=1 B
the representation of f all x;’s are pairwise disjoint. Clearly the map a preserves the order. Therefore
R®zG £ F as vector lattices.

Corollary 2.10. G =[X] is a Specker group then the Specker space G*generated by X is isomorphic onto R® G
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