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Abstract 

A Space-time finite volume method is utilized to construct a parameterized family of two-step explicit 

higher-order schemes for scalar hyperbolic conservation laws. Utilizing a local space-time expansion of the 

flux-integral form of the equation error, generalized quadratures of local grid functions of the solution and 

the associated local source term are formulated to couple grid points within the domains of dependence and 

influence of new updates about the centroid of each space-time control volume. Optimal quadrature 

parameters for the discretization are then determined through a minimization of the error expansion to 

account for local space-time fluxes to all neighboring mesh points within the computational domain. Hence, 

a more accurate space-time descriptions of the leading numerical viscosity coefficients in the residual errors 

are then characterized based on the space-time coupling of the desired set of mesh points utilized in the 

discretization about the centroid. Consequently, the quadrature weights and the time step sizes are optimized 

to control and regularize the residual errors to minimize nonphysical oscillations. Numerical experiments 

demonstrate the effectiveness of the discretization method in minimizing the associated nonphysical 

oscillations in numerical solutions. 

 

Key words. Space-time finite volume, space-time control volume, space-time discretization error, 

consistent higher-order accuracy, domain of dependence, flux integral, space-time residual error, equation 

error expansion, nonphysical oscillations 

 

1. Introduction 

In this work we utilize the finite volume method to construct a family of two-step explicit space-time 

discretizations for the scaler hyperbolic conservation laws with source terms. We first formulate a 

discretization error using generalized quadratures to approximate the flux-integral form of the equation locally 

about the centroid of each space-time control volume. Using a generalized quadratures of the grid functions 

of the solution and local source terms allow for including desired neighboring quadrature points within the 

domains of dependence of new updates to ensure higher conservation of local space-time fluxes. Additionally, 

the two-step discretization method allows for a more accurate coupling departure points with the new update 
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points about the centroid of the control volume and ensure higher local accuracy for the resulting schemes. 

To ensure a more consistent and accurate discretization of the equation locally, a formal residual error is 

accurately determined to assess the effectiveness of optimizing the associated dispersion and dissipation errors 

for the resulting schemes. In this regard, we utilize a general weighted quadrature approximation of the integral 

formulation of the equation and the finite volume approach to formulate a local multivariate space-time 

discretization error expansion. The error expansion is then constrained by higher order derivatives of the 

equation to ensure higher level of conservation for local fluxes to all neighboring mesh points about the half-

time centroids. 

By eliminating the leading coefficients of the error expansion through a process of minimax approximation, 

the quadrature weights to describe the resulting schemes are determined. These closed form descriptions of 

the weights which describe accurate coupling of space and time scales with local physical parameters are 

optimized for consistency, stability and higher local accuracies. The space-time unified approach ensures that 

the time steps may be determined more accurately as a function of the spatial resolution, local physical 

parameters, and the collocation parameters to ensure that the numerical dissipation and dispersion errors for 

the schemes may be controlled and regulated without the need for flux limiters. 

We give the general formulation of the finite volume differencing approach and then illustrate the 

effectiveness of the method by the construction of two-step explicit discretizations of hyperbolic conservation 

laws in one spatial dimension where the space-time domain [14] is two dimensional. Since space-time domains 

are not necessarily the cartesian products of a domain in space and a domain in time [14,15], multivariate 

space-time local expansions for the solution which are further constrained by higher order derivatives of the 

equation [10] are utilized to describe the equation error expansion. The local expansions further allow for 

adopting flexible configurations for the local grid-point cloud [8, 9] by utilizing all the associated space-time 

fluxes [10,25] to as much higher-order accuracies as possible. The structured distribution of grid points on the 

control volumes ensures that the resulting discretization of the equations guarantee accuracy estimates of the 

residual error locally and globally. Thus, the local discretization error [2] is comprehensively formulated from 

the generalized quadrature approximation of the flux integral form of the equation to include all directions of 

grid point locations on the control volume instead of just the main coordinate directions as in traditional finite 

difference schemes [11]. Hence, the sum of the approximation errors for all grid functions utilized in the 

integral formulation is first captured by the discretization error which is then minimized by determining the 

quadrature weights to eliminate the leading coefficients of the error. These quadrature weights form the 

collocations of the so-called modified equations which are optimized to improve local accuracies and for 

establishing space-time conditions for stability and monotonicity. 

The paper is organized as follows: In Section 2, we present the space-time finite volume differencing 

framework for the design of the schemes by looking at the multivariate discretization of the general 

conservation laws in Rn. In Section 3, we apply the method to set up the generalized quadrature differencing 

framework for the equation error expansion aimed at achieving higher-order discretization of conservations 

laws in one dimension. In Section 4, leapfrog and non-leapfrog integration setups are described in space and 

time. In Section 5, two-step explicit three-point finite volume schemes in one spatial dimension are developed 
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for leapfrog and non-leapfrog integration setups. The residual errors for the schemes are analyzed through 

strategies for controlling and regulating nonphysical oscillations associated with numerical solutions for 

conservation laws. In Section 6, two-step explicit five-point finite volume schemes are presented as in Section 

5. Numerical results demonstrating the accuracy and the skills of the schemes for regulating and controlling 

nonphysical oscillations are illustrated in Section 7. We then discuss convergence and stability of the schemes 

in Section 8 and provide conclusions are presented in Section 9. 

 

2. A Space-time Finite Volume Differencing Discretization.  

In this section, we present a space-time discretization framework for constructing two-step explicit schemes 

for the scalar hyperbolic conservation law written in the primitive form as 

ut + cux = f in Ω × (0,T], x ∈ Ω, (2.1) u(x,0) = u0(x) for x ∈ Γ, 

through a finite volume method on a space-time cylindrical domain Ω × (0,T] where c is the local velocity of 

u and f ∈ L2(0,T;L2(Ω)). We use a local space-time unified framework to construct stable and conservative 

higher-order accurate full discretization schemes for (2.1) in a comprehensive manner that guarantees greater 

local accuracy improvements in time integration over semidiscretization approaches. The approach guarantees 

accurate tracking of flow along local characteristics and allows for local residual errors to be controlled locally 

by choosing the right time steps to regulate leading numerical viscosities in the residual errors. By describing 

local viscosity coefficients in space-time and consequently choosing time steps to match spatial resolution in 

order to minimize and regulate these coefficients provides degrees of freedom to better represent sharp 

gradients to a higher local accuracies. Furthermore, by using local solution expansion for grid function and 

therefore the equation error approximation, the numerical viscosity regulations and the associated errors are 

local. 

To effectively represent and account for local space-time fluxes [4,10], we integrate (2.1) over spatio-

temporal domains rather than in spatial and then temporal directions independently [21] as in traditional semi-

discretization formulations. We first use the divergence theorem to rewrite (2.1) as 

 Z Z Z 

 ut dxdt + cux dxdt = f dxdt, (2.2) 

 ΩT ΩT ΩT 

where ΩT is the closure of (a,b) × (0,T]. 

Now, consider the two-dimensional domain ΩT partitioned into space-time control volumes where each 

control volume is centered on a space-time grid point with a surrounding regular distribution of space-time 

grid points. Thus, each grid point has a compact cloud of quadrature points that describes the control volume 

overlapping [24] with grid-point distributions for neighboring control volumes. The interlocking 

configurations created by these overlaps allow for efficiently conserve local fluxes to neighboring points 

across different time levels. While in other space-time approaches [1,3,17,18], balance of fluxes is considered 

on the finite space-time slabs, we carry out the differencing discretization to balance local fluxes to all 

neighboring space-time quadrature points on the computational domain. 

Following a similar characterization of the local space-time domain [18], consider a partition of the time 
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interval [0,T] by 0 = t0 < t1 < ··· < tN = T and the domain [a,b] ∈ R by a = x0 < x1 < ··· < xM = b such that the 

space-time control volume is Qnm = [xm − h,xm + h] × [tn−1,tn+1], and illustrated in Figure 2.1. Each grid point 

X0(xm,tn) for instance, is a centroid of a control volume Qnm with a cloud of neighboring grid points X1(xm + 

h,tn), X2(xm + h,tn+1), X3(xm,tn+1), X4(xm − h,tn+1), X5(xm − h,tn), X6(xm − h,tn−1), X7(xm,tn−1), and X8(xm + h,tn−1), 

as depicted in Figure 2.1 where Qnm overlaps with control volumes centered on all the neighboring grid points. 

The schemes are designed to efficiently account for the balance of local spacetime fluxes between each 

grid point and surrounding clouds of quadrature points in all directions and not just the coordinate directions 

as in traditional finite difference schemes [7]. Therefore, as the interlocking configuration to represent both 

local forward and backward fluxes about each centroid become more elaborate, higher accuracies and 

conservation are achieved by regulating the leading dissipation and dispersion coefficients to control 

nonphysical oscillations without the need for flux limiters. 

 

We rewrite (2.2) into the flux integral balance form on each control volume Qnm 

 

Fig. 2.1. A space-time control volume Qnm with local uniform compact cloud of grid points with X0(x0,t0) as the centroid 

by 

 Z Z Z 

 u · νt dx + cik n u · νxdt = fdxdt, (2.3) 

 ∂Qnm ∂Qm Qnm 

where  is the space-time boundary of Q  is speed of the conserved quantity u about the centroid, νt 

and νx are the unit normals in temporal and spatial directions on Qnm. We then rewrite the temporal and spatial 

evaluations of (2.3) into boundary flux differencing balance form about (x0,t0) by 

 

 temporal differencing spatial differencing 

(2.4) 

where   represents the temporal update at time t0 + k whilst   represents the corresponding 

spatial limit on the control volume. The well balanced flux differencing formulation (2.4) which is a 

generalization of the fundamental theorem of calculus in higher dimensions and manifolds is rewritten as 

Z 

∂ Q n 
m t 0 + k 

udx − 
Z 

∂ Q n 
m t 0 − k 

udx 

| { z } 

+ c ik { 
Z 

∂ Q n 
m x 0 + h 

udt − 
Z 

∂ Q n 
m x 0 − h 

udt } 

| z { } 

= 
Z 

Q n 
m 

fdxdt, 
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} 

 Time updates Dependence grid points spatial differencing 

Z 

 + f dxdt , (2.5) 

Qnm 

 

| {z } 

local source term 

to illustrate the similarities between our approach and other approaches [20,27]. 

As illustrated by the grid-point configuration in Figure 2.1, the grid points at time tn+1, including X2, X3, 

and X4, are utilized to construct the generalized weighted quadrature approximation of the new update integral 

R
∂Qnmt0+k udx while grid points at times tn−1 and tn (namely X5, X0, X1, X6, X7 and X8) are utilized in approximating 

the integral  on the control volume. Thus, the approximation of R
∂Qnmt0−k udx may be constituted 

from the domain of dependence grid points at times (tn) and (tn−1). Similar approximations are described for 

the boundary integrals 

R
∂Qnmx0+h udt and R∂Qnmx0+h udt which are utilized for the spatial flux differencing. 

The collocation of the associated source term RQnm f dxdt may include sub-grid points where the quadrature 

parameters will be similarly determined for higher local accuracies. The degrees of freedom for constructing 

the discretization include the collocation weights which are to be determined to eliminate the leading terms 

of the equation error expansion and optimize the leading numerical viscosity coefficients of the residual 

errors. 

The balanced flux setup (2.5) is very similar to the classical Godunov’s finite vol- 

ume methods including ADER approach [22,23] where R∂Qnmx0+h udt and R∂Qnmx0−h udt in (2.4) are represented by 

the numerical fluxes Fi+1/2 and Fi−1/2 respectively; finite 

difference approaches where R
∂Qnmt0+k udx and R

∂Qnmt0+k udx are represented by the centroid values of  and

and t0−k boundaries of the control volume. 

In these different approaches [22], the approximation of the fluxes Fi+1/2 and Fi−1/2 are treated with elaborate 

interpolation procedures at the cell boundaries independently and as such flux limiters to regulate the flux 

differencing Fi+1/2 − Fi−1/2 are needed. 

Z 

∂ Q n 
m t 

0 + k 

udx 

| z { } 

= 
Z 

∂ Q n 
m t 

0 − k 

udx 

| { z } 

− c 
ik 

{ 
Z 

∂ Q n 
m x 

0 + h 

udt − 
Z 

∂ Q n 
m x 

0 − h 

udt } 

| z { 

https://scholarsjournal.net/index.php/ijier


A Residual-Based Numerical Viscosity Regularization Approach for Higher-Order Finite Volume 

Discretization of Scalar Hyperbolic Conservation Laws  

International Journal for Innovation Education and Research Vol.12 No.3 (2024), pg. 27 

In this approach, the spatial and temporal differencing are carried out in a unified manner about the centroid 

by using of all neighboring cloud of grid function values similar to idea behind the construction of flux limiters. 

Thus, the generalized quadrature approximation of the equation error for (2.5) is described as 

   

Euik = Xn αiui − Xn βiui +cik  Xn aiui − Xn biui −Xvifi, 

 ∂Qmt0+k ∂Qmt0−k ∂Qmx0+h ∂Qmx0−h  Qnm 

 

| {z } | {z } temporal residual spatial residual 

(2.6) 

where  is non-zero for a finite number of quadrature points on the control volumes with quadrature weights 

{αi,βi,ai,bi, vi} and {ui ,fi} as the local grid functions of u and f as defined by (2.1). 

To construct the space-time expansion of the equation error (2.6) that locally enforces a more accurate 

higher-order relationship of local advection with time, we first utilize a multivariate expansion φ about (x0,t0) 

to describe u by 

  (2.7) 

where φ is assumed to be smooth enough and locally defined everywhere and 

 . (2.8) 

Thus, any desired set of quadrature points may be included in the approximation of the flux integrals to 

discretize (2.6) locally. To reflect local regularities of u(x,t), the coefficients φxt, φtt, φxxt, φxtt, φttt, etc in (2.7) 

are replaced by φxx, φxxx, etc in order to ensure a more accurate higher-order space-time tracking of advection 

along local characteristics. Thus, advection accuracies along local characteristics is enforced through (2.6) and 

(2.9) which allow for determining the right time-steps for the flow to match spatial resolution by controlling 

the leading dissipation and dispersion coefficients in the residual errors. Furthermore, the source term 

derivatives fx, ft, ftt, fxx fxt, fxxt, fxtt, etc are introduced into (2.7) through higher-order derivatives of (2.1) along 

characteristics given as 

φt(x0,t0) = −c0φx(x0,t0) + f(x0,t0), 

φxt(x0,t0) = −c0φxx(x0,t0) + fx(x0,t0), (2.9) φtt(x0,t0) = c20φxx(x0,t0) + ft(x0,t0), 

φxtt(x0,t0) = c20φxxx(x0,t0) + ftx(x0,t0), etc, 

by way of the Cauchy-Kovalevskaya procedure [12,22,23] where c0 is assumed to be locally constant about 

the centroid of the control volume. 

For an efficient higher-order discretization, the local source term must be collocated to account for 

variations in the source term and solution fluxes locally. We therefore use the differential operator action on 

the local expansion φ in (2.7) to define the numerical local source term by 
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  (2.10) 

where 4κ represents the action of the differential operator locally such that 

 f0 = f(x0,t0) = 4κφ|(x0,t0) := φt(x0,t0) + cikφx(x0,t0). (2.11) 

The expansion about the half-time centroid (x0,t0) ensures that quadrature points at times t0 −k and t0 +k which 

describe the differences between backward and forward fluxes may be captured at the same level of accuracy 

through the discretization of (2.4) about the centroid. The multivariate expansion ensures that all the solution 

approximations at the quadrature points within the domains of dependence and influence of the centroid in the 

resulting scheme accurately conserve local flow based on the regularities of the solution. 

We now rewrite the local equation error expansion for (2.4) about each centroid based on (2.6) by 

   

E , 

 mt0+k mt0−k Qmx0+h mx0−h  m 

 

| {z } | {z } temporal residual spatial residual 

(2.12) 

where the grid functions φi and fi are defined everywhere locally. The temporal residual is designed to catch 

higher-order numerical fluxes as a result of the time difference between the arrival point at time t0 + k and any 

of the departure points at times t0 and t0 − k. Similarly, we design the spatial residual to catch higher-order 

numerical fluxes as a result of spatial difference between the arrival point at time t0 + k and any of the departure 

points at times t0 and t0 − k. 

The discretization of (2.4) may be described as a dynamic programming problem of determing {αi,βi,ai,bi,vi} 

to minimize (2.12) subject to (2.9) and additional constraints on the quadrature weights (3.5). To preserve the 

integrity of the flow locally, the arrival points which are specified by the CFL number σ, are rightly determined 

to minimize dissipation and dispersion errors along local characteristics. Thus, the approach allows for 

considering and selecting the best possible ways to track numerical fluxes between each centroid and 

surrounding quadrature points. For explicit time integration, the parameters αi,ai and bi are constrained to 

eliminate the implicitness at time t0 + k as described in the next Section. The formulation in (2.12) reduces to 

the traditional finite differencing approach when the summations are described by only the centroid values of 

the boundaries of the space-time control volume. 

3. Generalized Quadrature Discretization. Given that the local space-time expansion φ(x,t) in (2.7) 

is defined everywhere about (x0,t0), we describe the quadrature differencing approximation of (2.4) in the form 

 , (3.1) 

where tn+1 represents the new update time t0 + k in Figure 2.1 while tn−1 and tn represent departure times t0 − k 

and t0 respectively and similarly for the spatial differencing. 
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 Space, x Space, x 

Fig. 3.1. Grid function φ3 is contained in Fig. 3.2. Domain of dependence of φ3 inthe domains of influence of φ13, φ6, φ7 φ8, and cludes φ13, φ6, φ7 φ8, and φ14 

at time t0−k and φ14 at time t0− k and φ5 φ0, and φ1 at time t0 φ5 φ0, and φ1 at time t0 depending on the size depending on the size of CFL number σ. of CFL number 

σ. 

The quadrature discretization setup of (2.4) in (3.1) differs from other work [19, 21,22] where Ptn+1 αiφi and 

P
tn−1 βiφi are essentially the centroid values φ3 and φ7 at the boundary times tn+1 and tn−1 respectively on the 

control volume. An advantage in this approach is that P{tn−1,tn} βiφi describes a weighted quadrature of solution 

values at two departure times t0 − k and t0 which are within the domain of dependence of φ3. Thus, each update 

φ3, is naturally constituted from a weighted quadrature of the influencing solution values φ1, φ5, φ6, φ7, φ8, 

etc as depicted in Figure 3.1 similar to the semi-lagrangian time integration method [20]. Since there are 

multiple departure points for each arrival point, a best CFL number is determined to regulate and minimize 

leading dissipation and dispersion errors which are responsible for the associated nonphysical oscillations in 

the numerical solutions. 

As discussed above, the numerical source term fi on the local control volume is defined such that 

 f0 := f(t0,x0) = φt(t0,x0) + cikφx(t0,x0), (3.2) 

which is consistent about the center of the control volume. The equation (3.1) is recast about (x0,t0) as 

 , (3.3) 

and the local discretization error Ehk is formulated as 

   Ng 

Ehk = X αiφi − X βiφi + cik X aiφi − X biφi  − Xvifi 

 t0+k {t0−k,t0} x0+h x0−h,x0  i=0 

, (3.4) where Ng is the number of neighboring quadrature points that may be used in the source term 

collocation. To preserve the differential and integral operator properties of (2.1) in the resulting schemes, the 

following constraints 

 

 

Ng 
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 X X X X X 

 αi = βi, ai = bi, and vi = 1, (3.5) 

 t0+k t0−k,t0 x0+h x0−h,x0 i=0 

are enforced in the optimal sets of quadrature weights for the desired discretization design. The Cauchy-

Kovalevskaya procedure [12] is the applied to replace time derivatives of φ by spatial derivatives along a 

characteristic line of the form 

 cikk = σh (3.6) 

about the centroid of the control volume where σ is the Courant number. 

As a result, the leading terms of the local discretization error expansion (3.4) about the centroid (x0,t0), 

may be reorganized as 

Ehk = g0f0 + G1φx + {g1ft + g2fx + G2φxx}h 

 +{G3φxxx + g3fxx + g4fxt + g5ftt}h2 (3.7) 

+{g6fxxx + g7fxxt + g8fxtt + g9fttt + G4φxxxx}h3 + O(h4), 

where the coefficients Gi and gi are functions of k, h, cik, σ, and the collocation weights αi,βi,ai,bi, and vi. 

Depending on the available degrees of freedom for the desired discretization, the optimization strategy is to 

determine the optimal sets of quadrature weights {αi,βi,ai,bi,vi} to eliminate the leading terms in the error 

expansion Ekh and then regulate and control the leading coefficients of dissipation and dispersion in the 

associated residual errors. The resulting residual error may then be described in the form 

 

where s = 0,1,···p and (ci,dk) ∈ [x0 − h,x0 + h] × [t0 − k,t0 + k] . 

Thus, Rik in (3.8) describes the residual error for the discretization of the flux integral formulation of the 

equation (2.1) subject to its higher-order derivatives (2.9). For the numerical solution φ(x,t) to closely mimic 

the unknown solution u(x,t) across neighboring control volumes, the leading terms of the residual error (3.8) 

at each grid point must be controlled and maintained as low as possible in order for φ(x,t) to retain the main 

features of u(x,t). That is, the leading viscosity coefficients Gp and Gp+1 in (3.8) must be regulated to have 

diminishing roles in the computational error since , etc in (3.8) may be inherently large about the 

centroid of the control volumes for non-smooth regions of the solution. Regulating the leading viscosity 

coefficients to reduce the nonphysical oscillations in the numerical solutions is the essence of various viscosity 

stabilization techniques [13,27]. By using a general quadrature descriptions to approximate the flux integrals 

in the equation error expansion, a more complete and accurate coefficients of dispersion and dissipation may 

be obtained based on the collocations of solution values as described above. Therefore, local higher accuracies 

may be achieved efficiently by choosing the remaining collocation parameters to create diminishing residual 

errors effect on Rik for the associated schemes. 

We provide further details on the development of finite volume schemes by formulating a comprehensive 

equation error expansion, eliminating leading coefficients of the error expansion, and optimizing the 
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collocation weight to regulate Gp and Gp+1 in resulting residual errors. We then give accuracy analysis of the 

discretizations through the leading viscosity coefficients which describe the functional relationships among h, 

k and σ and other collocation parameters that control associated nonphysical or Gibb’s oscillations. 

4. Two-step Time Integration Designs. By using the centroid of the control volume as the center 

for the equation error expansion, the new updates at time t0 +k are determined at the same level of accuracies 

and regularities as the departures points at times t0 −k and t0 as described in (2.9). Thus, the new updates are 

only one time step away from the current time step t0 and the discretization at each grid point is completely 

independent of neighboring grid points and therefore local errors don’t affect accuracies at the neighboring 

grid points. As such, a two-time step integration here actually is a one time step from the current time and thus 

uses information from the two previous time steps. 

We describe three general strategies for achieving explicit time discretizations for (3.3) based on (3.5) and 

the mesh-point configuration in Figure 3.2. 

4.1. Temporal and Spatial Leapfrog Integrations Setup . Consider an implicit discretization of R∂Qnm 

φ · νt dx about the centroid as described in (3.3) by using a three-point weighted quadrature for approximating 

the flux integrals. The term P
t0+k αiφi is described using a weighted quadrature of φ2, φ3 and φ4 at time tn+1 

while Pt0−k αiφi is described as a weighted quadrature of φ6, φ7 and φ8 at time tn−1 such that 

φ4 := φin+1+1, φ3 := φni +1, φ2 := φin+1+1, φ6 := φin+1−1, φ7 := φin−1, φ8 := φni+1−1, 

φ1 := φni+1, φ5 := φni−1, φ0 := φni . (4.1) Define an implicit time differencing of R∂Qnm 
φ · ηt dx on the control 

volume in Figure 

3.2 through a leapfrogging of current time step t0 by 

 

where the values φ6, φ7 and φ8 are within the domain of dependence of φ3 without solution values the centroid 

time of tn. Similarly, spatial differencing over the control volume R
∂Qnm 

φ·νx dt may be compactly described 

between time dependent boundaries at x0 − h and x0 + h in a quadrature form as 

 

where P
x0+h aiφi is a weighted quadrature of φ2, φ8 and φ1 while P

x0−h biφi is a weighted quadrature of φ6, φ4 
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and φ5. 

Notice that the diagonal values φ2 and φ4 at time tn+1 are utilized in completing the temporal quadrature 

differencing (4.2) as well as the spatial differencing (4.3) which leads to an implicit discretization of (2.4). To 

produce explicit space-time discretization of (2.4) about (x0,t0) and to time-match the spatial approximation, 

the approximations (4.2) and (4.3) are unified by matching temporal and spatial advection at the diagonal 

locations such that 

  and  (4.4) 

where cik is the local value of c at the centroid. Thus, flow to the arrival locations of φ2 and φ4 are determined 

as a function of φ3 and the other departure points through the parameter ν as indicated in (4.4). In traditional 

finite differencing, the weights α2 and β6 for the quadrature differencing of the transient term ut in (4.2) are 

assumed to be zero. 

4.2. Spatial Leapfrog with Temporal Non-Leapfrog Integrations Setup . By utilizing all grid points 

at times t0 and t0−k within the domain of dependence of φ3 as possible independent updating points, we rewrite 

the time differencing to include solution values at both times t0 and t0 − k for the discretization of R∂Qnm φ · νt 

dx in line with the second fundamental theorem of calculus as 

 

where 

 4 8 ni 

 X X X X X 

 αi = βi + β0 + β1 + β5, ai = bi, vi = 1. (4.6) 

 i=2 i=6 i=1 i=1 i=0 

The conditions in (4.6) guarantee that the discretized equation remains consistent with the differential and 

integral formulations of the equation necessary for numerical conservation about each centroid. 

4.3. Non-Leapfrog Integrations Setup in Time and Space. In the context of spatial integration, we 

consequently consider a full quadrature difference for R∂Qnm φ· νx dt incorporated in the (3.1) set-up as 

4 ( 1 8 ) ( 6 ) ni 

X X X X X X X 

 αiφi − βiφi + βiφi + cik aiφi − biφi − biφi = vifi, 

i=2 i=0 i=5 1,2,8 0,3,7 4 i=0 

(4.7) 

where 

 4 8 ni 

 X X X X X 

 αi = βi + β0 + β1 + β5, ai = bi, vi = 1. (4.8) 

 i=2 i=6 i=1 i=1 i=0 
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5. Two-step Explicit Three-Point Finite Volume Schemes. In this section we discuss parameterized 

families of schemes for (2.4) based on a partial or a full utilization of departure point grid functions in 

constituting the new update value φ3 at time t0 + k using three-point quadratures as illustrated in Figures 5.1 

and 5.2 respectively. 

For schemes based on Figure 5.1, the centroid mesh value φ0 is not utilized in constituting the new 

update φ3 indicating a partial leapfrogging in both space and time integrations. However, in Figure 5.2, the 

discretization uses φ0 in updating φ3 which through variations of leapfrogging in just space or time 

integrations but not both. 

 

 Space, x Space, x 

Fig. 5.1. New update φ3 is constituted from Fig. 5.2. New update φ3 is constituted departure point values {φ6,φ7,φ8} and {φ1,φ5} from departure point values 

{φ6,φ7,φ8} and at times tn−1 and tn respectively. {φ1,φ0,φ5} at times tn−1 and tn respectively. 

5.1. Temporal and Spatial Leapfrog Three-Point Schemes. Consider a general class of two-step 

explicit discretization framework where the future update φ3 at time tn+1 is constituted in time from a 

quadrature of the three grid point values at time tn−1. In determining the quadrature weights for the 

discretization by eliminating the leading terms of the error expansion (3.7), two additional contributions are 

required based on the derivative and integral conditions described in (4.6) at the centroid time tn level as 

depicted in Figure 5.1. 

For a second order accurate expansion of the equation error (3.7) along local characteristics (3.6), a 

parameterized family of two-step explicit schemes is derived as 

 

where the quadrature weight parameters ν and α are to be determined to control and regulate the leading 

viscosity coefficients of the resulting residual error. For a well-balanced discretization of (2.4), the local space-

time source term collocation on the control volume F32 is determined as 

(5.2) 

The leading terms of the resulting residual error about the centroid for (5.1) is given as 
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  (5.3) 

where σ is the CFL number and 

(5.4) 

Notice that the scheme (5.1) reduces to the traditional leapfrog scheme for (2.1) with α = 0 and ν = 0, in 

which case time-updates for φ3 from spatially different locations on the control volume including φ1,φ5,φ6,φ8 

have been eliminated along with all the dissipative coefficients R4, R6, etc in (5.3). Thus, as a consequence of 

α = 0 and ν = 0 in (5.1), φ3 lacks local advection time-updates along local characteristics from the neighboring 

grid points within the computational domain and local conservation is compromised. Consequently, the only 

available option for controlling the sizes of the dispersion error coefficients R3, R5, etc is to choose σ close to 

one. Hence, dissipation error may be described as numerical errors resulting from the use of neighboring 

collocation points for constructing simulation updates while dispersion errors may be described as numerical 

errors generated when simulation updates do not match the physical characteristics of the solution. 

On the other hand, the accuracies of the approximation of (2.2) as given in (5.1) may actually be determined 

by the leading dispersion error coefficients R3 and R5 as well as the dissipation error coefficients R4 and R6 as 

illustrated by the residual error (5.3). That is, higher local accuracies may be achieved by controlling and 

regulating the leading viscosity coefficients by choosing the remaining parameters ν and α appropriately. These 

parameters describe the relative influences of the solution values at the departure times tn−1 and tn on φ3 subject 

to the resulting diminishing conditions that may be imposed on the residual error (5.3) for minimizing the 

errors due to numerical dissipation and dispersion. 

To control the associated nonphysical oscillations, the leading viscosity coefficients R3 and R4 need to be 

regulated to reduce the fluctuations of φxxx and φxxxx in the computational errors. Hence determining these 

viscosity coefficients accurately based on the collocation points utilized for the scheme may be very essential 

in order to efficiently to control the oscillations without the use of flux limiters. 

Strategies to Regulate Nonphysical Oscillations. Multiple approaches for choosing σ, ν and α may 

be devised to regulate these errors of dispersion and dissipation in the resulting schemes. We analyze some 

approaches based on the functional relationships of σ, ν and α with leading viscosity coefficients below: 

1. Option One: 

The parameters α and ν may be determined as a function of σ to eliminate R3 and R4 in (5.3) such that 

 , (5.5) 

where the new leading dispersion and dissipative error coefficients respectively become 

 , (5.6) 
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and 

 , (5.7) 

with their functional profiles displayed in Figure 5.3 and Figure 5.4 respectively. 

 

Thus, both local dispersion and dissipation errors may be controlled by choosing α and ν appropriately. 

By choosing α and ν as in (5.5), the scheme (5.1) becomes locally fourth-order accurate and since the 

signs of the numerical estimates of φxxxxx and φxxxxxx are unknown, the best way to control their effect 

on computational error and thus regulate nonphysical oscillations may be to choose σ to render both 

R5 and R6 less sensitive and as small as possible close to σ = 0.5 as depicted in Figures 5.3 and 5.4. 

2. Option Two: 

Instead of eliminating R3 and R4 outright as described in option one above, the parameters α and ν may 

be determined as a function of σ, R3 and R4 to regulate the size and sign of the viscosity coefficients R3 

and R4 such that 

  (5.8) 

3. Other Options: 

Various other options may be pursued such as just regulating the coefficients of the leading even-

ordered derivatives of φ in the residual error [5,27]. For instance, by determining α to eliminate just 

R3 as: 

 , (5.9) 

the leading viscosity coefficients R4 and R5 become 

  (5.10) 

  (5.11) 

with profiles as displayed in Figures 5.5 and 5.6 that show feasible regions for selecting σ and ν and 

the corresponding achievable sizes for R4 and R5. 
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0.02 

0.060.01 

0.04R5(σ, ν) 

R4(σ, ν) 0.02 

0−0.01 

−0.02−00.02.4 

0.2 

1.1 

 Fig. 5.5. Fig. 5.6. 

Additionally, by choosing α as in (5.9), both R4 and R5 may easily be regulated by determining ν for a 

given value of σ to control the signs and sizes of both R4 and R5 to be positive and small. 

5.2. Spatial Leapfrog and Temporal Non-Leapfrog Schemes. In this section, we demonstrate the 

flexibility of the approach in constructing a temporal discretization of the equation using three grid points at 

both times tn and tn−1 to update φ3 in time as illustrated in Figure 5.2 but leapfrog the centroid in spatial 

integration. To utilize all grid functions within the domain of dependence of φ3, we modify the approximation 

of the flux integrals given in (3.1) as 

 

subject to the conditions 

 4 8 ni 

 X X X X X 

 αi = βi + β0 + β1 + β5, ai = bi, vi = 1 (5.13) 

 i=2 i=6 i=1 i=1 i=0 

where ni is the total number of quadrature points to be utilized in discretizing the local source term about (x0,t0). 

Again, the conditions in (5.13) guarantee that the resulting schemes remain consistent with the differential and 

integral operator properties of the equation necessary for numerical conservation about each centroid. 

The resulting parameterized set of two-step explicit schemes to update φ3 on the control volume is 

determined as 

(5.14) 

where F33 is the associated quadrature discretization of the source term on the control volume. The resulting 

local residual error for (5.14) is 

  (5.15) 
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where 

 

and σ, ν and α are to be determined to regulate the residual error. 

Strategies to Regulate Nonphysical Oscillations. Again, multiple approaches for choosing σ, ν and α 

may be similarly devised to regulate these errors of dispersion and dissipation in the resulting schemes as: 

1. Option One: 

The parameters α and ν may be determined as a function of σ to eliminate R3 and R4 such that 

  (5.16) 

with 

  (5.17) 

 . (5.18) 

 

In this case, as choices of σ approach , values of ν approach 0−, values of α approach 0+ and the 

leading viscosity coefficients R5 and R6 stay positive and significantly reduces Gibbs phenomena in 

numerical solutions with discontinuities. 

2. Option Two: 

Alternatively, the parameters α and ν may be determined as a function of σ to control the size of the 

viscosity coefficients R3 and R4 such that 

  (5.19) 

3. Other Options: 

Again, other options as discussed for (5.1) may be pursued. 

5.3. A Non-leapfrog Spatial Integration . In this section, consider a nonleapfrog integration to utilize 

all departure points for both space and time where we describe the spatial and temporal differencing across 

the centroid of the control volume by 
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 4 1 8 14 

 X X X X 

 αiφi− βiφi − βiφi − βiφi 

 i=2 i=0 i=5 i=13 

  ni 

   

 . (5.21) 

A parameterized family of schemes which may be determined from the constrained minimization process 

is 

 

where ρ provides a spatial differencing across the centroid in a way different than (5.14) but utilizes the 

same grid points and F302 is the associated source term collocation. 

The resulting local residual error for (5.22) is 

 , (5.23) 

where 

 

and σ, ν and ρ are to be determined to regulate the residual error. 

Strategies to Regulate Nonphysical Oscillations. Again, multiple approaches for choosing σ, ν and α 

may be similarly devised to regulate these errors of dispersion and dissipation in the resulting schemes as: 

1. Option One: 

Again, the parameters ρ and ν may be determined as a function of σ to eliminate R3 and R4 such that 

  (5.24) 

where 

where 
, 
(5.20) 
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  (5.25) 

  (5.26) 

with similar profiles as in Figures 5.7 and 5.8 above. 

2. Option Two: 

Alternatively, the parameters ρ and ν may be determined as a function of σ to control both viscosity 

coefficients R4 and R5 such that 

  (5.27) 

3. Other Options: 

Again, other options as discussed for (5.1) may be pursued. 

6. Two-step Explicit Five-Point Finite Volume Schemes. 

The grid-point distribution for the domain of dependence of φ3 as illustrated in Figure 3.2 contains five grid 

points at the departure time tn−1 and so we investigate extensions of the discretizations in Section 5 to include 

the corresponding five points at time tn−1. The extensions considered are based on the grid-point distributions 

scenarios described in Figure 6.1 where the centroid value φ0 is not utilized in updating φ3 and in Figure 6.2 

where φ0 is utilized in updating φ3. 

 

 Space, x Space, x 

Fig. 6.1. New update φ3, is constituted Fig. 6.2. New update φ3, is constituted from a collocation of {φ6,φ7,φ8,φ13,φ14} and from a collocation of 

{φ6,φ7,φ8,φ13,φ14} and {φ1,φ5} at times tn−1 and tn respectively. {φ1,φ0,φ5} at times tn−1 and tn respectively. 

6.1. Temporal and Spatial Leapfrog Integrations. A local accuracy improvement to the 

approximation of (2.1) by using five quadrature grid points at time tn−1 and two points at the current time tn is 

described in the parameterized family of schemes by 

(6.1) 

where F52 is the corresponding quadrature discretization of the local source term. 
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The leading terms of the local residual error which describe the different levels of numerical viscosities 

associated with the discretization (6.1) are determined as 

 

where 

. 

Notice that the inclusions of  and  causes the scheme 

(6.1) to be dissipative for α = 0 and ν = 0 as opposed to scheme (5.2). 

As described in the previous sections for the three-point quadrature schemes we discuss similar options 

for controlling the Gibbs oscillations below. 

Strategies to Regulate Nonphysical Oscillations. 

1. Option One: Clearly, by eliminating both R4 and R5 in the residual error (6.2), ν and α are determined 

as functions of σ by 

  (6.3) 

where the next leading viscosity coefficients become 

(6.4) 

 . (6.5) 

− 

The leading viscosity coefficients R6 and R7 both stay positive by choosing 

 

σ in the ranges (p1/2,1) and (0,1/2) and therefore allows for R6 and R7 to be regulated to be both 

positive and small. 

2. Option Two: On the other hand, the parameters α and ν may be determined as a function of σ to 

control the size of the viscosity coefficients R3 and R4 such that 

 

where R3 and R4 may be chosen to ensure diminishing computational errors. 

3. Other Options: 

By determining α to eliminate just R4 given as 
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 , (6.7) 

the leading viscosity coefficients R5 and R6 become 

  (6.8) 

 . (6.9) 

Clearly, this option with α as determined in (6.7) allows for choosing ν to control the signs of both R5 

and R6 to be positive. Additionally, this option with α determined as in (6.7) is very stable for choices 

of σ in relation to the structure of the leading viscosity coefficients R6 and R7 as indicated in (6.4) and 

(6.5). 

6.2. Non-Leapfrog Space and Time Integration. By including the centroid value φ0 in both temporal 

and spatial non-leapfrog integrations, a similar version of the scheme (5.14) is derived as 

 

where F522 is the corresponding quadrature discretization of the source term. 

The leading terms of the local residual error which describe the different levels of numerical viscosities 

associated with the discretization (6.10) are determined as 

 

where the associated leading viscosity coefficients are 

. 

Nonphysical Oscillation Regulation Strategies. As evident from the functional descriptions of R6 and 

R7, two approaches that may be pursued in regulating the nonphysical oscillations with the discretization (6.10) 

include determining ν for a given set of feasible values for σ, R6, R7, and utilizing choices ρ to control the 

subsequent leading viscosity coefficients. For instance, consider the following options below: 

1. Option One: The parameter ν may be determined as a function of σ, ρ and R6 to control the leading 

dissipation error coefficient by 
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where ρ can be chosen given σ to render both R6 and R7 to be positive. 

2. Option Two: On the other hand, ν may be determined as a function of σ, ρ and R6 to control the leading 

dissipation error coefficient by 

 

where choices of σ, ρ and R6 may be utilized to control R7 or R8 etc. 

7. Numerical experiments and analysis of schemes. To demonstrate the effectiveness of the 

quadrature differencing approach for developing efficient spacetime schemes for the scaler conservation laws, 

we present some of the results of our tests to illustrate local accuracy improvements, conservative skills, and 

nonphysical oscillations reduction skills of the schemes. 

The p−norm of the grid function error (global) on Ω at time T, is defined as 

  (7.1) 

where u(x,t) is the exact solution at time t and φ(x,t) is the space-time numerical approximation of u(x,t) at 

time t. Thus, φ(x,T) is the numerical solution of the of the conservation law (2.1) on Ω at the end of time 

integration based on a spatial resolution h. 

Consider the error eT based on a spatial resolution of h, measured at the end of a time integration T with 

the L∞ norm Ω according to 

 Ext = eT(h) = ku − φkL∞ = Chr + o(hr) as h → 0, 

where C is independent of h. If h is sufficiently small, then 

eT(h) ≈ Chr, and  

where r is the order of accuracy or the convergence rate. 

Example 1. To demonstrate the higher level of local conservation and stability associated with the space-

time discretization approach through numerical experimentation, consider an initial distribution as the smooth 

square pulse function 

 , Ω = [0,1] 

as used in the literature to characterize the accuracy of advection schemes [26]. 

Example 2. In this example, consider the initial condition for the advection equation (2.1) to be 

 

 0 if x < t, 

 if t ≤ x ≤ 0.1 

 if 0.1 < x 0.5 
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 1 + exp(80|x 0.2| − 0.1) ≤ 

 2 if 0.5 < x ≤ 1 

consisting of different flow regimes. We investigate the accuracies of handling advection along local 

characteristics and regularization of the leading viscosity coefficient to control nonphysical oscillations 

associated with jump discontinuities. 

For f = 0, the equation (2.1) describes a pure advection and the exact solution is given by u(x,t) = g(x − ct) 

where g(x) is the initial profile. We demonstrate the accuracies of the advection of g and h in Examples 1 and 

2 above with T = 0.4 and c = 1 by the new schemes as different combinations of the parameters α and ν are 

utilized to regulate the leading viscosity coefficients of the residual errors for the associated schemes. 

In the Figures demonstrating the oscillations reduction skills for the schemes, the resolution is taken as h 

= 1/50 with c = 1 and the time steps are calculated according to (3.6). 

7.1. Nonphysical Oscillations Reductions. In this section, we discuss spurious oscillations reduction 

skills of the schemes. The motivation is to develop higherorder accurate schemes that guarantee higher level 

of computational accuracies and local conservation without the use of flux limiters. Thus, the discretization 

has to ensure flow accuracies along local characteristics and the space-time design to derive the right 

collocations of new updates for weighted quadratures of departure points guarantees a more accurate approach 

to regulate local errors of dispersion and dissipation. Utilizing a general regular distribution of space-time 

grid-points to approximate the advection equation generates both numerical dispersion and dissipation in the 

associated residual errors for the schemes. By determining the accurate functional relationships of the leading 

numerical dispersion and dissipation coefficients with collocation parameters allows for choosing such 

parameters rightly to minimize the associated errors. 

For instance, the second order leapfrog scheme is recovered from the discretization (5.1) with ν = 0 and α 

= 0 and all the dissipative terms in the residual error are eliminated leaving (1 − σ2) as a factor of the coefficient 

of the dispersive terms. Hence, the spurious oscillations near regions of higher sensitivities may be reduced 

by choosing σ close to 1 in order to diminish the effects of the leading dissipative terms in the residual error. 

On the other hand as discussed and analyzed in Sections 5 and 6, various options for selecting the 

parameters ν, α, and σ for the numerical schemes presented above including (5.1) may be determined to 

produce diminishing effects on the dissipative and dispersive coefficients in the respective residual errors. 

In Figures 7.1 through 7.4, we demonstrate the accuracies of transporting the smooth square pulse 

described in Example 1 by the various advection schemes derived above. 

 

https://scholarsjournal.net/index.php/ijier


A Residual-Based Numerical Viscosity Regularization Approach for Higher-Order Finite Volume 

Discretization of Scalar Hyperbolic Conservation Laws  

International Journal for Innovation Education and Research Vol.12 No.3 (2024), pg. 44 

Fig. 7.1. Nonphysical oscillations regulation and control by scheme (5.1) with α = 0 and ν = 0(Second-order Leapfrog scheme) for left graph, and

 for the right. The CFL conditions are maintained at σ = 0.5 for the left with σ = 0.9 for the right with the error Ext = keT,hk2, computed by (7.1). 

The graphs in figure 7.1 are the result of advection by the second order leapfrog scheme with α = 0 and ν 

= 0 in (5.1) and both show significant nonphysical oscillations associated with large increases in and 

 as indicated by (5.3). 

For the stabilized fourth-order leapfrog scheme with the leading coefficient of dispersion as , 

there is Spurious oscillations with smaller amplitudes as shown in Figure 7.2. 

 

Fig. 7.2. The stabilized Leapfrog fourth-order scheme still produces the Spurious oscillations with smaller amplitudes. 

However, with alternate choices for α = 06 and ν = 06 for the scheme (5.1) the nonphysical oscillations 

are significantly reduced as demonstrated in Figure 7.3. 

 

    

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x x 

Fig. 7.3. Nonphysical oscillations regulation and control by the three-point space-time family of schemes (5.1) with α = 0.9 and ν = −0.56 on the left, and α 

= 0.521 ν = −0.011 on the right. The CFL conditions are maintained at σ = 0.9 for the left with σ = 0.51 for the right with the error Ext = keT,hk2, computed by 

(7.1). 

Clearly, the spurious oscillations associated with numerical solutions for advection schemes may be 

controlled by the right space-time collocations of the grid functions in relation to the new updates. 

Through similar alternate choices of α and ν, Figure 7.4 demonstrates the skill of reducing the nonphysical 

oscillation for the third order temporal non-leapfrog scheme (5.14). 
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x x 

Fig. 7.4. Nonphysical oscillations regulation and control by the three-point space-time family of schemes (5.14) with α = 0.2 and ν = −0.1367 on the left, 

and α = 2.3 ν = −2.2367 on the right. The CFL conditions are maintained at σ = 0.9 for both graphs with the error Ext = keT,hk2, computed by (7.1). 

As demonstrated in Figure 7.1 through Figure 7.4, it is clear that the nonphysical oscillations associated 

with numerical solutions for the advection equation (2.1) may be regulated and effectively controlled for 

higher-order schemes without flux limiters. By utilizing multiple time steps to constitute new updates, the 

different courant numbers associated with the different time steps are coupled into the viscosity coefficients 

through the multivariate space-time expansion of the equation error and hence in the residual errors. Therefore 

a right averaging choice of a courant number for such numerical solutions may produce diminishing effects 

on such viscosity coefficients and therefore minimize the errors of dissipation and dispersion. 

Through the space-time expansion of the equation error subject to the higherorder derivatives of the 

equation (2.9), the leading dissipation term in the expansion may be described as the rate of change of the 

leading dispersion term and vice versa along local characteristics. Therefore the nonphysical oscillations may 

optimally be controlled and regulated by regulating at least both of the leading coefficients of dissipation and 

dispersion. 

Additionally, by determining the exact functional relationships as illustrated in Figures 5.5 and 5.6, optimal 

and feasible values for the CFL number σ, the remaining quadrature parameters and sizes of the viscosity 

coefficients may be determined in the respective schemes to minimize the oscillations in numerical solutions. 

As discussed above in the strategies for regulating these oscillations, from Figures 5.5 and 5.6 and 

equations (5.5) to (5.7), choosing the CFL condition number σ > 0.5 yields positive values for R5(α) and R6(α). 

Thus, feasible choices of R3(α) and R4(α) may then be selected in order to determine the right collocation 

weights for α and ν according to (5.8) that regulate these leading viscosity coefficients to reduce and minimize 

the nonphysical oscillations. 

For instance, by selecting σ = 0.514, R3 = 7e−3 and R4 = 1e−4, the quadrature weights α and ν in (5.1) are 

determined respectively as 0.5008 and −0.015476 according to (5.8) and the numerical solution for the initial 

condition profile in Example 2 produces the numerical viscosity coefficients [R5, R6, R7] = [8.124, 0.7004, 

0.384]e−4 and the results are displayed in Figure 7.5. 
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Fig. 7.5. Nonphysical oscillations regulation and control for scheme (5.1) with σ = 0.514. Leading viscosity coefficients set as R3 = 7e−3, R4 = 1e−4 and 

quadrature weights determined by (5.8) as α = 0.5008 and ν = −0.015476. Error is determined as keT,hk2 = 5.054e−3 with computational viscosity coefficients as 

[R5, R6, R7] = [8.124, 0.7004, 0.384]e−4 

 

 

Fig. 7.6. Nonphysical oscillations regulation and control for scheme (5.1) with σ = 0.514, leading viscosity coefficients in Residual error set as R3 = 1.2e−2, 

R4 = 1e−4 and quadrature weights determined by (5.8) as α = 0.4792 and ν = −0.014837, keT,hk2 = 2.1745e−2 and [R5, R6, R7] = [11.138, 0.6754, 0.4528]e−4 

 

0 0.2 0.4 0.6 0.8 1 x 

Fig. 7.7. Nonphysical oscillations regulation and control for scheme (5.1) with σ = 0.514, leading viscosity coefficients in Residual error set as R3 = 7e−3, R4 

= 1e−3 and quadrature weights determined by (5.8) as α = 0.5162 and ν = −0.021724. keT,hk2 = 1.558e−2 

[R5, R6, R7] = [10.943, 1.783, 0.6216]e−4 

0 0.2 0.4 0.6 0.8 1 x 

Fig. 7.8. Nonphysical oscillations regulation and control for scheme (5.1) with σ = 0.514, leading viscosity coefficients in Residual error set as R3 = 1.2e−2, 

R4 = −1e−3 and quadrature weights determined by (5.8) as α = 0.4947 and ν = −0.021085. keT,hk2 = 1.28879e−2 
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[R5, R6, R7] = [13.957, 1.758, 0.6903]e−4 

 

Figures 7.5 to 7.8 demonstrate the nonphysical oscillation reduction skill for the temporal and spatial 

leapfrog discretization (5.1) where new updates at time tn+1 are 

 

constructed in time from a linear combination of three solution points at time tn−1 and two solution points at 

time tn without the space-time centroid value. 

Good selections for R3 and R4 are made based on the profiles from Figure 5.5 and Figure 5.6 which yield 

significant reductions in the oscillations as shown in Figure 7.5. However, in Figures 7.6 and 7.7 the choice 

ratios for R3 to R4 is slightly different resulting in the reappearance of the oscillations. In Figure 7.8, the 

oscillations are reduced with larger values for R3 and R4 than in Figure 7.5 but with larger ratio. 

Next, we discuss in Figures 7.9 to 7.11 the nonphysical oscillation reduction skill for the temporal non-

leapfrog discretization (5.14) where new updates at time tn+1 are constructed in time from a quadrature of three 

solution points at both times tn−1 and tn including the space-time centroid value. 

 

Fig. 7.9. Reduced and controlled oscillations for scheme (5.14) with σ = 0.45, leading viscosity coefficients in Residual Error set as R4 = 1e−3, R5 = 2e−4. 

keT,hk2 = 1.1579e−2, [R6, R7] = [2.0911, 0.3125]e−4 

Fig. 7.10. Oscillations appear for scheme (5.14) with σ = 0.45, leading viscosity coefficients in Residual error set as R4 = 1e−3, R5 = −2e−4. keT,hk2 = 9.6674e−3, 

[R6, R7] = [1.0785, −0.0008107]e−4 

 

x 

Fig. 7.11. Reduced and controlled oscillations for scheme (5.14) with σ = 0.48, leading viscosity coefficients in Residual Error set as R4 = −1e−3, R5 = −2e−4. 

keT,hk2 = 3.868e−3, 

[R6, R7] = [−4.732, −1.039]e−5 

For the non-leapfrog discretization (5.14), the profile of the viscosity coefficients displayed in Figures 5.7 

and 5.8 guide the choices of σ < 0.5 and approaching to maintain desirable small and positive values for 
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leading viscosity coefficients. In Figure 7.9, both R4 and R5 were both set positive with R4 > R5 which produced 

significant reductions in the oscillations as well as in Figure 7.11 where both are set negative. The oscillations 

appear in Figure 7.10 when R5 is set negative demonstrating that both R4 and R5 need to be controlled to reduce 

the oscillations. 

Next, we discuss in Figures 7.12 to 7.14 the nonphysical oscillation reduction skill for the temporal 

leapfrog discretization (6.1) where new updates at time tn+1 are constructed in time from a quadrature of five 

points at time tn−1 and two points at time tn excluding the space-time centroid value. 

 

Fig. 7.12. Reduced and controlled oscillations for scheme (6.1) with σ = 0.48, leading viscosity coefficients in Residual Error set as 

R4 = 1e−3, R5 = 1e−4. keT,hk2 = 2.70e−2, 

[R6, R7, R8] = [2.93, 1.04, −1.42]e−4 

 

Fig. 7.14. Reduced and controlled oscillations for scheme (6.1) with σ = 0.48, leading viscosity coefficients in Residual error set as 

 

Fig. 7.13. Oscillations appear for scheme (6.1) with σ = 0.49, leading viscosity coefficients in Residual error set as 

R4 = 1e−3, R5 = −2e−4. keT,hk2 = 3.99e−2, [R6, R7, R8] = [2.08, 0.667, −0.0592]e−4 

R4 = 1e−3, R5 = −1e−5. keT,hk2 = 2.63e−2, 

[R6, R7, R8] = [1.983, 0.6208, −0.0381]e−4 

For the temporal leapfrog discretization (6.1), the functional profiles of the viscosity coefficients (6.4) and 

(6.5) guide the choices of σ < 0.5 and approaching  to maintain desirable small and positive values for 
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leading viscosity coefficients. 

In Figure 7.12, both R4 and R5 were both set positive with R4 > R5 which produced significant reductions in 

the oscillations as well as in Figure 7.14 where R5 is set negative. The oscillations appear in Figure 7.13 when 

R5 is set negative with a slight change to σ = 0.49 demonstrating relative sensitivity for scheme (6.1) and 

compared to (5.2) and (5.14) for the five-point stencil at time tn−1. 

Next, we discuss in Figures 7.15 to 7.17 the nonphysical oscillation reduction skill for the temporal non-

leapfrog discretization (6.10) where new updates at time tn+1 are constructed in time from a quadrature of five 

points at time tn−1 and three points at time tn including the space-time centroid value. 

 

Fig. 7.15. Nonphysical oscillations regulation and control by scheme (6.10) with σ = 0.48. Leading viscosity coefficient in Residual error set as G6 = 6.6e−5 as 

in (6.12) with ρ = 0 with numerical results as keT,hk2 = 2.576e−2, [R6, R7, R8] = [6.6, 1.687, 0.1009]e−5 

Fig. 7.16. Nonphysical oscillations regulation and control by scheme (6.10) with σ = 0.48. Leading viscosity coefficient in Residual error set as G7 = 1.2e−5 as 

in (6.13) with ρ = 0 with numerical results as keT,hk2 = 2.60e−2, [R6, R7, R8] = [5.61, 1.2, 0.158]e−5 

 
−0.2 

0 0.2 0.4 0.6 0.8 1 x 

Nonphysical oscillations regulation and control by a different version of scheme (6.10) with σ = 0.48. 

Leading viscosity coefficients G5 and G6 similar to other options strategy described for scheme 

(6.1) are set as G5 = 8e−6, G6 = 1.1e−4, ρ = 0. Numerical results as k k R , R , R , R 
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−0.2 

0 0.2 0.4 0.6 0.8 1 x 

Fig. 7.17. Nonphysical oscillations regulation and control by another version of scheme (6.10) with σ = 0.48. Leading viscosity coefficients G4, G5 and G6 

similar to other options strategy described for scheme (6.1) are set as G4 = 6.1e−4, G5 = −2.1e−4, G6 = 6.0e−5, ρ = 0. Numerical results as 

ke k e−2 R , R , R , R , R 

For the current quadrature description of (6.10), attempts to control the sizes of G6 and G7 separately as 

described in (6.12) and (6.13) lead to similar profiles in Figures 7.15 and 7.16 respectively. By scaling back 

the order of accuracy to allow for the control both G5 and G6 together as described above for the other schemes 

leads to a similar profile in Figure 7.1. However, by controlling G4, G5 and G6 together leads to reductions in 

the nonphysical oscillations as displayed in Figure 7.17. 

7.2. Grid Refinement Analysis. To demonstrate rate of convergence and accuracy for the schemes, 

consider the initial distribution as the smooth square pulse function in Example 1 as used in the literature to 

characterize the accuracy of advection schemes [26]. 

For f = 0, the equation (2.1) describes a pure advection and the exact solution is given by u(x,t) = g(x − ct). 

In demonstrating the convergence rate and accuracy of the schemes, the relationship between k and h which 

describes the directions of the characteristics (3.6) is maintained to ensure consistent domains of dependence 

at finer resolutions. 

Experiment 1. In Table 7.1, we present the results of the computational experiments for the three-point 

compact two-step family of split explicit schemes (5.1) which include the second-order leapfrog scheme with 

α = 0 and ν = 0. As illustrated in Figures 3.1 and 3.2, the grid functions φ1, φ5, φ6, φ7, φ8 are all within the 

domain of dependence of φ3. Therefore, updating φ3 from a quadrature of φ1, φ5, φ6, φ7 and φ8 where the 

quadrature weights are indicated 

in terms α ν have been effective 

for the convergence rate and 

accuracy. 

ν = 0 

 α = 0 rate rate 

 

 

Table 7.1 

Grid refinement analysis for the three-point leapfrog in time discretization (5.1). Column one describes the Results in column one are for the second order 

Leapfrog scheme. 

Experiment 2. In this experiment, we further examine computational accuracy and convergence when 

φ3 is calculated from a wider numerical domain of dependence 

[6] of φ3 consisting of the grid functions φ13, φ14, φ6, φ8 and φ7 at tn−1 and φ1, φ5, at time step tn−1 which are 

within the numerical domain of dependence. 

The first column of Table 7.2 under LF-4 details the results for a new stabilized and improved leapfrog-

time fourth-order scheme where advection is calculated at the current time level tn using the four grid functions 

σ =0 . 9 σ =0 . 48 σ =0 . 9 σ =0 . 985 

ν =0 ν = − 1 
90 

ν = − 1 
50 

h α = 1 
2 

rate α = 1 
7 

rate α = 1 
25 

1 
50 

2 . 852 e − 2 5 . 870 e − 3 1 . 994 e − 2 4 . 838 e − 3 

1 
100 

6 . 379 e − 3 8 2.16 . 686 e − 4 2.76 3 . 735 e − 3 2.43 9 . 389 e − 4 2.37 
1 

200 
1 . 391 e − 3 1 2.19 . 576 e − 4 2.46 3 . 087 e − 4 5 3.60 . 596 e − 5 4.07 

1 
400 

3 . 341 e − 4 3 2.06 . 742 e − 5 2.07 3 . 366 e − 5 6 3.20 . 001 e − 6 3.22 

https://scholarsjournal.net/index.php/ijier


A Residual-Based Numerical Viscosity Regularization Approach for Higher-Order Finite Volume 

Discretization of Scalar Hyperbolic Conservation Laws  

International Journal for Innovation Education and Research Vol.12 No.3 (2024), pg. 51 

φ1, φ5, φ9 and φ12 about the centroid. 

For the other three columns, 

advection is calculated using the 

grid functions φ1, φ5, at the tn time 

level and φ6, φ8 at the tn−1 time 

level. The new update φ3, is 

constituted from a linear 

combination of five grid point 

functions at t0−k as described in 

(6.1). 

 

Table 7.2 

Grid refinement analysis for the Five-point leapfrog discretization scheme (6.1). 

8. Convergence analysis of schemes. To discuss stability and accuracy of the schemes, we describe the 

set up of the fully explicit space-time finite volume discretization (3.3) about the centroid as 

 

where the weights αi, βi, ai, bi and vi are to be determined as functions of h, k and nv is the total number of the 

cloud of grid points adopted for collocating the local source term on each control volume with Rik as described 

in (3.8). 

To achieve consistent higher order accuracies for the schemes, the local discretization must be effective 

and consistent for the equation (3.3) such that 

 X X X X 

 ai = bi, αi = 1, and v0 = 1 − vi. (8.2) 

The requirement (8.2) enforces local conservation of φ such that incoming and outgoing fluxes are balanced 

out and enforced through the minimization process of the local discretization error about the centroid. 

The levels of local flux conservation and hence accuracy depend of the size of the local grid point cloud 

as illustrated above in Tables 7.1 and 7.2 where five-point discretization guarantees improved accuracy over 

three-point discretization. Furthermore, the collocation parameters αi in (8.1) describe the relative influences 

of the grid functions within the numerical domain of dependence at the current time step and which must be 

wide enough to contain the analytical domain of dependence of the PDE [6,16]. 

In formulating the space-time discretization error as described, the space-time coefficients of the 

dissipative and dispersive terms in the error are completely characterized in terms of the collocation parameters. 

h    rate  rate  rate 

1 

50 

1.819e−2  1.388e−2  9.626e−3  1.691e−3  

1 

100 

1.681e−3 3.44 1.930e−3 2.85 1.888e−3 2.35 3.120e−4 2.44 

1 

20 

9.417e−5 4.16 1.462e−4 3.72 6.108e−5 4.95 9.427e−6 5.05 

1 

400 

7.399e−6 3.67 1.712e−5 3.09 4.076e−6 3.91 4.063e−7 4.54 

σ =0 . 9 σ =0 . 65 σ =0 . 96 σ =0 . 985 

 ν =0 ν = − 1 
40 ν = − 1 

20 
α = 4 

9 α = 1 
8 α = 1 

15 
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Thus instead of discretizing such derivative terms to render the schemes diffusive, the collocation weights are 

optimally determined to minimize the effects of such coefficients similar to vanishing viscosity approaches as 

demonstrated in computational experimentations in Section 7. The multivariate space-time formulation of the 

error ensures accurate coupling between spatial and temporal differencing to prevent grid splitting and the 

associated spurious computational mode. As a result, the schemes include additional terms that describe grid 

function communications between the initial time and the time-stepping levels. 

9. Conclusion. We have demonstrated the effectiveness of using the finite volume method to develop new 

effective higher-order space-time explicit schemes for scaler conservation laws capable of utilizing associated 

viscosity coefficients in controlling nonphysical oscillations in numerical solutions. The uniform distributions 

of grid-point clouds guarantees effective local higher order accuracy through efficient methods of conserving 

fluxes locally. By using multivariate space-time expansions to approximate the solution and the source term 

locally, higher-order accuracies along characteristics are ensured by determining and then regulating the 

accurate descriptions of the leading viscosity coefficients in the space-time residual error. Conditions for 

stability, accuracy and convergence may be established based on these closed form descriptions of the viscosity 

coefficients and the residual error. 
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