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Abstract
A Space-time finite volume method is utilized to construct a parameterized family of two-step explicit

higher-order schemes for scalar hyperbolic conservation laws. Utilizing a local space-time expansion of the
flux-integral form of the equation error, generalized quadratures of local grid functions of the solution and
the associated local source term are formulated to couple grid points within the domains of dependence and
influence of new updates about the centroid of each space-time control volume. Optimal quadrature
parameters for the discretization are then determined through a minimization of the error expansion to
account for local space-time fluxes to all neighboring mesh points within the computational domain. Hence,
a more accurate space-time descriptions of the leading numerical viscosity coefficients in the residual errors
are then characterized based on the space-time coupling of the desired set of mesh points utilized in the
discretization about the centroid. Consequently, the quadrature weights and the time step sizes are optimized
to control and regularize the residual errors to minimize nonphysical oscillations. Numerical experiments
demonstrate the effectiveness of the discretization method in minimizing the associated nonphysical

oscillations in numerical solutions.

Key words. Space-time finite volume, space-time control volume, space-time discretization error,
consistent higher-order accuracy, domain of dependence, flux integral, space-time residual error, equation
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1. Introduction

In this work we utilize the finite volume method to construct a family of two-step explicit space-time
discretizations for the scaler hyperbolic conservation laws with source terms. We first formulate a
discretization error using generalized quadratures to approximate the flux-integral form of the equation locally
about the centroid of each space-time control volume. Using a generalized quadratures of the grid functions
of the solution and local source terms allow for including desired neighboring quadrature points within the
domains of dependence of new updates to ensure higher conservation of local space-time fluxes. Additionally,

the two-step discretization method allows for a more accurate coupling departure points with the new update
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points about the centroid of the control volume and ensure higher local accuracy for the resulting schemes.

To ensure a more consistent and accurate discretization of the equation locally, a formal residual error is
accurately determined to assess the effectiveness of optimizing the associated dispersion and dissipation errors
for the resulting schemes. In this regard, we utilize a general weighted quadrature approximation of the integral
formulation of the equation and the finite volume approach to formulate a local multivariate space-time
discretization error expansion. The error expansion is then constrained by higher order derivatives of the
equation to ensure higher level of conservation for local fluxes to all neighboring mesh points about the half-
time centroids.

By eliminating the leading coefficients of the error expansion through a process of minimax approximation,
the quadrature weights to describe the resulting schemes are determined. These closed form descriptions of
the weights which describe accurate coupling of space and time scales with local physical parameters are
optimized for consistency, stability and higher local accuracies. The space-time unified approach ensures that
the time steps may be determined more accurately as a function of the spatial resolution, local physical
parameters, and the collocation parameters to ensure that the numerical dissipation and dispersion errors for
the schemes may be controlled and regulated without the need for flux limiters.

We give the general formulation of the finite volume differencing approach and then illustrate the
effectiveness of the method by the construction of two-step explicit discretizations of hyperbolic conservation
laws in one spatial dimension where the space-time domain [ 14] is two dimensional. Since space-time domains
are not necessarily the cartesian products of a domain in space and a domain in time [14,15], multivariate
space-time local expansions for the solution which are further constrained by higher order derivatives of the
equation [10] are utilized to describe the equation error expansion. The local expansions further allow for
adopting flexible configurations for the local grid-point cloud [8, 9] by utilizing all the associated space-time
fluxes [10,25] to as much higher-order accuracies as possible. The structured distribution of grid points on the
control volumes ensures that the resulting discretization of the equations guarantee accuracy estimates of the
residual error locally and globally. Thus, the local discretization error [2] is comprehensively formulated from
the generalized quadrature approximation of the flux integral form of the equation to include all directions of
grid point locations on the control volume instead of just the main coordinate directions as in traditional finite
difference schemes [11]. Hence, the sum of the approximation errors for all grid functions utilized in the
integral formulation is first captured by the discretization error which is then minimized by determining the
quadrature weights to eliminate the leading coefficients of the error. These quadrature weights form the
collocations of the so-called modified equations which are optimized to improve local accuracies and for
establishing space-time conditions for stability and monotonicity.

The paper is organized as follows: In Section 2, we present the space-time finite volume differencing
framework for the design of the schemes by looking at the multivariate discretization of the general
conservation laws in R". In Section 3, we apply the method to set up the generalized quadrature differencing
framework for the equation error expansion aimed at achieving higher-order discretization of conservations
laws in one dimension. In Section 4, leapfrog and non-leapfrog integration setups are described in space and

time. In Section 5, two-step explicit three-point finite volume schemes in one spatial dimension are developed
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for leapfrog and non-leapfrog integration setups. The residual errors for the schemes are analyzed through
strategies for controlling and regulating nonphysical oscillations associated with numerical solutions for
conservation laws. In Section 6, two-step explicit five-point finite volume schemes are presented as in Section
5. Numerical results demonstrating the accuracy and the skills of the schemes for regulating and controlling
nonphysical oscillations are illustrated in Section 7. We then discuss convergence and stability of the schemes

in Section 8 and provide conclusions are presented in Section 9.

2. A Space-time Finite Volume Differencing Discretization.
In this section, we present a space-time discretization framework for constructing two-step explicit schemes
for the scalar hyperbolic conservation law written in the primitive form as

urtcux=f inQx(0,T],x€Q (2.1)u(x0)=uo(x) forxerl,
through a finite volume method on a space-time cylindrical domain Q x (0,T] where c is the local velocity of
u and f € L2(0,T;L?(€2)). We use a local space-time unified framework to construct stable and conservative
higher-order accurate full discretization schemes for (2.1) in a comprehensive manner that guarantees greater
local accuracy improvements in time integration over semidiscretization approaches. The approach guarantees
accurate tracking of flow along local characteristics and allows for local residual errors to be controlled locally
by choosing the right time steps to regulate leading numerical viscosities in the residual errors. By describing
local viscosity coefficients in space-time and consequently choosing time steps to match spatial resolution in
order to minimize and regulate these coefficients provides degrees of freedom to better represent sharp
gradients to a higher local accuracies. Furthermore, by using local solution expansion for grid function and
therefore the equation error approximation, the numerical viscosity regulations and the associated errors are
local.

To effectively represent and account for local space-time fluxes [4,10], we integrate (2.1) over spatio-
temporal domains rather than in spatial and then temporal directions independently [21] as in traditional semi-
discretization formulations. We first use the divergence theorem to rewrite (2.1) as

Z y/ Z
urdxdt+  cuxdxdt=  fdxdt, (2.2)
Qr ar Qr
where Qris the closure of (a,b) x (0,T].

Now, consider the two-dimensional domain Qr partitioned into space-time control volumes where each
control volume is centered on a space-time grid point with a surrounding regular distribution of space-time
grid points. Thus, each grid point has a compact cloud of quadrature points that describes the control volume
overlapping [24] with grid-point distributions for neighboring control volumes. The interlocking
configurations created by these overlaps allow for efficiently conserve local fluxes to neighboring points
across different time levels. While in other space-time approaches [1,3,17,18], balance of fluxes is considered
on the finite space-time slabs, we carry out the differencing discretization to balance local fluxes to all
neighboring space-time quadrature points on the computational domain.

Following a similar characterization of the local space-time domain [18], consider a partition of the time
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interval [0,T] by 0 = to< t1 < -=- < tvn= T and the domain [a,b] € R by a = xo < x1 < *** < xu= b such that the
space-time control volume is Q"m= [Xm — h,xm+ h] x [ta-1,tn+1], and illustrated in Figure 2.1. Each grid point
Xo(xm,tn) for instance, is a centroid of a control volume Q"» with a cloud of neighboring grid points X1(xm +
h,tn), Xo(xm~+ htn+1), X3(Xm tn+1), Xa(Xm = h,tn+1), Xs(Xm — h,tn), Xe(Xm — h,tn-1), X7(Xm,tn-1), and Xs(xm+ h,ta-1),
as depicted in Figure 2.1 where Q"m overlaps with control volumes centered on all the neighboring grid points.

The schemes are designed to efficiently account for the balance of local spacetime fluxes between each
grid point and surrounding clouds of quadrature points in all directions and not just the coordinate directions
as in traditional finite difference schemes [7]. Therefore, as the interlocking configuration to represent both
local forward and backward fluxes about each centroid become more elaborate, higher accuracies and
conservation are achieved by regulating the leading dissipation and dispersion coefficients to control

nonphysical oscillations without the need for flux limiters.

We rewrite (2.2) into the flux integral balance form on each control volume Q™m

X X, X X X
11 3 2 10 "
m——pr——_ ‘n+1(t0"'k',2)
Time, 1] :
[ ]
X, X, Xy X4 X, ‘)
L n''o
[ ]
1
X X
X X g X
1 6 7 - 14, +
ln_1(lu—kf2)
x -2h X -h X, x_+h Xy *2h

Shace, x
Fig. 2.1. A space-time control volume Q' with local uniform compact cloud of grid points with Xo(xo,to) as the centroid
by
Z Z Z
u-vedx+cik WU wvxdt= fdxdt, (2.3)
Qum Qm Qum

where?Qy, is the space-time boundary of Qi ¢t is speed of the conserved quantity u about the centroid, v:
and vxare the unit normals in temporal and spatial directions on Q"m. We then rewrite the temporal and spatial
evaluations of (2.3) into boundary flux differencing balance form about (xo,t0) by

udx - udx+c. { udt - udé) = fdxdt.

An an An An ~

1 [ Al 1 - Al

temporal differencing spatial differencing
(2.4)
where? Qi+ represents the temporal update at time to + k whilst?Qinzon represents the corresponding
spatial limit on the control volume. The well balanced flux differencing formulation (2.4) which is a

generalization of the fundamental theorem of calculus in higher dimensions and manifolds is rewritten as
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Z Z Z Z
udx = udx - c { udt - udt}
i
aQr aQn aQn aQn"
mtok mtofk mxoh W'x[]h
| {z } | {z 3} | {z
}
Time updates Dependence grid points spatial differencing
Z
+ fdxdt, (2.5)
Qnm
|{z}

local source term

to illustrate the similarities between our approach and other approaches [20,27].
As illustrated by the grid-point configuration in Figure 2.1, the grid points at time t"*1, including X2, X3,

and X4, are utilized to construct the generalized weighted quadrature approximation of the new update integral

R3Quma-udx while grid points at times t"-1and t" (namely Xs, Xo, X1, X6, X7 and Xs) are utilized in approximating

wdr

lfaQTr'wn K on the control volume. Thus, the approximation of Raqu.w«udx may be constituted

the integra

from the domain of dependence grid points at times (t") and (¢*-1). Similar approximations are described for

the boundary integrals

Riqumons udt and Raqumo udt which are utilized for the spatial flux differencing.

The collocation of the associated source term Rq..f dxdt may include sub-grid points where the quadrature

parameters will be similarly determined for higher local accuracies. The degrees of freedom for constructing
the discretization include the collocation weights which are to be determined to eliminate the leading terms
of the equation error expansion and optimize the leading numerical viscosity coefficients of the residual
errors.

The balanced flux setup (2.5) is very similar to the classical Godunov’s finite vol-

ume methods including ADER approach [22,23] where Roqumosudt and Roqumo-sudt in (2.4) are represented by

the numerical fluxes Fir1/2 and Fi-1/2 respectively; finite

. . 1
difference approaches where Roquu.udx and Raque.udx are represented by the centroid values of® ' and

n

uj' " at to+kand to—k boundaries of the control volume.
In these different approaches [22], the approximation of the fluxes Fi+1/2 and Fi-1,2 are treated with elaborate
interpolation procedures at the cell boundaries independently and as such flux limiters to regulate the flux

differencing Fis1/2 — Fi-1/2 are needed.
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In this approach, the spatial and temporal differencing are carried out in a unified manner about the centroid
by using of all neighboring cloud of grid function values similar to idea behind the construction of flux limiters.

Thus, the generalized quadrature approximation of the equation error for (2.5) is described as

Euik=X. aiui— Xa Piui+cik@ X, aivi— X» biuil-Xvif;,
0Qmto+k 0Qmto-k 6meo+h 0Qmxo-n L Qnm

| {Z } | {Z } temporal residual spatial residual
2.6)

where!ii is non-zero for a finite number of quadrature points on the control volumes with quadrature weights

{aiBiaibi, vi} and {ui,fi} as the local grid functions of u and fas defined by (2.1).

To construct the space-time expansion of the equation error (2.6) that locally enforces a more accurate
higher-order relationship of local advection with time, we first utilize a multivariate expansion ¢ about (xo,to)

to describe u by

L omine
(,)(.L[) + xr, t() +t Z Z .L() f(]) mf”
! In!
m=0n=0 mene dJ motn (27)

where ¢ is assumed to be smooth enough and locally defined everywhere and
d(z0,t0) = u(zo, to),
ﬂ(il’?myu) = ﬂ(iru-yo)
Axi ot Dzt ot . (2.8)

Thus, any desired set of quadrature points may be included in the approximation of the flux integrals to
discretize (2.6) locally. To reflect local regularities of u(x,t), the coefficients @xt, Qtt, Qxxt, Pxtt, Peet, etc in (2.7)
are replaced by @xx, @xxx, etc in order to ensure a more accurate higher-order space-time tracking of advection
along local characteristics. Thus, advection accuracies along local characteristics is enforced through (2.6) and
(2.9) which allow for determining the right time-steps for the flow to match spatial resolution by controlling
the leading dissipation and dispersion coefficients in the residual errors. Furthermore, the source term
derivatives fx, ft, fit, fux fxt, fxxt, fxet, €tc are introduced into (2.7) through higher-order derivatives of (2.1) along
characteristics given as

@dx0,t0) = —co@x(xo,to) + f(xo,t0),
@xt(xo,t0) = —copxx(Xo,to) + fx(xo,t0),  (2.9) @e(Xo,to) = c20¢pxX0,t0) + fe(Xo,t0),
Pxe(Xo,t0) = C20(pxa(X0,t0) + fer(Xo,t0), etc,
by way of the Cauchy-Kovalevskaya procedure [12,22,23] where co is assumed to be locally constant about
the centroid of the control volume.

For an efficient higher-order discretization, the local source term must be collocated to account for

variations in the source term and solution fluxes locally. We therefore use the differential operator action on

the local expansion ¢ in (2.7) to define the numerical local source term by
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am«HJ 4

oo oo 1 b
.f(.?[‘(] +x, f.() + l) = AH { Z Z . ‘.(‘7?",(:1?0! L(J)me!,”}
m=0n=0 min! Oxmot” (2 10)

where 4«represents the action of the differential operator locally such that

fo= f(xo,t0) = 41|, t0) := @e(X0,t0) + Cikx(Xo,t0). (2.11)
The expansion about the half-time centroid (xo,to) ensures that quadrature points at times to -k and to+k which
describe the differences between backward and forward fluxes may be captured at the same level of accuracy
through the discretization of (2.4) about the centroid. The multivariate expansion ensures that all the solution
approximations at the quadrature points within the domains of dependence and influence of the centroid in the
resulting scheme accurately conserve local flow based on the regularities of the solution.

We now rewrite the local equation error expansion for (2.4) about each centroid based on (2.6) by

ik = E Qi — E Bigi +cik { E aipi — E bii } — E vi fi
E aQn aQn g n aqQn Qn ,
mto+k mto-k meo+h mx0-h m

| {Z } | {Z } temporal residual spatial residual
(2.12)
where the grid functions ¢iand fiare defined everywhere locally. The temporal residual is designed to catch
higher-order numerical fluxes as a result of the time difference between the arrival point at time to+ k and any
of the departure points at times to and to — k. Similarly, we design the spatial residual to catch higher-order
numerical fluxes as a result of spatial difference between the arrival point at time to+ k and any of the departure
points at times toand to - k.

The discretization of (2.4) may be described as a dynamic programming problem of determing {a; 3 a; b;vi}
to minimize (2.12) subject to (2.9) and additional constraints on the quadrature weights (3.5). To preserve the
integrity of the flow locally, the arrival points which are specified by the CFL number o, are rightly determined
to minimize dissipation and dispersion errors along local characteristics. Thus, the approach allows for
considering and selecting the best possible ways to track numerical fluxes between each centroid and
surrounding quadrature points. For explicit time integration, the parameters a;ai and bi are constrained to
eliminate the implicitness at time to+ k as described in the next Section. The formulation in (2.12) reduces to
the traditional finite differencing approach when the summations are described by only the centroid values of
the boundaries of the space-time control volume.

3. Generalized Quadrature Discretization. Given that the local space-time expansion ¢@(x,t) in (2.7)

is defined everywhere about (xo,to0), we describe the quadrature differencing approximation of (2.4) in the form

Saidi= > Bidi—cu D wdi— Y bidip+ Y vifi
tntl {tn—1tn} xo+h {xzo+h,zo} Qr,

, (3.1
where t"*1represents the new update time to+ k in Figure 2.1 while t*-1and t"represent departure times to— k

and to respectively and similarly for the spatial differencing.
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Time, 1 Time,

X;-2h xn'h * x0+h X;#2h ¥,-2h X -h X Xu+h Xg+2h

Space, x Space, x
Fig. 3.1. Grid function ¢3is contained in Fig. 3.2. Domain of dependence of s inthe domains of influence of @13, Ps, @7 @s, and cludes @13, s, 7 Ps, and P14
at time to—k and @1sat time to— k and @s @o, and @1 at time to @s @o, and @1 at time todepending on the size depending on the size of CFL number o. of CFL number

o.

The quadrature discretization setup of (2.4) in (3.1) differs from other work [19, 21,22] where P¢...aiiand
P . Bipiare essentially the centroid values @3 and ¢7 at the boundary times t"*1and t"-1respectively on the

control volume. An advantage in this approach is that P, Bipi describes a weighted quadrature of solution

values at two departure times to — k and to which are within the domain of dependence of ¢3. Thus, each update
@3, is naturally constituted from a weighted quadrature of the influencing solution values @1, s, @s, @7, @s,
etc as depicted in Figure 3.1 similar to the semi-lagrangian time integration method [20]. Since there are
multiple departure points for each arrival point, a best CFL number is determined to regulate and minimize
leading dissipation and dispersion errors which are responsible for the associated nonphysical oscillations in
the numerical solutions.
As discussed above, the numerical source term fion the local control volume is defined such that
fo:= f(to,x0) = @r(to,x0) + cik@x(to,Xo), (3.2)
which is consistent about the center of the control volume. The equation (3.1) is recast about (xo,to0) as

Ng
Z Qi — Z Bigi + cik Z aip; — Z bigi ¢ = Z'Uifi
to+k {to—k, to} zg+h zg—h, g i=0 , (3.3)
and the local discretization error Enkis formulated as
Ng
Ene= X aipi— X Bipi+ cik @1X aii— X bipill — Xvifi
to+k {to-kto} Blxo+h xo-hx 2 i=0

, (3.4) where Ng is the number of neighboring quadrature points that may be used in the source term
collocation. To preserve the differential and integral operator properties of (2.1) in the resulting schemes, the

following constraints

Ng
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X X X X X
ai= Bi ai= b;, and vi=1, (3.5)
to+k to—k,to Xo+h Xo—h,Xo i=0
are enforced in the optimal sets of quadrature weights for the desired discretization design. The Cauchy-
Kovalevskaya procedure [12] is the applied to replace time derivatives of ¢ by spatial derivatives along a
characteristic line of the form
cikk = ch (3.6)
about the centroid of the control volume where o is the Courant number.
As a result, the leading terms of the local discretization error expansion (3.4) about the centroid (xo,to),
may be reorganized as
En= gofo+ Gipx+ {g1ft+ gzfs+ G2ox}h
HG3xx+ gafxt gafet gsfuthz (3.7
+Hgofoxt+ grfxet gsfsee+ gofir+ Ga@xoths+ O(ha),
where the coefficients Giand giare functions of k, h, cik, o, and the collocation weights «;f;a;b;, and vi.
Depending on the available degrees of freedom for the desired discretization, the optimization strategy is to
determine the optimal sets of quadrature weights {a;f;a;b;vi} to eliminate the leading terms in the error
expansion Exn and then regulate and control the leading coefficients of dissipation and dispersion in the

associated residual errors. The resulting residual error may then be described in the form

o f o+l §
IE,‘A» = {(}[’W (C'f: d.") + G;J W (C,‘, d‘\')} h!
03‘1+l f ap—‘r—Z({)

+ {QJ,+| W((, d;..) + C;i’+1 W(rf;, (1;,3)} h?”rl + O(f.).?)+2). (38)

8
where s=0,1,---p and (c;dk) € [Xo - h,xo+ h] x [to— k,to+ k] .

Thus, Rikin (3.8) describes the residual error for the discretization of the flux integral formulation of the
equation (2.1) subject to its higher-order derivatives (2.9). For the numerical solution ¢(x,t) to closely mimic
the unknown solution u(x,t) across neighboring control volumes, the leading terms of the residual error (3.8)
at each grid point must be controlled and maintained as low as possible in order for ¢(x,t) to retain the main

features of u(x,t). That is, the leading viscosity coefficients Gp and Gp+1in (3.8) must be regulated to have

o : : . ortly 9Pl : :
diminishing roles in the computational error since =7+ 77777, etc in (3.8) may be inherently large about the

centroid of the control volumes for non-smooth regions of the solution. Regulating the leading viscosity
coefficients to reduce the nonphysical oscillations in the numerical solutions is the essence of various viscosity
stabilization techniques [13,27]. By using a general quadrature descriptions to approximate the flux integrals
in the equation error expansion, a more complete and accurate coefficients of dispersion and dissipation may
be obtained based on the collocations of solution values as described above. Therefore, local higher accuracies
may be achieved efficiently by choosing the remaining collocation parameters to create diminishing residual
errors effect on Rix for the associated schemes.

We provide further details on the development of finite volume schemes by formulating a comprehensive

equation error expansion, eliminating leading coefficients of the error expansion, and optimizing the
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collocation weight to regulate Gp and Gp+1 in resulting residual errors. We then give accuracy analysis of the
discretizations through the leading viscosity coefficients which describe the functional relationships among h,
k and o and other collocation parameters that control associated nonphysical or Gibb’s oscillations.

4. Two-step Time Integration Designs. By using the centroid of the control volume as the center
for the equation error expansion, the new updates at time to+k are determined at the same level of accuracies
and regularities as the departures points at times to —k and to as described in (2.9). Thus, the new updates are
only one time step away from the current time step toand the discretization at each grid point is completely
independent of neighboring grid points and therefore local errors don’t affect accuracies at the neighboring
grid points. As such, a two-time step integration here actually is a one time step from the current time and thus
uses information from the two previous time steps.

We describe three general strategies for achieving explicit time discretizations for (3.3) based on (3.5) and

the mesh-point configuration in Figure 3.2.

4.1. Temporal and Spatial Leapfrog Integrations Setup . Consider an implicit discretization of Raqu»
% . vedx about the centroid as described in (3.3) by using a three-point weighted quadrature for approximating
the flux integrals. The term Pusk aigpiis described using a weighted quadrature of @2, @3 and ¢4 at time tas1

while Pk aigiis described as a weighted quadrature of @s, @7and @sat time ta-1 such that
Q4= Qin+1+1, P31= Pni+1, Q2= Pint1+1, P6 7= Pin+1-1, P7:= Pin-1, P8 = Pni+1-1,
(1:= Qnis1, P5:= Qni-1, Po:= @ni.  (4.1) Define an implicit time differencing of Raq..? - nedx on the control

volume in Figure

3.2 through a leapfrogging of current time step to by

/ Gomdr = Y cidi— Y Bii
Joqy,

tnt1 tn—1

 Aoa(da + ¢4) + (1 — 200)d3} — {Bs(d6 + ) + (1 — 286)d7}
o 2k
(4.2)

where the values @6, @7and @sare within the domain of dependence of ¢3 without solution values the centroid
time of t». Similarly, spatial differencing over the control volume Raq..®-vx dt may be compactly described

between time dependent boundaries at xo— h and xo+ h in a quadrature form as

/ Gvpdt & Y aidi— Yy big
oQy,

zo+h xo—h
_Haa(d2 + ¢s) + (1 — 2a2)¢1 } — {ba(¢s + ¢a) + (1 — 2by) 5 }
T 2h '

(4.3)

where Pon aipiis a weighted quadrature of @2, @sand @1 while Pxw-r bigiis a weighted quadrature of s, @4
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and ¢s.

Notice that the diagonal values 2 and ¢4 at time ta+1 are utilized in completing the temporal quadrature
differencing (4.2) as well as the spatial differencing (4.3) which leads to an implicit discretization of (2.4). To
produce explicit space-time discretization of (2.4) about (xo,t0) and to time-match the spatial approximation,
the approximations (4.2) and (4.3) are unified by matching temporal and spatial advection at the diagonal

locations such that

cirh cirh ; ciph ciph
g = ———@g = ———V, hf = —— (g = —— 1,
2 2 k" and YT Tk YT Tk (4.4)

where cikis the local value of c at the centroid. Thus, flow to the arrival locations of ¢z and ¢4 are determined
as a function of @3 and the other departure points through the parameter v as indicated in (4.4). In traditional
finite differencing, the weights a2 and fe for the quadrature differencing of the transient term u:in (4.2) are
assumed to be zero.

4.2. Spatial Leapfrog with Temporal Non-Leapfrog Integrations Setup . By utilizing all grid points

at times toand to—k within the domain of dependence of ¢3 as possible independent updating points, we rewrite

the time differencing to include solution values at both times toand to - k for the discretization of Raqum¢ - v

dx in line with the second fundamental theorem of calculus as

T

4 1 8
Zth‘@s - {Z Bidi + Zﬁf@’ﬁi} + Cik {Zﬂf:@f - Zbgd)'f} = Z vifi,  (4.5)
i=5 1 i=1

i=2 i=0 5 i=1 i=0

where
4 8 n
X X XXX
ai=  Bit+ Bo+ P1+ PBs, ai= b, vi=1. (4.6)
i=2 i=6 i=1 i=1 i=0

The conditions in (4.6) guarantee that the discretized equation remains consistent with the differential and
integral formulations of the equation necessary for numerical conservation about each centroid.

4.3. Non-Leapfrog Integrations Setup in Time and Space. In the context of spatial integration, we

consequently consider a full quadrature difference for Raq..¢p+ v dt incorporated in the (3.1) set-up as

4 (1 8 ) ( 6 ) n
X X X X X X X
aipi= Bipi+  Bipi + cix aipi=  bipi=  bipi = v
i=2 i=0 i=5 1,2,8 0,3,7 4 i=0
4.7)
where
4 8 n
X X XXX
ai=  Pit Po+ L1+ s ai= b, vi=1. (4.8)
i=2 i=6 i=1 i=1 i=0
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5. Two-step Explicit Three-Point Finite Volume Schemes. In this section we discuss parameterized
families of schemes for (2.4) based on a partial or a full utilization of departure point grid functions in
constituting the new update value ¢3 at time to+ k using three-point quadratures as illustrated in Figures 5.1
and 5.2 respectively.

For schemes based on Figure 5.1, the centroid mesh value ¢o is not utilized in constituting the new
update @3 indicating a partial leapfrogging in both space and time integrations. However, in Figure 5.2, the
discretization uses o in updating 3 which through variations of leapfrogging in just space or time

integrations but not both.

é;
}
Né
é‘_

-
=
=

=

B e

Time, | Time,

Fig. 5.1. New update @sis constituted from Fig. 5.2. New update @sis constituted departure point values {ps,¢7,¢s} and {¢,¢s} from departure point values
{675} and at times t,-1 and tarespectively. {@1,po,ps} at times t,-1 and tu respectively.

5.1. Temporal and Spatial Leapfrog Three-Point Schemes. Consider a general class of two-step
explicit discretization framework where the future update ¢3 at time t"*1is constituted in time from a
quadrature of the three grid point values at time t"-1. In determining the quadrature weights for the
discretization by eliminating the leading terms of the error expansion (3.7), two additional contributions are
required based on the derivative and integral conditions described in (4.6) at the centroid time t” level as
depicted in Figure 5.1.

For a second order accurate expansion of the equation error (3.7) along local characteristics (3.6), a

parameterized family of two-step explicit schemes is derived as
1-2v, 1-2a, (o +v) (g + @g) — 2v(p5 + 1) 01— 5
% @3 = ok O + 2% ~ Gk T
¢1 — ¢5 — (s — &) n h.((l —v){(¢1 — ¢s5) — (P — d6)}
2h degk?
where the quadrature weight parameters v and a are to be determined to control and regulate the leading

(5.1)

‘e

+ F3o,

viscosity coefficients of the resulting residual error. For a well-balanced discretization of (2.4), the local space-

time source term collocation on the control volume F321is determined as

Py = Mot fstfr (2f3 — fo— f1) — A2fo — f1 — f5) — 3(2f7 — fo — fs)

6 24
Af2+ fa) =23 —6f7 —13(2fo — fL — [f5) : an2fo—hHh—1s
—y—i2 : 1 0 J — k(1 — 31/)%
v — a)h5(f8 —fo) + Si{gl(;_;kfs)) —(fo — fa)
L1 - gw)egr ot fat o (st fithtfs)

12h (5.2)

The leading terms of the resulting residual error about the centroid for (5.1) is given as
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B »Po Po ved Bf (v+a)d3f\ 4
= cuRag i+ (cuags + o gt +o g )
a2t 1 o),

dxd (5.3)

where o 1s the CFL number and

Ry — 2(1 —0?%) — 3w(3 — 20?) — 3a Ry — a—v—2vo%(20% — 1) — 4o’
' 12 ' 240

~ 20%(5v — 1) — 50%(3a +v) + 2 — 20w

B 120 ‘ (5.4)

15

Notice that the scheme (5.1) reduces to the traditional leapfrog scheme for (2.1) with a =0 and v =0, in
which case time-updates for @3 from spatially different locations on the control volume including ¢1,@s,@e,@s
have been eliminated along with all the dissipative coefficients R4, R, etc in (5.3). Thus, as a consequence of
a=0and v=01n (5.1), p3lacks local advection time-updates along local characteristics from the neighboring
grid points within the computational domain and local conservation is compromised. Consequently, the only
available option for controlling the sizes of the dispersion error coefficients R3, Rs, etc is to choose o close to
one. Hence, dissipation error may be described as numerical errors resulting from the use of neighboring
collocation points for constructing simulation updates while dispersion errors may be described as numerical
errors generated when simulation updates do not match the physical characteristics of the solution.

On the other hand, the accuracies of the approximation of (2.2) as given in (5.1) may actually be determined
by the leading dispersion error coefficients R3 and Rs as well as the dissipation error coefficients R4 and Re as
illustrated by the residual error (5.3). That is, higher local accuracies may be achieved by controlling and
regulating the leading viscosity coefficients by choosing the remaining parameters v and a appropriately. These
parameters describe the relative influences of the solution values at the departure times t"-1and " on ¢3 subject
to the resulting diminishing conditions that may be imposed on the residual error (5.3) for minimizing the
errors due to numerical dissipation and dispersion.

To control the associated nonphysical oscillations, the leading viscosity coefficients R3 and R4 need to be
regulated to reduce the fluctuations of @xx and @xxxin the computational errors. Hence determining these
viscosity coefficients accurately based on the collocation points utilized for the scheme may be very essential
in order to efficiently to control the oscillations without the use of flux limiters.

Strategies to Regulate Nonphysical Oscillations. Multiple approaches for choosing o, v and a may
be devised to regulate these errors of dispersion and dissipation in the resulting schemes. We analyze some
approaches based on the functional relationships of o, v and a with leading viscosity coefficients below:

1. Option One:

The parameters a and v may be determined as a function of o to eliminate R3 and R4in (5.3) such that
_402—1 {y_204—402—1
902 -6’ 992 -6, (5.5)
where the new leading dispersion and dissipative error coefficients respectively become
(02 —4)(c? — 1)(40% — 1)
360(2 — 302)

Rs(0) = cik (5.6)
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and
o(o? —4)(o? — 1)(40? — 1)

Ro(o) = cu 1080(2 — 302)

, (5.7)
with their functional profiles displayed in Figure 5.3 and Figure 5.4 respectively.

0

.
: 0.015

N

H
R 3(a) 001 2 6(e) 0010

02 i 06 08 0 1.2
.

0 0

Fic. 5.3. Fic. 5.4.

Thus, both local dispersion and dissipation errors may be controlled by choosing @ and v appropriately.
By choosing a and v as in (5.5), the scheme (5.1) becomes locally fourth-order accurate and since the
signs of the numerical estimates of @xuxx and @xxexx are unknown, the best way to control their effect
on computational error and thus regulate nonphysical oscillations may be to choose o to render both
Rsand Re less sensitive and as small as possible close to o = 0.5 as depicted in Figures 5.3 and 5.4.
2. Option Two:

Instead of eliminating R3and R4 outright as described in option one above, the parameters a and v may
be determined as a function of o, Rz and Rato regulate the size and sign of the viscosity coefficients R3
and Rasuch that

o 6R3(20% — — 1)+ 36R40(3 — 20?) N (20* — 40% — 1)
3L1;\ (02 1)(302 — 2) 3(302 — 2)
_ 6R3(40% —1) —36R40 | (40* —1)
© 3ei(0? —1)(302 —2)  3(302 - 2)° (5.8)

3. Other Options:
Various other options may be pursued such as just regulating the coefficients of the leading even-
ordered derivatives of ¢ in the residual error [5,27]. For instance, by determining a to eliminate just

R3as:
2 k22

a = 3—31 4+ — 75l (6v —2 )’ (5.9)

the leading viscosity coefficients R4 and Rs become
(1—a)(c?(9 —4)+1—6v)

Ry (O’,V) = Cik 360 (510)
- (1 —0o2)(o?(10v —4) +1 — 10v)
Rs(o,v) = ¢y, 120 (5.11)

with profiles as displayed in Figures 5.5 and 5.6 that show feasible regions for selecting o and v and

the corresponding achievable sizes for R4 and Rs.
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002
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0.04R5(0, v)
002
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-0.02-00.02.4

02

Fig. 5.5. Fig. 5.6.

Additionally, by choosing a as in (5.9), both R4 and Rs may easily be regulated by determining v for a
given value of o to control the signs and sizes of both R4 and Rsto be positive and small.

5.2. Spatial Leapfrog and Temporal Non-Leapfrog Schemes. In this section, we demonstrate the
flexibility of the approach in constructing a temporal discretization of the equation using three grid points at
both times t"and t"-1to update ¢3in time as illustrated in Figure 5.2 but leapfrog the centroid in spatial
integration. To utilize all grid functions within the domain of dependence of ¢3, we modify the approximation

of the flux integrals given in (3.1) as

1 ni

4 8
ZQ?’(;‘)?’ - (Z .‘31'(1'5; + Zdﬁbz) + cik {Z ai@z - Zhrdr} = ZT-"'rfu (512)
1=2 i=1 i=1 1=0

i=0 i=5

subject to the conditions

4 8 n;
X X XXX

ai= it ot p1+ s, ai= b, vi=1 (5.13)
i=2 i=6 i=1 i=1 i=0

where niis the total number of quadrature points to be utilized in discretizing the local source term about (xo, to).
Again, the conditions in (5.13) guarantee that the resulting schemes remain consistent with the differential and
integral operator properties of the equation necessary for numerical conservation about each centroid.

The resulting parameterized set of two-step explicit schemes to update @3 on the control volume is

determined as

1-2v 1-2a 3(b1 — bs) + (b5 — d6) o k(2 — 60)(b1 + b5 — 260)
o 8T TR Tk 61 e 6h?
3o+ v)(de + ¢g) + (4 — 6ex — 181) g + (3 + 3 — 2) (1 + ¢5)
* 6k
_ kA =3y —30)((d1 — 95) — (ds — de)) | .
Gck? % (5.14)

where F331s the associated quadrature discretization of the source term on the control volume. The resulting
local residual error for (5.14) is

¢ . o(v+3a+20%)Bf 4 vod Pf

9 ¢ ,
+cir Rsfi?h'i + O(h"),

dxd (5.15)
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where

Ri= - —a?)(e?(3v —3? -1 +31’/+30{), Rs =

(1—0%) (150 + 15a — 202 —17)
360

and o, v and «a are to be determined to regulate the residual error.
Strategies to Regulate Nonphysical Oscillations. Again, multiple approaches for choosing o, v and a
may be similarly devised to regulate these errors of dispersion and dissipation in the resulting schemes as:
1. Option One:

The parameters @ and v may be determined as a function of ¢ to eliminate R3 and R4 such that

1/72(40271) ()7‘204—02+2
1502 B 1502 (5.16)
with
(0% —4)(0? — 1)(40% — 1)
R(,- = —C
108000 (5.17)
a(o? — 4)(o? — 1)(40? — 1)
R7 = —cip
37800 . (5.18)
R sla) 000 R 7o) 0.0001
Fic. 5.7. FiG. 5.8.

In this case, as choices of o approach %7, values of v approach 0-, values of a approach 0+ and the
leading viscosity coefficients Rs and Re stay positive and significantly reduces Gibbs phenomena in
numerical solutions with discontinuities.

2. Option Two:
Alternatively, the parameters a and v may be determined as a function of o to control the size of the
viscosity coefficients Rz and R4 such that

 1800Ry — 360Rs5(0? +1) 20" —o0? 42

15¢;,02%(02 — 1) 1502
360Rs — 180Rys  2(4o2 — 1)
V= .
15¢ipo?(0? — 1) 1502 (5.19)

3. Other Options:
Again, other options as discussed for (5.1) may be pursued.
5.3. A Non-leapfrog Spatial Integration . In this section, consider a nonleapfrog integration to utilize
all departure points for both space and time where we describe the spatial and temporal differencing across

the centroid of the control volume by

International Journal for Innovation Education and Research Vol.12 No.3 (2024), pg. 37



https://scholarsjournal.net/index.php/ijier

A Residual-Based Numerical Viscosity Regularization Approach for Higher-Order Finite Volume
Discretization of Scalar Hyperbolic Conservation Laws

4 1 8 14
X X X X
ai@i ﬁ(pl ﬁi(pz ﬁI(PI
i=2 i=0 i=5 i=13
ni
+cik Z aipi — Z bipi — Z bipi = Z’i’z‘f:‘ (5.20)
t;:& 1,2 i=3,0,7 i=4,5,6 ) i=0
where
4 8 g
ZO@ = Zﬁz + Bo + 51 + Bz + Pra, th = Zbis ZU?? =1
i=2 i=5 i=1 i=1 i=0 . (5.21)
A parameterized family of schemes which may be determined from the constrained minimization process
is
1 _v_ap\, _ (2 —6v)(¢s + ¢g) + (18 — 1)¢p7 — 61 (1 + ¢5)
2% k20 )77 6k
(v —1)(¢1 — ¢5) — vi(ds — ¢6) — p(d3 + 7 — 2¢0)
o 2h
(1 —6v) (1 — ¢5) — (2 — 12v)(¢s — P — 207)
+h -
b(,f(]kz
e 3p(¢1 — &5) — 3p(gs — d6) — (2 — 6v) (0 + Ps — 2¢7)
T 1277
2 (3v — 1)(d + @5 — 2¢7) — (3 — 1)(P1 + &5 — 2¢)
+kcj
6h?
5 (6 + s — 267) — (D1 + 5 — 2¢
+pkiel (J6 + ds Q7)4h3(@1 +e %o) + F302,  (5.22)

where p provides a spatial differencing across the centroid in a way different than (5.14) but utilizes the
same grid points and F3o021s the associated source term collocation.

The resulting local residual error for (5.22) is

Mo 4 wved Pf . Doy
Rjk = CikR'lﬁh + 12 3 d‘fj h +(‘1AR 925 h + O(h )’ (5.23)
where
(0% —1)(3p0® + 30%(2v — 1) — 6v + 1)
Ry =— »
360
(o2 —1)(15p0? + 20% (150 — 7) — 60v + 6)
s =~ 720

and o, v and p are to be determined to regulate the residual error.
Strategies to Regulate Nonphysical Oscillations. Again, multiple approaches for choosing o, v and a
may be similarly devised to regulate these errors of dispersion and dissipation in the resulting schemes as:
1. Option One:
Again, the parameters p and v may be determined as a function of o to eliminate R3 and R4 such that

V*i—l—iq )7150270'1—4
“30 307 T 1500 (5.24)

where
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(02 —4)(a® —1)(40% — 1)

Rg = —cit 108000 (5.25)
R — e (0% —4)(0? — 1)(40% — 1)
T Tk 37800 (5.26)

with similar profiles as in Figures 5.7 and 5.8 above.
2. Option Two:
Alternatively, the parameters p and v may be determined as a function of o to control both viscosity
coefficients R4 and Rs such that
 1800R4(0% —2) — T20R5(1 — 0?)  150% —o* — 4

P 15¢;,03(02 — 1) 1503
720R5 — 180R40 n 1 N 1,
= — + —0o“.
30cik(o? — 1) 30 30 (5.27)

3. Other Options:
Again, other options as discussed for (5.1) may be pursued.
6. Two-step Explicit Five-Point Finite Volume Schemes.
The grid-point distribution for the domain of dependence of ¢s3 as illustrated in Figure 3.2 contains five grid
points at the departure time t"-1 and so we investigate extensions of the discretizations in Section 5 to include
the corresponding five points at time ¢t"-1. The extensions considered are based on the grid-point distributions

scenarios described in Figure 6.1 where the centroid value ¢o is not utilized in updating ¢3 and in Figure 6.2

where o is utilized in updating ¢s.

Space, x

Space, x

Fig. 6.1. New update s, is constituted Fig. 6.2. New update s, is constituted from a collocation of {@e®7,@s®13,p1s} and from a collocation of
{p6@7,08,¢013,p14} and {p1,¢s} at times t,-1and tarespectively. {p1,@o,@s} at times t,-1and tarespectively.

6.1. Temporal and Spatial Leapfrog Integrations. A local accuracy improvement to the

approximation of (2.1) by using five quadrature grid points at time t»-1 and two points at the current time tnis

described in the parameterized family of schemes by

1-2v  12(a+v)(ds + ¢s) + (2 —3a — ) (13 + ¢14) — 240(d1 + 05)
2k T 24k
2(4 + 9 — 9a)dr (4 —6v)(¢1 — 05) — (1 — 6v) (s — o)
24k S 6h
+h(1 —6v)(¢1 — d5) — (1 — 6v)(ds — ¢6)
6(?()1162
5 (3v — 1)(13 + 14 — 2007)
e 1212 + Fs2 (6.1)

where Fs2is the corresponding quadrature discretization of the local source term.
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The leading terms of the local residual error which describe the different levels of numerical viscosities

associated with the discretization (6.1) are determined as

Mo wod Bf) L,
Ene = {%.1--1 T 8#.3}}
o vol O'f o' a'f
+{ SE TOC%W—'—QSI‘

14 5 o
T +glgam3}h +O(h?)  (6.2)

where

Co ‘ 4 E
Ry = — {4(20* +1)(0* — 1) — 3v(60" — 40® — 5) + 9a},

Rs = % (40* + 50* — 9) — 5v(20* + 20% — 7) + 15a},
- o*(o? —1)(3v —1) Gy — o?(6v(o? — 1) — 20% + 1)
731 9cq Il 72¢3
. . . , n—1 )  n—1
Notice that the inclusions of ?13 := ¢i' 5> and %14 *= ®12 causes the scheme

(6.1) to be dissipative for « =0 and v = 0 as opposed to scheme (5.2).
As described in the previous sections for the three-point quadrature schemes we discuss similar options
for controlling the Gibbs oscillations below.
Strategies to Regulate Nonphysical Oscillations.
1. Option One: Clearly, by eliminating both R4and Rs in the residual error (6.2), v and a are determined

as functions of o by

V—(1402_1) 1 80%+60" —720° -5
Y0202 17 YT 90 202 — 1 (6.3)
where the Re = e (0® —1)(0* —4)(40® — 1)(50* +3)  next leading viscosity coefficients become
6 — GCik . O N
10080(20% — 1)o (6.4)
Ry = ¢, (@2 = D(0? —4)(do? — 1)(170 + 23) .(6.5)

75600(202 1)

The leading viscosity coefficients Re and R7 both stay positive by choosing

o in the ranges (P1/2,1) and (0,1/2) and therefore allows for Re and R7 to be regulated to be both

positive and small.
2. Option Two: On the other hand, the parameters a and v may be determined as a function of o to
control the size of the viscosity coefficients R3 and R4 such that
B 41?‘,4 (66 — 40% — 5) — Rzo(20* + 202 — 4) LSO’G + 604 —T20% -5
“= (202 —1)(02 — 1) 90 207 — 1
12(R1 - R';U) 7(402 - ].)

T o D202 —1) | 30202 1)’ (6.6)

where R3 and R4 may be chosen to ensure diminishing computational errors.
3. Other Options:

By determining a to eliminate just R4 given as
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4 —10v n 4k (20 — 1) N 2kt (9v — 4)
9 Oh? Oh? , (6.7)

the leading viscosity coefficients Rs and Re become
(0% —1)(4c*(150 — 7) + 7 — 30v)

Bs = cu 360 (6.8)
f — o (07— 1)(@" (350 — 16) — 11v0® +1— 6v)
6= Gk 3600 . (6.9)

Clearly, this option with a as determined in (6.7) allows for choosing v to control the signs of both Rs
and Reto be positive. Additionally, this option with a determined as in (6.7) is very stable for choices
of o in relation to the structure of the leading viscosity coefficients Re and R7 as indicated in (6.4) and
(6.5).

6.2. Non-Leapfrog Space and Time Integration. By including the centroid value o in both temporal

and spatial non-leapfrog integrations, a similar version of the scheme (5.14) is derived as
1— 21/@, ~ 13(d6 + ¢8) — (P13 + d14) — 21(d1 + &5) + (21 + 90v)P7 + (42 — 1801) g

ok 78 90k
. (8 — 30v)(p1 — ¢5) — (23 — 30v)(ds — @) + 15p(d3 + b7 — 2¢h)
0 30h
_p(01205) — (95 = d6) | o T (06 0) + §(ds — do)
15(’0k2 “ ]"2
;1}362(013 + ) + 45;:)5626@7+ 30y— 14(01 + ¢5) — £(dhy — o5)
—kc, 2
)
126 (P13 + @14 + 8g + 8 — 18¢7) + 24(y + P5 — 2¢)
—PRTCy 2443
(9’513 -+ 6‘511 + 406 + 8(98 - 607)
+kPeq (150 — 8) 180h4
4 5 (4 s + @g) — (D13 + P14) — 67
—pk4(!{;( (¢ + ¢s) 2(4}1; h14) ¢7) + Fioo (6.10)

where Fs22is the corresponding quadrature discretization of the source term.
The leading terms of the local residual error which describe the different levels of numerical viscosities

associated with the discretization (6.10) are determined as

a*(2v+po) Bf 4 vot O'f af oNf 4
By = 2V T PO G T | I
& 203 o +{180q§ atr 9 o T ge dri}
Fp > f >’f »’f 5 6
{Brd < T4 d[" +04ld 157 Jr(}gz() 3012 --}h +O(fl ) (6.11)

where the associated leading viscosity coefficients are

(&)
R p—
5 36000
Cp

75600

{(1- a?)(35pa® — 360 4 700y + 10pa® — Ta? + 20va? + 1},

;= {(1 = 6%)(315p0° — 328¢* + 6300y + 315p0° — 28602 + 630v02 +92)}

Nonphysical Oscillation Regulation Strategies. As evident from the functional descriptions of Re and

R7, two approaches that may be pursued in regulating the nonphysical oscillations with the discretization (6.10)

include determining v for a given set of feasible values for o, Rs, R7, and utilizing choices p to control the
subsequent leading viscosity coefficients. For instance, consider the following options below:

1. Option One: The parameter v may be determined as a function of o, p and Rs to control the leading

dissipation error coefficient by
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17

~ 3600Rea + 1leo? — 36¢o% + 29¢co® — 10co?p — 25¢0°p + 35¢c0”p — 4de
B 10co?(2 — 7ot + 5a2) ’
(6.12)
where p can be chosen given o to render both Rs and R7 to be positive.
2. Option Two: On the other hand, v may be determined as a function of o, p and Re to control the leading
dissipation error coefficient by

(31507 — 3150%) — 3280515 + 42co? + 378co® + T5600R, — 92¢
630co2(1 — o?) ’

V=

(6.13)
where choices of g, p and Re may be utilized to control R7 or Rs etc.

7. Numerical experiments and analysis of schemes. To demonstrate the effectiveness of the
quadrature differencing approach for developing efficient spacetime schemes for the scaler conservation laws,
we present some of the results of our tests to illustrate local accuracy improvements, conservative skills, and
nonphysical oscillations reduction skills of the schemes.

The p—norm of the grid function error (global) on Q at time T, is defined as

N L/p
lu—¢llp = (hz [u(z;, T) — (2, T}P’)
i=0

(7.1)

where u(x,t) is the exact solution at time t and ¢(x,t) is the space-time numerical approximation of u(x,t) at
time t. Thus, ¢(x,T) is the numerical solution of the of the conservation law (2.1) on Q at the end of time
integration based on a spatial resolution h.
Consider the error erbased on a spatial resolution of h, measured at the end of a time integration T with
the L®norm Q according to
Ex=er(h) = ku - @ki.= Chr+ o(h") ash -0,
where C is independent of h. If h is sufficiently small, then
) — er(h)
er(h) ~ Chr, and er(%)

where r is the order of accuracy or the convergence rate.

~ 2"

Example 1. To demonstrate the higher level of local conservation and stability associated with the space-
time discretization approach through numerical experimentation, consider an initial distribution as the smooth
square pulse function

g(x) !

T 1Tt exp{80(lr — 05/ 015)}, Q@ =[0,1]

as used in the literature to characterize the accuracy of advection schemes [26].
Example 2. In this example, consider the initial condition for the advection equation (2.1) to be

Z@0 if x<t¢
if t<x<0.1
if 0.1<x 0.5
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h(z) =4 ° | Lsiv? () 0. Byl +exp(80x 0.2|-0.1) <

2 if 0.5<x<1
consisting of different flow regimes. We investigate the accuracies of handling advection along local
characteristics and regularization of the leading viscosity coefficient to control nonphysical oscillations
associated with jump discontinuities.

For f= 0, the equation (2.1) describes a pure advection and the exact solution is given by u(x,t) = g(x - ct)
where g(x) is the initial profile. We demonstrate the accuracies of the advection of g and h in Examples 1 and
2 above with T= 0.4 and c = 1 by the new schemes as different combinations of the parameters a and v are
utilized to regulate the leading viscosity coefficients of the residual errors for the associated schemes.

In the Figures demonstrating the oscillations reduction skills for the schemes, the resolution is taken as h
=1/50 with ¢ =1 and the time steps are calculated according to (3.6).

7.1. Nonphysical Oscillations Reductions. In this section, we discuss spurious oscillations reduction
skills of the schemes. The motivation is to develop higherorder accurate schemes that guarantee higher level
of computational accuracies and local conservation without the use of flux limiters. Thus, the discretization
has to ensure flow accuracies along local characteristics and the space-time design to derive the right
collocations of new updates for weighted quadratures of departure points guarantees a more accurate approach
to regulate local errors of dispersion and dissipation. Utilizing a general regular distribution of space-time
grid-points to approximate the advection equation generates both numerical dispersion and dissipation in the
associated residual errors for the schemes. By determining the accurate functional relationships of the leading
numerical dispersion and dissipation coefficients with collocation parameters allows for choosing such
parameters rightly to minimize the associated errors.

For instance, the second order leapfrog scheme is recovered from the discretization (5.1) with v=0 and a
= 0 and all the dissipative terms in the residual error are eliminated leaving (1 — 02) as a factor of the coefficient
of the dispersive terms. Hence, the spurious oscillations near regions of higher sensitivities may be reduced
by choosing o close to 1 in order to diminish the effects of the leading dissipative terms in the residual error.

On the other hand as discussed and analyzed in Sections 5 and 6, various options for selecting the
parameters v, @, and ¢ for the numerical schemes presented above including (5.1) may be determined to
produce diminishing effects on the dissipative and dispersive coefficients in the respective residual errors.

In Figures 7.1 through 7.4, we demonstrate the accuracies of transporting the smooth square pulse

described in Example 1 by the various advection schemes derived above.

—e=— Numerical Solution ——e— Numerical Solution
Exact Solution Exact Solution

gix-cl)
gix-cf)

o 0.2 0.4 0.6 0.8 1
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Fig. 7.1. Nonphysical oscillations regulation and control by scheme (5.1) with a = 0 and v = 0(Second-order Leapfrog scheme) for left graph, and

(1:l

[N

v=40 for the right. The CFL conditions are maintained at ¢ = 0.5 for the left with o = 0.9 for the right with the error Ex.= Kernkz, computed by (7.1).

The graphs in figure 7.1 are the result of advection by the second order leapfrog scheme with @ =0 and v

i

=01n (5.1) and both show significant nonphysical oscillations associated with large increases in

at o]
D1

as indicated by (5.3).

For the stabilized fourth-order leapfrog scheme with the leading coefficient of dispersion as L=

120 ,

there is Spurious oscillations with smaller amplitudes as shown in Figure 7.2.

—e=—— Numerical Solution —ea— Numerical Solution
Exact Solution Exact Solution
.8 o=0.5 2
E, ,=2.407e”

gle-c)

Fig. 7.2. The stabilized Leapfrog fourth-order scheme still produces the Spurious oscillations with smaller amplitudes.

However, with alternate choices for @ = 06 and v = 06 for the scheme (5.1) the nonphysical oscillations
are significantly reduced as demonstrated in Figure 7.3.

—e— Numerical Solution —e— Numerical Solution
Exact Solution Exact Solution
1
@=0.521,v=-0.011
0.8} 5-0.51,
E_=2.938e %
= x
g 0.6
2
=
0.4
0.2
O+ >
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1x x

Fig. 7.3. Nonphysical oscillations regulation and control by the three-point space-time family of schemes (5.1) with a = 0.9 and v = -0.56 on the left, and a
=0.521 v=-0.011 on the right. The CFL conditions are maintained at o = 0.9 for the left with ¢ = 0.51 for the right with the error Ex.= kernks, computed by
(7.1).

Clearly, the spurious oscillations associated with numerical solutions for advection schemes may be
controlled by the right space-time collocations of the grid functions in relation to the new updates.

Through similar alternate choices of @ and v, Figure 7.4 demonstrates the skill of reducing the nonphysical
oscillation for the third order temporal non-leapfrog scheme (5.14).
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—=s—— Numerical Solution ——a— Numerical Solution
Exact Solution Exact Solution

o=0.9, a=2.3,

Fig. 7.4. Nonphysical oscillations regulation and control by the three-point space-time family of schemes (5.14) with a = 0.2 and v = -0.1367 on the left,
and a=2.3 v = -2.2367 on the right. The CFL conditions are maintained at o = 0.9 for both graphs with the error Ey.= kersks, computed by (7.1).

As demonstrated in Figure 7.1 through Figure 7.4, it is clear that the nonphysical oscillations associated
with numerical solutions for the advection equation (2.1) may be regulated and effectively controlled for
higher-order schemes without flux limiters. By utilizing multiple time steps to constitute new updates, the
different courant numbers associated with the different time steps are coupled into the viscosity coefficients
through the multivariate space-time expansion of the equation error and hence in the residual errors. Therefore
a right averaging choice of a courant number for such numerical solutions may produce diminishing effects
on such viscosity coefficients and therefore minimize the errors of dissipation and dispersion.

Through the space-time expansion of the equation error subject to the higherorder derivatives of the
equation (2.9), the leading dissipation term in the expansion may be described as the rate of change of the
leading dispersion term and vice versa along local characteristics. Therefore the nonphysical oscillations may
optimally be controlled and regulated by regulating at least both of the leading coefficients of dissipation and
dispersion.

Additionally, by determining the exact functional relationships as illustrated in Figures 5.5 and 5.6, optimal
and feasible values for the CFL number o, the remaining quadrature parameters and sizes of the viscosity
coefficients may be determined in the respective schemes to minimize the oscillations in numerical solutions.

As discussed above in the strategies for regulating these oscillations, from Figures 5.5 and 5.6 and
equations (5.5) to (5.7), choosing the CFL condition number ¢ > 0.5 yields positive values for Rs(a) and Re().
Thus, feasible choices of R3(a) and R4(ar) may then be selected in order to determine the right collocation
weights for a and v according to (5.8) that regulate these leading viscosity coefficients to reduce and minimize
the nonphysical oscillations.

For instance, by selecting 0 = 0.514, R3= 7e-3 and R4+= le-4, the quadrature weights a and v in (5.1) are
determined respectively as 0.5008 and —0.015476 according to (5.8) and the numerical solution for the initial
condition profile in Example 2 produces the numerical viscosity coefficients [Rs, Re, R7] = [8.124, 0.7004,

0.384]e~*and the results are displayed in Figure 7.5.
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Fig. 7.5. Nonphysical oscillations regulation and control for scheme (5.1) with o = 0.514. Leading viscosity coefficients set as R3 = 7e-3, R+ = le-*and

quadrature weights determined by (5.8) as a = 0.5008 and v =-0.015476. Error is determined as kerrkz = 5.054e-3 with computational viscosity coefficients as

[Rs, Re, R7] = [8.124, 0.7004, 0.384]e-

= ]

Fig. 7.6. Nonphysical oscillations regulation and control for scheme (5.1) with ¢ = 0.514, leading viscosity coefficients in Residual error set as R3= 1.2e72,

Rs=1e~*and quadrature weights determined by (5.8) as a = 0.4792 and v = -0.014837, kerrkz = 2.1745e-2and [Rs, Rs, R7] = [11.138, 0.6754, 0.4528]e*

®— Numerical Solution|
! Exact solution

Fig. 7.7. Nonphysical oscillations regulation and control for scheme (5.1) with ¢ = 0.514, leading viscosity coefficients in Residual error set as Rz3= 7e3, Ry
= le-3and quadrature weights determined by (5.8) as a« = 0.5162 and v = -0.021724. kegnk2 = 1.558e-2

[Rs, Re, R7] = [10.943, 1.783, 0.6216]e-*

Fig. 7.8. Nonphysical oscillations regulation and control for scheme (5.1) with o = 0.514, leading viscosity coefficients in Residual error set as R3= 1.2e72,

R4=-1e-3and quadrature weights determined by (5.8) as a = 0.4947 and v = -0.021085. kernk. = 1.28879¢2
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[Rs, Re, R7] = [13.957, 1.758, 0.6903]e-*

Figures 7.5 to 7.8 demonstrate the nonphysical oscillation reduction skill for the temporal and spatial

leapfrog discretization (5.1) where new updates at time t"*1 are

constructed in time from a linear combination of three solution points at time ¢"-1 and two solution points at
time t” without the space-time centroid value.

Good selections for Rz and R4 are made based on the profiles from Figure 5.5 and Figure 5.6 which yield
significant reductions in the oscillations as shown in Figure 7.5. However, in Figures 7.6 and 7.7 the choice
ratios for R3to Rais slightly different resulting in the reappearance of the oscillations. In Figure 7.8, the
oscillations are reduced with larger values for R3and Ra4than in Figure 7.5 but with larger ratio.

Next, we discuss in Figures 7.9 to 7.11 the nonphysical oscillation reduction skill for the temporal non-
leapfrog discretization (5.14) where new updates at time t"*1 are constructed in time from a quadrature of three

solution points at both times "1 and t"including the space-time centroid value.

_ _

Fig. 7.9. Reduced and controlled oscillations for scheme (5.14) with ¢ = 0.45, leading viscosity coefficients in Residual Error set as R4 = 1e-3, R5 = 2e-4.
kezhkz = 1.1579e-2, [Rs, R7] = [2.0911, 0.3125]e*
Fig. 7.10. Oscillations appear for scheme (5.14) with o = 0.45, leading viscosity coefficients in Residual error set as Rs= 1e-3, Rs = —=2e~% kernk2 = 9.6674e73,

[Rs, R] = [1.0785, -0.0008107] e~

_

Fig. 7.11. Reduced and controlled oscillations for scheme (5.14) with ¢ = 0.48, leading viscosity coefficients in Residual Error set as R4 = -1e-3, R5 = —2e-4.
keTnk2 = 3.868e-3,
[Rs, R7] = [-4.732, -1.039]e-
For the non-leapfrog discretization (5.14), the profile of the viscosity coefficients displayed in Figures 5.7

and 5.8 guide the choices of ¢ < 0.5 and approaching 3 to maintain desirable small and positive values for
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leading viscosity coefficients. In Figure 7.9, both R4 and Rs were both set positive with R4 > Rs which produced
significant reductions in the oscillations as well as in Figure 7.11 where both are set negative. The oscillations
appear in Figure 7.10 when Rs s set negative demonstrating that both R4 and Rsneed to be controlled to reduce
the oscillations.

Next, we discuss in Figures 7.12 to 7.14 the nonphysical oscillation reduction skill for the temporal
leapfrog discretization (6.1) where new updates at time t"*1 are constructed in time from a quadrature of five

points at time t"-1and two points at time t” excluding the space-time centroid value.

_

Fig. 7.12. Reduced and controlled oscillations for scheme (6.1) with o = 0.48, leading viscosity coefficients in Residual Error set as

Ra=1e-3, R5 = 1e-4. kethk2 = 2.70e-2,

[Re, Ry, Rs] = [2.93, 1.04, -1.42]e-*

_

Fig. 7.14. Reduced and controlled oscillations for scheme (6.1) with ¢ = 0.48, leading viscosity coefficients in Residual error set as

_

Fig. 7.13. Oscillations appear for scheme (6.1) with o = 0.49, leading viscosity coefficients in Residual error set as
Ra=1e-3, R5 = -2e-4. keThk2 = 3.99¢-2, [Rs, R7, Rs] = [2.08, 0.667, -0.0592]e*
R4 =1e-3, R5 = —-1e-5. keThk2 = 2.63e-2,
[Rs, R7, Rs] = [1.983, 0.6208, -0.0381]e*
For the temporal leapfrog discretization (6.1), the functional profiles of the viscosity coefficients (6.4) and

(6.5) guide the choices of ¢ < 0.5 and approaching 3 to maintain desirable small and positive values for
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leading viscosity coefficients.

In Figure 7.12, both Rsand Rs were both set positive with R4 > Rs which produced significant reductions in
the oscillations as well as in Figure 7.14 where Rsis set negative. The oscillations appear in Figure 7.13 when
Rs is set negative with a slight change to 0 = 0.49 demonstrating relative sensitivity for scheme (6.1) and
compared to (5.2) and (5.14) for the five-point stencil at time t*-1.

Next, we discuss in Figures 7.15 to 7.17 the nonphysical oscillation reduction skill for the temporal non-
leapfrog discretization (6.10) where new updates at time t"*! are constructed in time from a quadrature of five

points at time t"-1and three points at time ¢” including the space-time centroid value.

_ _

Fig. 7.15. Nonphysical oscillations regulation and control by scheme (6.10) with o = 0.48. Leading viscosity coefficient in Residual error set as Ge¢= 6.6e~% as
in (6.12) with p = 0 with numerical results as Kernkz = 2.576€2 [Re, R7, Rs] = [6.6, 1.687, 0.1009]e-5
Fig. 7.16. Nonphysical oscillations regulation and control by scheme (6.10) with o = 0.48. Leading viscosity coefficient in Residual error set as G7= 1.2e-5as

in (6.13) with p = 0 with numerical results as kernkz = 2.60e-2, [Re, R7, Rs] = [5.61, 1.2, 0.158]e-5

_

0 0.2 0.4 0.6 0.8 1x

Nonphysical oscillations regulation and control by a different version of scheme (6.10) with o = 0.48.
Leading viscosity coefficients Gs and Ge similar to other options strategy described for scheme
(6.1) are set as Gs= 8e°, Ge= 1.1e™*, p = 0. Numerical resultsask kR, R, R, R

erpn 2 =250l [ 5 ¢ 7 = Tz = 257 14 5 6 7 s =
: 5 5.1, —2.1, 0.6, 0.107, —0.299]e~*
0.8, 11, 3.81, —0.13]e=> & 06, 0.107, —0.299)e

_
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Fig. 7.17. Nonphysical oscillations regulation and control by another version of scheme (6.10) with o = 0.48. Leading viscosity coefficients Gs, Gs and Ge
similar to other options strategy described for scheme (6.1) are set as Gs= 6.1e-4, Gs= -2.1¢*%, Gs= 6.0¢5, p = 0. Numerical results as
ke k e R,R,R,R,R

For the current quadrature description of (6.10), attempts to control the sizes of Gs and G7 separately as
described in (6.12) and (6.13) lead to similar profiles in Figures 7.15 and 7.16 respectively. By scaling back
the order of accuracy to allow for the control both Gs and Gs together as described above for the other schemes
leads to a similar profile in Figure 7.1. However, by controlling G4, Gs and Ges together leads to reductions in
the nonphysical oscillations as displayed in Figure 7.17.

7.2. Grid Refinement Analysis. To demonstrate rate of convergence and accuracy for the schemes,
consider the initial distribution as the smooth square pulse function in Example 1 as used in the literature to
characterize the accuracy of advection schemes [26].

For f= 0, the equation (2.1) describes a pure advection and the exact solution is given by u(x,t) = g(x - ct).
In demonstrating the convergence rate and accuracy of the schemes, the relationship between k and h which
describes the directions of the characteristics (3.6) is maintained to ensure consistent domains of dependence
at finer resolutions.

Experiment 1. In Table 7.1, we present the results of the computational experiments for the three-point
compact two-step family of split explicit schemes (5.1) which include the second-order leapfrog scheme with
a =0 and v= 0. As illustrated in Figures 3.1 and 3.2, the grid functions @1, @s, @s, @7, s are all within the

domain of dependence of ¢3. Therefore, updating ¢s from a quadrature of @1, @s, @e, @7 and @s where the

5=0.9 =0 .48 ‘ 5=0.9 ‘ 5=0.985 quadrature weights are indicated
V=0 y= -+ y= 1 in terms a v have been effective
h a=* rate q= b rate = 40 for the convergence rate and
; 285% 2 5.8703f 3 1.994 2 4.83895‘b 3 accuracy.
joﬁo 637% 3 2.16 868G * 2.76 373%3 243 938¢+ 237 v=0
;g 1L.39k 3 2.19 L1576+ 246 3.08%F* 3.60 5595 4.07 a=0 raterate
f 334+ 2.06 37425 2.07 336G 5 320 600k ° 3.22

Table 7.1

Grid refinement analysis for the three-point leapfrog in time discretization (5.1). Column one describes the Results in column one are for the second order
Leapfrog scheme.

Experiment 2. In this experiment, we further examine computational accuracy and convergence when
@3 is calculated from a wider numerical domain of dependence
[6] of @3 consisting of the grid functions @13, @14, @e, @sand @7at t"-1and @1, @s, at time step -1 which are
within the numerical domain of dependence.

The first column of Table 7.2 under LF-4 details the results for a new stabilized and improved leapfrog-

time fourth-order scheme where advection is calculated at the current time level t"using the four grid functions
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@1, s, @9 and @12 about the centroid.

For the other three columns,
h rate rate rate

1 | 1.819e2 1.388¢72 9.626e73 1.691e-3

advection is calculated using the
grid functions @1, @s, at the t"time

level and @6, @s at the "1 time
1 | 1.681e™3 3.44 | 1.930e3 2.85 | 1.888e73 2.35 | 3.120e~* 2.44 .
level. The new update ¢3, is
constituted from a  linear
1 | 9417e> 4.16 | 1.462e~* 3.72 | 6.108e~> 4.95 | 9.427¢76 5.05 o : .
combination of five grid point
functions at to—k as described in
1 | 7.399¢% 3.67 | 1.712e75 3.09 | 4.076e-¢ 3.91 | 4.063¢e7 4.54

(6.1).
400
L 6-009 52065 5=0.96 5=0.985
1F-A4 v=0 v=-_ v=-_
a= a= a= .
Table 7.2

Grid refinement analysis for the Five-point leapfrog discretization scheme (6.1).
8. Convergence analysis of schemes. To discuss stability and accuracy of the schemes, we describe the

set up of the fully explicit space-time finite volume discretization (3.3) about the centroid as

"r.'ﬁ_j|t,,_1 - E ﬂi®i|t,, - E -'Clii"f.-é'i|1‘“_1 + c(}{E ﬂi(_-"-l)i|;ru+(1;lh - E ‘r-}i(_-t’i|;rc|—r:hh}

Ty

+ > vifi + Ru (8.1)
i=0
where the weights ai, £i, ai, biand viare to be determined as functions of h, k and nvis the total number of the
cloud of grid points adopted for collocating the local source term on each control volume with Rikas described
in (3.8).
To achieve consistent higher order accuracies for the schemes, the local discretization must be effective
and consistent for the equation (3.3) such that
XXX X
ai= b ai=1,and vo=1 - Vi. (8.2)
The requirement (8.2) enforces local conservation of ¢ such that incoming and outgoing fluxes are balanced
out and enforced through the minimization process of the local discretization error about the centroid.

The levels of local flux conservation and hence accuracy depend of the size of the local grid point cloud
as illustrated above in Tables 7.1 and 7.2 where five-point discretization guarantees improved accuracy over
three-point discretization. Furthermore, the collocation parameters aiin (8.1) describe the relative influences
of the grid functions within the numerical domain of dependence at the current time step and which must be
wide enough to contain the analytical domain of dependence of the PDE [6,16].

In formulating the space-time discretization error as described, the space-time coefficients of the

dissipative and dispersive terms in the error are completely characterized in terms of the collocation parameters.
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Thus instead of discretizing such derivative terms to render the schemes diffusive, the collocation weights are
optimally determined to minimize the effects of such coefficients similar to vanishing viscosity approaches as
demonstrated in computational experimentations in Section 7. The multivariate space-time formulation of the
error ensures accurate coupling between spatial and temporal differencing to prevent grid splitting and the
associated spurious computational mode. As a result, the schemes include additional terms that describe grid
function communications between the initial time and the time-stepping levels.

9. Conclusion. We have demonstrated the effectiveness of using the finite volume method to develop new
effective higher-order space-time explicit schemes for scaler conservation laws capable of utilizing associated
viscosity coefficients in controlling nonphysical oscillations in numerical solutions. The uniform distributions
of grid-point clouds guarantees effective local higher order accuracy through efficient methods of conserving
fluxes locally. By using multivariate space-time expansions to approximate the solution and the source term
locally, higher-order accuracies along characteristics are ensured by determining and then regulating the
accurate descriptions of the leading viscosity coefficients in the space-time residual error. Conditions for
stability, accuracy and convergence may be established based on these closed form descriptions of the viscosity

coefficients and the residual error.

REFERENCES

[1] C.L.Bottasso. On the computation of the boundary integral of space-time deforming finite elements. Comm. Numer. Meth. Engrg., 13:53-59, 1997.

[2] B.Diskin and J. L. Thomas. Accuracy analysis for mixed-element finite-volume discretization schemes. NIA Report NO. 2007-08, 2007.

[3] D.A. French. A space-time finite element method for the wave equation. Comput. Methods. Appl. Mech. Engrg., 107:145-157,1993.

[4] S.Gabersek and D. R. Durran. Gap Flows through Idealized Topography. Part II: Effects of Rotation and Surface Friction. J. Atmos. Sci., 63:2720-2315,
2006.

[5] J.L. Guermond, R. Pasquetti, and B. Popov. Entropy viscosity method for nonlinear conservation laws. J. Comput. Phys., 230:4248-4267, 2011.

[6] M.T. Heath. Scientific Computing, An Introductory Survey. McGraw-Hill, New York, 2002.

[7] K.Ito,Y.Kyei, and Z. Li. Higher-Order, Cartesian Grid Based Finite Difference Schemes for Elliptic Equations on Irregular Domains . SIAM J. Sci. Comput.,
27:346-367,2005.

[8] C.Katz and A. Jameson. A Comparison of Various Meshless Schemes Within a Unified Algorithm. 47th AIAA Aerospace Sciences Meeting including The
New Horizons Forum and Aerospace Exposition, 2009-897, 2009.

[9] E.P.C.Koh, H. M. Tsai, and F. Liu. Euler Solution Using Cartesian Grid with a Gridless Least-Squares Boundary Treatment. AIAA Journal, 43(2), 2005.

[10] Y.Kyei. Space-time finite volume differencing framework for effective higher-order accurate discretizations of parabolic equations. SIAM J. Sci. Comput.,
34(3):A1432-A1459, 2012.

[11] Y. Liu, M. Vinokur, and Z.J. Wang. Spectral (finite) volume method for conservation laws on unstructured grids V: Extension to three-dimensional
systems. J. Comput. Phys., 212:454- 472, 2006.

[12] F. Lorcher, G. Gassner, and C. D. Munz. An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations. J.
Comput. Phys., 227:5649-5670, 2008.

[13] Y. Lv, Y. C. See, and M. Ihme. An entropy-residual shock detector for solving conservation laws using high-order discontinuous galerkin methods. J.
Comput. Phys., 322:448-472, 2016.

[14] C. Mattiussi. The finite volume, finite element, and finite difference methods as numerical methods for physical field problems. Advances in Imaging

and Electron Physics, 113:1- 146, 2000.

International Journal for Innovation Education and Research Vol.12 No.3 (2024), pg. 52



https://scholarsjournal.net/index.php/ijier

A Residual-Based Numerical Viscosity Regularization Approach for Higher-Order Finite Volume
Discretization of Scalar Hyperbolic Conservation Laws

[15] C. Mattiussi. The Geometry Of Time-Stepping. Progress In Electromagnetics Research, PIER 32:123-149, 2001.

[16] F.Messenger and A. Arakwa. Numerical methods in atmospheric models. GARP Publications Series No. 17, New York, 1976.

[17] S.Mittal and T.E. Tezduyar. Notes on the stabilized space-time finite-element formulation of unsteady incompressible flows. Comput. Phys. Commun.,
73:93-112,1992.

[18] E.Onate and M. Manzan. A general procedure for deriving stabilized space-time finite element methods for advective-diffusive problems. Int. J. Numer.
Meth. Fluids, 31:203-221, 1999.

[19] M. Piller and E. Stalio. Finite volume compact schemes on staggered grids. . Comput. Phys., 197:1064-1094, 2004.

[20] M. Restelli, L. Bonaventura, and R. Sacco. A semi-lagrangian discontinuous galerkin method for scalar advection by incompressible flows. J. Comput.
Phys., 216:195-215, 2006.

[21] J. Santos and P. de Oliveira. A converging finite volume scheme for hyperbolic conservation laws with source terms. J. Comput. App. Math., 111:239-
251,1999.

[22] V.A. Titarev and E.F. Toro. ADER Schemes For Hyperbolic Conservation Laws With Reactive Terms. J. Comput. App. Math., 111:239-251, 1999.

[23] E.F. Toro and V.A. Titarev. Derivative Riemann solvers for systems of conservation laws and ADER methods. J. Comput. Phys., 221:693-723, 2006.

[24] A.K.Verma, S. M. Bhallamudi, and V. Eswaran. Overlapping control volume method for solute transport. J. Hydr. Engrg., 5:308-316, 2000.

[25] E.Weinan and B. Engquist. Multiscale Modeling and Computation. Notices Of The AMS, 50(9):1062-1070, 2003.

[26] L.]J. Wicker and W. C. Skamarock. Time-Splitting Methods for Elastic Models Using Forward Time Schemes. Mon. Wea. Rev., 130:2088-2097, 2002.

[27] M. L. Yu, F. X. Giraldo, and M. Pengand Z. ]. Wang. Localized artificial viscosity stabilization of discontinuous galerkin methods for nonhydrostatic
mesoscale atmospheric modeling. J.

Comput. Phys., 143,2014.

International Journal for Innovation Education and Research Vol.12 No.3 (2024), pg. 53



https://scholarsjournal.net/index.php/ijier

	A Residual-Based Numerical Viscosity Regularization Approach for Higher-Order Finite Volume Discretization of Scalar Hyperbolic Conservation Laws
	Abstract
	1. Introduction
	Space, x Space, x

