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Abstract  

This study analyzes a basic mathematical model for the dynamic interactions among tumor cells, infected 

tumor cells and viruses population, focusing on the viral lytic cycle for oncolytic virotherapy. I study the time 

delay effect of viral infection on tumor cell populations by identifying bifurcation thresholds in both the burst 

rate and time delay of viral infection in oncolytic virus therapy. Time delay plays an important role in changing 

the structure of tumor cell populations in a dynamical system. The multi-bifurcation thresholds of the time 

delay are observed and also dependent on the bursting rate. This study demonstrates a strong relationship 

between viral burst rates and time delays in population dynamics. The results of this study show that time 

delay affects oscillation generation and results in back-to-back Hopf bifurcation. This study provides insight 

into understanding the relationship between the two control parameters, in which tumor cell populations 

pattern from equilibrium steady-state solutions to periodic solutions and from periodic solutions to 

equilibrium-state solutions. 
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1. Introduction 

Oncolytic viruses are genetically modified viruses that can infect and multiply cancerous cells, but leave 

normal, healthy cells intact. Oncolytic viruses can be divided into two types: oncolytic wild viruses, which 

occur naturally and preferentially in human cancer cells, and genetically modified viruses engineered to 

achieve selective oncolysis. Wild-type viruses have shown limited oncolytic potency in some preclinical trials, 

whereas transgenic viruses appear to have large oncolytic potency(Kirn & McCormick(1996), Kaplan(2005), 

Roberts, et. al.(2006)). Prior to the 1990s, case studies and small-scale experiments with various viruses in 

cancer treatment were reported(Chiocca(2002)). Genetic engineering began to be used for oncolytic viruses 

in the 1990s(Martuza, et. al.(1991)). To date, many types of viruses have been modified for 

experiments(Lawler et.al.(2017)), and some oncolytic viruses have been approved for human clinical trials 

(Maroun, et. al.(2017)). However, the potential of oncolytic viruses does not seem to have been reached yet 

(Chiocca & Rabkin(2014)). One major challenge is how to fully spread the virus into solid tumors(Mok, et. 

al.(2009)). 

An understanding of the dynamics of spread of oncolytic viruses through tumors can help overcome these 

difficulties and develop strategies for clinical application. Mathematical modeling can explore the full 

spectrum of possible outcomes and provide a basis for optimizing treatment. Several attempts have been made 

to understand and characterize viral dynamics with mathematical models. See Bajzer, et. al.(2008), Friedman, 

et. al.(2006), Wodarz(2001) and Wu, et. al.(2001) for example. These mathematical models can be roughly 

divided into two classes. One class uses Ordinary Differential Equations (ODEs), including Delay Differential 
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Equations (DDEs) (Novozhilov, et. al.(2006), Karev, et. al.(2006), Wodarz & Komarova (2009), and Wang, 

et. al.(2013)) and the other class uses Partial Differential Equations (PDEs) (Friedman, et. al.(2006), Wein, et. 

al.(2003) and Wu, et. al.(2001)). For PDE models of oncolytic virus therapy, most use the idea of fluid 

dynamics to model solid tumor growth in which tumor cells convene in fluid velocity fields within the tumor 

and the virus simply spreads within the tumor. All these modeling studies have provided specific insights into 

viral treatment. A study by Jain and colleagues in particular highlights the importance of the spreading 

properties of viruses(Mok, et. al.(2009)). However, it is well known that the growth of solid tumors, especially 

brain tumor gliomas, also exhibits characteristics of cell proliferation (Harpold, et. al.(2007)).  

The viral lytic cycle is the duration of the viral life cycle within a cell, starting from the moment the virus 

enters the cell and ending when a certain number (viral burst size) of newly replicated virus emerges upon cell 

lysis. It is an important parameter of viral dynamics. Wang, et. al.(2013) is the first to incorporate the viral 

lysis cycle as a delay parameter in a mathematical model for oncolytic virus therapy. In this paper, we aim to 

analyze the effect of time delay of the virus infection on oncolytic virotherapy. Our numerical results show 

there is a strong relationship between the virus bursting size and the time delay in the generation of oscillations.  

This paper is structured as follows. Section 2 reviews models of the dynamics of oncolytic viruses with basic 

equations and introduces common basic models. In addition, equilibrium analysis and stability are reviewed, 

and conditions of numerical simulation are checked. In Section 3, we investigate the effect of time delay on 

the dynamics of the tumor cell population through a basic model. We can know that the bifurcation value in 

the bursting rate depends on a time delay. Finally, in conclusion, we summarize our results and we highlight 

that time delay affects oscillation generation. 

 

2. Materials and Methods 

2.1 Model 

 

The OV model is a three dimensional 

𝑑𝑥

𝑑𝑡
= 𝑘1𝑥 (1 −

𝑥 + 𝑦

𝐾
) − 𝑘2𝑥𝑧 

𝑑𝑦

𝑑𝑡
= 𝑘2𝑥(𝑡 − 𝜏)𝑧(𝑡 − 𝜏) − 𝛿1𝑦                

 (1) 

𝑑𝑧

𝑑𝑡
= 𝑘3𝑦 − 𝑘2𝑥𝑧 − 𝛿2𝑧                                                                        

 

where 𝑥(t) , 𝑦(t)  and 𝑧(t)  represent populations of tumor cells, infected tumor cells and free viruses, 

respectively. The 𝑘1 is the proliferation rate of tumor cell and 𝐾 is the carrying capacity of a tumor. The 

term 𝑘1𝑥 (1 −
𝑥+𝑦

𝐾
) explains the logistic growth rate of a tumor cell population 𝑥(t). The constant value 𝑘2 

is the infection rate of the virus and the term 𝑘2𝑥𝑧 describes the rate of infected tumor cells by free viruses 

𝑧(t). τ is a time delay 𝛿1 represents the death rate of infected tumor cells. The 𝑘3 is the bursting size of free 

virus particles. The term 𝛿2 is the clearance rate of free virus particles.  

For non-dimensionalization, we set τ = 𝛿1𝑡, 𝑥 = 𝐾�̂�, y = 𝐾�̂�, z = 𝐾�̂�. Then  
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Equation (1) become 

𝑑�̂�

𝑑𝜏
=

𝑘1

𝛿1
�̂�(1 − �̂� − �̂�) −

𝑘2𝐾

𝛿1
�̂��̂�  

𝑑�̂�

𝑑𝜏
=

𝑘2𝐾

𝛿1
�̂��̂� − �̂�                

 (2) 

𝑑�̂�

𝑑𝜏
=

𝑘3

𝛿1
�̂� −

𝑘2𝐾

𝛿1
�̂��̂� −

𝛿2

𝛿1
�̂� 

We have the following model by setting the parameters;  𝑎 =
𝑘1

𝛿1
, 𝑏 =

𝑘2𝐾

𝛿1
, 𝑐 =

𝑘3

𝛿1
 and 𝑑 =

𝛿2

𝛿1
 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥(1 − 𝑥 − 𝑦) − 𝑏𝑥𝑧  

𝑑𝑦

𝑑𝑡
= 𝑏𝑥(𝑡 − 𝜏)𝑧(𝑡 − 𝜏) − 𝑦             

 (3) 

𝑑𝑧

𝑑𝑡
= 𝑐𝑦 − 𝑏𝑥𝑧 − 𝑑𝑧  

 

All parameters are described in Table 1. 

 

Table 1. Non-dimensionalized model parameters. All parameters are assumed to be non-negative. 

Parameter Description Component 

a Proliferation rate of tumor cell 
𝑎 =

𝑘1

𝛿1
 

b Infection rate of virus into tumor cell 
𝑏 =

𝑘2𝐾

𝛿1
 

c Bursting size of virus 
𝑐 =

𝑘3

𝛿1
 

d Clearance rate of free virus particles 
𝑑 =

𝛿2

𝛿1
 

 

2.2 Analysis and Stability of Equilibrium 

 

For τ = 0 (no time delay in virus infection), there exist three equilibrium points; two equilibrium solutions 

𝐸0(0, 0, 0) and 𝐸1(1, 0, 0) in the positive invariant domain D and the other one 𝐸2(𝑥∗, 𝑦∗, 𝑧∗) in either the 

negative or the positive domain depending on the parameter values. 
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𝐸2(𝑥∗, 𝑦∗, 𝑧∗)  =  (
𝑑

𝑏(𝑐 − 1)
,

𝑎𝑑(𝑏𝑐 − 𝑏 − 𝑑)

𝑏(𝑐 − 1)(𝑏𝑐 − 𝑏 + 𝑎𝑑)
,

𝑎(𝑏𝑐 − 𝑏 − 𝑑)

𝑏(𝑏𝑐 − 𝑏 + 𝑎𝑑)
) 

 

Using the linear stability analysis, 𝐸0(0, 0, 0) is always unstable equilibrium point. 𝐸1(1, 0, 0) is a stable 

point if a ≤
𝑑

𝑐−1
. Otherwise, 𝐸1(1, 0, 0) is an unstable equilibrium point. 𝐸2(𝑥∗, 𝑦∗, 𝑧∗) is stable if 𝑝𝑖 > 0, 

i=1, 2, 3 and 𝑝1 ∙ 𝑝2 > 𝑝3 , where 𝑝𝑖  is the coefficient of the characteristics equation 𝑃 =  𝜆3 + 𝑝1𝜆2 +

𝑝2𝜆 + 𝑝3, where 

𝑝1 =
𝑏𝑐 + 𝑎𝑑 + 𝑏𝑐𝑑 − 𝑏

𝑏(𝑐 − 1)
,  

 𝑝2 =
𝑎𝑑(𝑐𝑑 + 𝑐 − 1)

𝑏(𝑐 − 1)2
+

𝑎𝑑(𝑏𝑐 − 𝑏 − 𝑑)(𝑎 − 𝑑)

𝑏(𝑐 − 1)(𝑏𝑐 − 𝑏 + 𝑎𝑑)
,  

 𝑝3 =
𝑎𝑑(𝑏𝑐 − 𝑏 − 𝑑)

𝑏(𝑐 − 1)
  

For 𝜏 ≠ 0, we refer to Wang, et. al.(2013) 

 

2.3 Numerical Simulation 

 

We used the Runge-Kutta 2nd order method15 to compute the numerical solutions in MATLAB (The 

Mathworks, Natick, MA). The small-time step ∆t = 0.05 was used to check the accuracy of the numerical 

method. For numerical simulations, we set the parameters a = 0.31 (growth rate of cancer cell from the 

experimental data) and d = 0.44 with initial conditions x(0) = 0.5, y(0) = 0, and z(0) = 1.5. Both the infection 

rate (b) and the bursting rate of virus (c) are considered as variables. 

 

3. Results 

3.1 The effect of a time delay on the dynamics of tumor cell population 

We investigated the effect of the time delay on the tumor cell population. We set the busting rate (c = 5; 

different values of c will be discussed later) and computed the tumor cell population over time for τ = 0, 5 and 

10. Without the delay time, the tumor cell population converges to equilibrium value 0.215. However, for τ = 

5, the tumor cell population exhibits oscillations over time. For τ = 10, the amplitude of oscillations reduced. 

If the delay time is higher (longer), then the result is the same as the result at τ = 0 (Figure 1). Our numerical 

result indicates that there is a Hopf bifurcation where the structure of the tumor cell population changed at a 

certain τ = τ* from steady state to periodic solutions and suggests that the time delay τ can be a bifurcation 

parameter on the dynamics.  
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Figure 1: The effect of a time delay on tumor cells population. Time series of uninfected tumor cell 

population for different values of τ. The tumor cell population shows a damped oscillation for τ = 0. However, 

it displays a periodic solution (oscillation) for τ = 5 and back to damped oscillations for τ = 10. Parameters 

used were a = 0.31, b=0.11, c = 5 and d = 0.44. 

 

3.2 The bifurcation value in the bursting rate depends on a time delay. 

 

The changes in the stability of an equilibrium depend on parameters. This qualitative changes in a dynamic 

structure is called bifurcation. Figure 2 shows bifurcation diagrams of equilibrium tumor cell population over 

the bursting rate. We calculated the equilibrium tumor cell population over time for each bursting rate ranged 

from 0 to 40 with step size 0.01. Our model exhibits two bifurcation values in the bursting rate at 𝑐 = 𝑐1
∗, 𝑐2

∗.  

There is a transcritical bifurcation at 𝑐 = 𝑐1
∗  where the equilibrium point 𝐸1(1, 0, 0)  is stable and 

𝐸2(𝑥∗, 𝑦∗, 𝑧∗)  is unstable for 0 ≤ 𝑐 < 𝑐1
∗ . However, the stability of equilibrium points changes at 𝑐 = 𝑐1

∗ 

where 𝐸1(1, 0, 0) becomes unstable and 𝐸2(𝑥∗, 𝑦∗, 𝑧∗) is stable for 𝑐 > 𝑐1
∗. A Hopf bifurcation occurred at 

𝑐 = 𝑐2
∗ where the equilibrium point 𝐸2(𝑥∗, 𝑦∗, 𝑧∗) is stable spiral for 𝑐1

∗ < 𝑐 < 𝑐2
∗ but there is a limit cycle 

around the equilibrium point and the tumor cell population shows oscillation for 𝑐 > 𝑐2
∗.  For τ = 0, we found 

𝑐1
∗ = 5 and 𝑐2

∗ = 27 (Figure 2A). Interestingly, Hopf bifurcation value (𝑐2
∗) shifts left or right depending on 

a time delay (τ) (Figure 2B, 2C, 2D).   
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(A)                          (B) 

 

(C)                          (D) 

 

Figure 2: Bifurcation diagram with bursting rate with different time delay. (A)-(D) are bifurcation 

diagrams for tumor cell population density with respect to the bursting rate with time delay τ = 0, 5, 10 and 

15, respectively. The time delay τ induce the second bifurcation threshold value (𝑐2
∗). Parameter used were a 

= 0.31, b=0.11, d = 0.44 

 

3.3 Back-to-back Hopf bifurcation with a time delay. 

It showed a delay time resulted in shifting of the bifurcation threshold values in bursting rate with different 

time delays in Figure 2. In this section, we investigated the effect of the time delays on the tumor cell 

population with different values of bursting rate. We compute the equilibrium density of tumor cell population 

over time delays ranged from 0 to 100 with step size τ = 0.01 with fixed values of bursting rate c = 18, 19 and 

20.The tumor cell populations exhibit steady state solutions 𝑥(t) = 0.215 without a delay time. The tumor 

cell stays the same equilibrium population when c = 18 in the presence of a delay time of virus infection 

(Figure 3A). However, it shows oscillations at certain delay times in Figure 3B. The amplitude and the time 

delay period of oscillations increased as the bursting rate increased (Figure 3C). Our numerical results show 

that there are multiple of threshold values in delay times at which the equilibrium tumor cell population 

changes from equilibrium steady state solution to periodic solutions and suggest that there are back-to-back 

Hopf bifurcation at the threshold values in delay times.  
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(A)                          (B) 

 

(C)                         

 

Figure 3: The density of equilibrium tumor cell population when the time delay varies from 0 to 100 with 

different values of bursting rate. There is no impact of time delay when the bursting rate is 18 (A). The 

oscillations of tumor cell populations occurred at certain delay times (B and C). We used the parameter a = 

0.31, b=0.11, d = 0.44 

 

The model exhibits two bifurcations with respect to two parameters; the bursting rate and the time delay of 

the virus infection: Transcritical and Hopf bifurcation.  Figure 4 shows the two-dimensional bifurcation 

diagram. We computed all eigenvalues of Jacobian matrix and identified the stability of equilibrium points 

when two parameters (bursting rate c and time delay) vary simultaneously. The Figure 4 shows three different 

colored regions which represent the following: 1) The blue is the set of parameters (τ, c) at which the relative 

cancer cell population converges to the maximal capacity, 2) the green color indicates that the population 

exhibits damped oscillations and converges to the population less than the maximal capacity and 3) the yellow 

colored region is that the population shows oscillations over the time.  Our numerical result provides the 

critical set of values of bifurcation points (τ1, c1) and (τ2, c2) which are located on the border between two 

colored regions. The transcritical bifurcation occurs in between blue and green colored region and the Hopf 

bifurcation occurs at the border between green and yellow colored region. As shown in Figure 4, the time 
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delay of the virus infection plays an important role in the generation of oscillations when the bursting rate is 

larger than 20. There are three bifurcation threshold values for 20 < bursting rate < 28.2 where the stability 

of 𝐸2(𝑥∗, 𝑦∗, 𝑧∗)  changes either from stable spiral to unstable (limit cycle around the 𝐸2(𝑥∗, 𝑦∗,  𝑧∗))  or 

unstable to stable spiral, resulting in Hopf bifurcation. Interestingly, there is no effect of the time delay on the 

tumor cell population if the bursting rate is less than 20.  

 

 

Figure 4: Two-dimensional bifurcation diagram for the tumor cell population density; Time delay on the 

x-axis, bursting rate on the y-axis. Three colored regions represent the set of two parameters at which three 

different patterns of tumor cell population over time are observed; the steady-state equilibrium (blue), damped 

oscillations (green) and oscillations (yellow). Two- bifurcations occurs at the borders between two colors; (1) 

Transcritical bifurcation on the border between blue and green, (2) Hopf bifurcation on the border between 

(green and yellow). Parameters used were a = 0.31, b=0.11, d = 0.44 

 

4. Conclusion 

In this paper, we studied the effect of the time delay of the virus infection on the tumor cell population by 

identifying the bifurcation threshold values in both bursting rate and time delay of virus infection on oncolytic 

virotherapy. Our numerical results illustrate that there is a strong relationship between the virus bursting rate 

and the time delay in the population dynamics. The time delay plays an important role in changing the structure 

of tumor cell populations. Multiple bifurcation threshold values of time delay are observed, and they also 

depend on the bursting rate. Our numerical results show that the time delay affects the generation of 
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oscillations: either low bursting rate or high bursting rate. Our result gives an insight into understanding the 

relationship between two control parameters at which the tumor cell population shows the patterns from 

equilibrium steady-state solution to periodic solutions and from periodic solutions to equilibrium state 

solutions. The two-dimensional bifurcation diagram provides a promising result in determining optimal 

parameters for successful virotherapy. 

 

5. References 

1. Bajzer, Ž., Carr, T., Josić, K. (2008). Modeling of cancer virotherapy with recombinant measles viruses. 

Journal of theoretical Biology, 252(1): 109–122. [PubMed: 18316099]  

2. Chiocca, E. A. (2002). Oncolytic viruses. Nature Reviews Cancer, 2(12): 938. [PubMed: 12459732] 

3. Chiocca, E. A., & Rabkin, S. D. (2014). Oncolytic viruses and their application to cancer 

immunotherapy, Cancer Immunol Res. 2(4): 295–00. [PubMed: 24764576] 

4. Friedman, A., Tian, J. P., & Fulci, G. (2006). Glioma virotherapy: effects of innate immune suppression 

and increased viral replication capacity. Cancer research, 66(4): 2314–2319. [PubMed: 16489036]  

5. Harpold, H. L., Alvord, E.C. Jr, & Swanson, K. R. (2007). The evolution of mathematical modeling of 

glioma proliferation and invasion. J Neuropathol Exp Neurol. 66(1): 1–9. [PubMed: 17204931]  

6. Kaplan, J. M. (2005). Adenovirus-based cancer gene therapy. Current gene therapy, 5(6): 595–605. 

[PubMed: 16457649]  

7. Karev, G. P., Novozhilov, A. S., & Koonin, E.V.(2006). Mathematical modeling of tumor therapy with 

oncolytic viruses: effects of parametric heterogeneity on cell dynamics. Biology direct, 1(1): 30. 

[PubMed: 17018145]  

8. Kirn, D. H., & McCormick, F. (1996). Replicating viruses as selective cancer therapeutics. Molecular 

Medicine Today, 2(12): 519–527. [PubMed: 9015793]  

9. Lawler, S. E., Speranza, M. C., & Cho, C. F. (2017). Oncolytic viruses in cancer treatment: a review. 

JAMAoncology, 3(6): 841–849. [PubMed: 27441411]  

10. Martuza, R. L., Malick, A., & Markert, J. M. (1991) Experimental therapy of human glioma by means 

of a genetically engineered virus mutant. Science, 252(5007): 854–856. [PubMed: 1851332]  

11. Maroun, J., Muoz-Ala, M., Ammayappan, A., Schulze, A., Peng, K. W., & Russell, S. (2017). 

Designing and building oncolytic viruses, Future Virol. 12(4), 193–13. [PubMed: 29387140]  

12. Mok, W., Stylianopoulos, T., Boucher, Y., & Jain, R. K. (2009). Mathematical modeling of herpes 

simplex virus distribution in solid tumors: implications for cancer gene therapy, Clin Cancer Res., 

15(7): 2352–360. [PubMed: 19318482]  

13. Novozhilov, A. S., Berezovskaya, F. S., & Koonin, E. V. (2006). Mathematical modeling of tumor 

therapy with oncolytic viruses: regimes with complete tumor elimination within the framework of 

deterministic models. Biology direct, 1(1): 6. [PubMed: 16542009]  

14. Roberts, M. S., Lorence, R. M., & Groene, W. S. (2006) Naturally oncolytic viruses. Current opinion 

in molecular therapeutics, 8(4): 314–321. [PubMed: 16955694]  

15. Wang, Y., Tian, J. P., & Wei, J. (2013). Lytic cycle: a defining process in oncolytic virotherapy. Applied 

https://scholarsjournal.net/index.php/ijier


Time delay induces a back to back Hopf bifurcation on oncolytic virotherapy.  

International Journal for Innovation Education and Research Vol. 11 No. 5 (2023), pg. 74 

Mathematical Modelling, 37(8): 5962–5978. 

16. Wein, L. M., Wu, J. T., & Kirn, D. H. (2003). Validation and analysis of a mathematical model of a 

replicationcompetent oncolytic virus for cancer treatment: implications for virus design and delivery. 

Cancer research, 63(6): 1317–1324. [PubMed: 12649193]  

17. Wodarz, D. (2001). Viruses as antitumor weapons: defining conditions for tumor remission. Cancer 

research, 61(8): 3501–3507. [PubMed: 11309314]  

18. Wodarz, D., & Komarova, N.(2009). Towards predictive computational models of oncolytic virus 

therapy: basis for experimental validation and model selection. PloS one, 4(1): e4271. [PubMed: 

19180240]  

19. Wu, J. T., Byrne, H. M., & Kirn, D. H. (2001). Modeling and analysis of a virus that replicates 

selectively in tumor cells. Bulletin of mathematical biology, 63(4): 731. [PubMed: 11497166] 

https://scholarsjournal.net/index.php/ijier

	Time delay induces a back to back Hopf bifurcation on oncolytic virotherapy.
	Abstract
	1. Introduction
	2. Materials and Methods
	2.1 Model

	4. Conclusion
	5. References

