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Abstract 

 

The synchronization in large populations of interacting oscillators has been observed abundantly in nature, 

emergining in fields such as physical, biological and chemical system. For this reason, many scientists are 

seeking to understand the underlying mechansim of the generation of synchronous patterns in oscillatory 

system. The synchronization is analyzed in one of the most representative models of coupled phase oscillators, 

the Kuramoto model. The Kuramoto model can be used to understand the emergence of synchronization in 

nextworks of coupled, nonlinear oscillators. In particular, this model presents a phase transition from 

incoherence to synchronization. In this paper, we investigated the distribution of order parameter γ which 

describes the strength of synchrony of these oscillators. The larger the order parameter γ is, the more extent 

the oscillators are synchronized together. This order parameter γ is a critical parameter in the Kuramoto model. 

Kuramoto gave a initial estimate equation for the value of the order parameter by giving the value of the 

coupling constant. But our numerical results show that the distribution of the order parameter is slightly 

different from Kuramoto’s estimation. We gave an estimation for the distribution of order parameter for 

different values of initial conditions. We discussed how the numerical result will be distributed around 

Kuramoto’s analytical equation. 

 

Introduction 

 

In the past decades, the synchronization in complex networks has been a research topic in many areas of physics, 

biology and engineering [References]. Synchronization is the process by which interacting, oscillating objects 

affect each others phases that they spontaneously lock to common frequency. In other words, each oscillators 

frequency has locked onto the same values as all the other oscillators [References]. Synchronization has been 

observed in many real-world systems, such as networks of pacemaker cells in the heart [2, 43], circadian 

pacemaker cells in the suprachiasmatic nucleus of the brain [3] and stellate cells in the entorhinal cortex layer 

II of the brain [1], large populations of fireflies [4], superconductors [11], laser light [44] and microwave 

oscillators [6]. 

Synchronization always related to ”rhythm”, and it also means some interaction or coupling of oscillating 

systems. If we have an active oscillating system, it contains an internal source of energy that is transformed into 

oscillatory movement. The oscillators continue to generate the same rhythm until the source of energy expires. 

In 2- oscillators system, There are two basic types of synchronization: Anti-phase and in-phase synchronization. 

In both cases, an oscillator is locked in a fixed position comparing to the other one, and both of the oscillators 

are moving in a rotating frame. In a large oscillators system, if a number of oscillators are gathered together, 

we usually consider one cluster to be one single oscillator. There is one article describe synchronization 

problems [33], they address mechanical oscillators and dynamical systems. Another precise and mathematical 

introduction to the emergence of synchronization can be found in [13, ?], which include some interesting 

synchronization like fireflies flashing together. We can find an introduction to the synchronization theory 

illustrated by various biological examples like transcranial brain stimulation given in [34], [15] [46]. A theory 

of synchronization of self-sustained oscillators was developed Stratonovich[9]. The influence of noise on 
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mutual synchronization of two oscillators and the effect of fluctuating parameters are described by A. N. 

Malakhov [10]. 

Among many models that have been proposed to address synchronization phenomena, one of the most 

successful models is the Kuramoto model [18]. Y.Kuramoto developed this model in phase approximation that 

allows a description of globally coupled oscillators. This model can be used to understand the generation of 

synchronization in large networks of coupled, nonlinear oscillators. it also represent a synchronization in large 

populations and synchronization of distributed systems. In particular, this model presents a second-order phase 

transition from incoherence to synchronization. Kuramoto model describes a phase interaction which generates 

some interesting synchronization phenomena for globally weak coupling of large number of nonlinear 

oscillators. Kuramoto found that there is a certain value of the coupling constant, KC, we call it a critical value, 

above which synchronization can occur, and below which it cannot. For any distribution of the natural 

frequencies of the oscillators, he was able to calculate KC. For example, for a Lorentzian distribution of natural 

frequencies, KC is just equal to the full width at half-max of the Lorentzian curve. For other distributions, the 

formula for KC is more complex, but we can still calculate it [8]. 

 

Kuramoto model 

 

In the 1960s, scientists began to build mathematical models for synchronization in many natural systems. 

Particularly, Arthur Winfree’s model become very popular. He gave a model in which each oscillator’s phase 

is determined by combining the state of all of the oscillators. In his model, the rate of change of the phase of an 

oscillator is determined by its own natural frequency ωi and the state of all of the other oscillators combined. 

Each oscillator’s sensitivity to the combination is represented as a function Y, and its own contribution to the 

combination is given by a function X. Then each oscillator has an equation to describe how its phase changes 

[12] [13] [14]: 

N 

 θi′ = ωi + ∑X(θj)Y (θi) (1) 

j=1 

2 

Here θi is the phase of oscillator, θ˙
i is the rate of change of phase of oscillator, ωi is the natural frequency of 

oscillator i, and N is the total number of oscillators. 

Winfree made numerical simulations and analytical approximations for this model and found that if the coupling 

is large enough, the oscillators could synchronize. 

In 1975, Japanese scientist Yoshiki Kuramoto was inspired by Winfree’s works, and he began exploring the 

behavior of collective synchronization. He used the following assumptions: 

1. The oscillators are almost identical. 

2. The coupling among oscillators is small. 

After some complicated mathematical averaging, he proved that long term dynamics of any system of almost 

identical, weakly coupled limit cycle oscillators system have the following govern equation [8, 13]: 

  (2) 

Here the interaction function Γij determines the form of coupling between oscillator i and oscillator j. 

Kuramoto assumed that each oscillator take part in the affecting other oscillators. He called the interaction 

”global coupling”. 

He further assumed that the coupling were equally weighted can be expressed by a sin function of the difference 

of phases. 
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  (3) 

This derives the govern equations for Kuramoto model: 

  (4) 

Here K is the coupling constant, and N is the total number of oscillators. The model assumed that N is very 

large, i.e large number of oscillators. The natural frequencies ωi distributed by a probability density function 

g(ω), and it is symmetric about some value Π: g(Π+ω) = g(Π−ω). 

To simplify the governing equation of Kuramoto model, we need to define the order parameter, the order 

parameter describes the ”mean field of the system”. 

Let us write the governing equations of Kuramoto model in terms of order parameter: 

  (5) 

Here ψ is the average phase of all the oscillators. 

The order parameter γ is distributed between 0 and 1. When γ = 1, we say that the oscillators are asynchronous, 

it also means their phases are completely spread around the unit circle. The synchrony measure γ is also called 

the phase coherence. 

 

The formulations of the Relations between the Order Parameter r and the Critical Point Kc 

 

The modulus of r, is a measure of the coherence of the oscillator system, it describes how close the oscillators 

are together. If we increase the order parameter, the phases of the oscillators will get closer together. The graphs 

in Fig. 1 show the order parameter being an arrow pointing from the center of the circle. 

Let us consider (5): Multiplying both sides by e−iθi we get: 

  (6) 

  (7) 

Therefore, Equation (4) may be rewritten as 
 

θ˙
i = ωi + Kr sin(ψ − θi) for i = 1,2,...N. 

The corresponding stationary density: 

(8) 

  (9) 

A 

 r= 0.2490 r= 0.6056 
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 0 0.5 1 1.5

  
B 

 r= 0.9413 r= 0.9907 

 0 0.5 1 1.5

  
Figure 1: The order parameter is represented by the vector pointing from the center of the unit circle. 
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Here H(x) is the Heaviside unit step function. 

We take the natural frequency density function to be the Lorentzian density, defined as 

  (10) 

Actually r(t) does not depend on time or ψ(t) and ψ(t) rotates uniformly at an angular frequency ϕ. We can set 

up a frame of reference that is rotating at the same frequency. Hence r(t) is stationary. So we can set ψ(t) to any 

constant value. Without loss of generality, set ψ(t) ≡ 0 in the rotating frame. So we get 

θ˙i = ωi − Kr sinθi 

and correspondingly, the stationary density function is 

(11) 

  (12) 

then 

 
According to (12) 

ρ(θ + π,−ω) = ρ(θ,ω) 

Compute the contribution of unlocked oscillators: 

 π −Kr 

 < eiθ >unlock =∫ eiθρ(θ,ω)g(ω) dω dθ (13) 

−π π−∞∞ iθ 

 + ∫ ∫ e ρ(θ,ω)g(ω) dω dθ 

 −π Kr 

=I1 + I2 

where 

 π −Kr 

 I1 =∫ eiθρ(θ,ω)g(ω) dω dθ 

 −π −∞ 

= −∫ eiθρ(θ,−ω)g(−ω) dω dθ π  Kr 

 −π ∞ 

Let θ′ = θ − π, then 

 
Since ρ(θ′ + π,−ω) = ρ(θ′,ω), g(−w) = g(w), eiπ = −1, we hence have 

 
Because the periodic boundary condition, we can shift θ′ interval with any constant. So we can shift the integral 

interval to right with π. 

So 

  (14) 

According to (13), 

< eiθ >unlock= I1 + I2 = 0 

So the unlocked oscillators have no contributions. 

The locked oscillators are centered symmetrically on 0, therefore < sinθ >lock= 0 and 

∫ 

∫ 

∫ 
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 r =< eiθ >lock = < cosθ >lock 

Kr 

=cos(θ(ω))g(ω)dω −Kr 

Consider (11) and (12) 

  (15) 

This implies 

 
When make r → 0+ in the above equation, we can find the critical point Kc at which the order parameter rises 

from zero. 

 
Hence 

  (16) 

Plug in (10): the function of g(w) 

 
Therefore we have 

 
Kr2 = −γ + √K2r2 + γ2 

and hence 

 . (17) 

To make the process of synchronization clear, the graphs Fig. 2 shows how the order parameter r rises as the 

coupling K between oscillators is increased. Numerical curves are taken from 500 oscillators with natural 

frequencies distributed with Lorentzian distribution: 

Numerical and Theoretical curve of phase synchronization 

∫ 
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Figure 2: Numerical curve and analytical curve for order parameter by changing K 

 
with γ = 0.5. Analytical curve is given by (17), according to (16), Kc = 1. 

There is another way to visualize the synchronization: There are three graphs in Figure 3. The oscillators are 

numbered from the lowest to highest natural frequency, natural frequencies also distributed by Lorentzian 

distribution. 
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Figure 3: The synchronize phase θn of 2000 oscillators, take K=0.7, 1, 1.5 

 
with γ = 0.5. 

So 

 
, We can see obvious partial synchronization at or above Kc. 

Results 

The Density Functions of Locked Terms and Unlocked Terms 

To prove that the locked terms and unlocked terms are independent, we first try to get the probability density 

function of locked terms and unlocked terms separately. 

Suppose the probability density function of locked terms is f(y), then it satisfies the following equation: 

P(y ≤ cosθ ≤ y + dy| θ locked) = f(y) dy 

 
For y > 0, 

 
This derives 

 

 

Let  

As dy → 0, α → 0, α → tanα 

So 
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As dy → 0, 

 
This derives the density function: for 0 ≤ y ≤ 1, 

 
The density function of unlocked term satisfies: 

P(y ≤ cosθ ≤ y + dy| θ unlocked) = f¯(y) dy 

For 0 ≤ y ≤ 1, y ≤ cosθ ≤ y + dy. 

So  

or  

 
So 

 
Which derives 

 
So 

 

 
As dy → 0, dθ → 0, I1 → 0, I2 → 0 
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This derives 

 
Similarly, for −1 ≤ y < 0, 

 
⇒ 

 
⇒ 

 
So we have the density function f for 

locked part and f¯ for unlocked part: 

(18) 

(19) 

To prove the locked terms are 

independent, we want to show that the sum of any two locked terms satisfies the analytical probability density 

function derived by convolution law: 

If X and Y are two locked terms, Z is the sum of X and Y: 

Z = X + Y 
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∞ 

 −∞

 −∞ 

⇒ 

 
Similarly, to prove the unlocked terms are independent, we can also get the analytical probability density 

function of two unlocked terms by the convolution law: 

If X¯ and Y¯ are two unlocked terms, Z¯ is the sum of X¯ and Y¯: 

Z¯ = X¯ + Y¯ 

∞ 

 E(etz¯) = ∫ etufz¯(u)du (23) 

−∞ 

 ∞ ∞ 

 = ∫ ∫ etx¯ety¯fx¯(¯x)fy¯(¯y)dxdu¯ (24) 

 −∞ −∞ 

 ∞ ∞ 

 = ∫ etu ∫ fx¯(¯x)fy¯(u − x¯)dxdu¯ (25) 

 −∞ −∞ 

⇒ 

 
In the following figures, we compare the numerical and analytical result for the density functions, the numerical 

result of density function for one oscillator satisfies the analytical result very well. The analytical density 

function of the sum of two locked oscillators and two unlocked oscillators are given by convolution law 

separately, and we also compare the results, the numerical curve also approximate the analytical curve very 

well. This shows the locked oscillators are independent and unlocked terms are also independent. 

 
Figure 4: Comparison of the numerical and analytical density function for the locked oscillators and the sum of 

two locked oscillators 
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Figure 5: Comparison of the numerical and analytical density function for the unlocked oscillators and the sum 

of two unlocked oscillators 

The Distribution of Order Parameter r 

If we set ψ ≡ 0 (in a rotating frame), then  

The order parameter satisfies the following equation: 

 . (26) 

According to the analysis on the drift term, we know that the contribution of the drift term is 0. Namely 

r =< cosθ >lock + < cosθ >unlock 

≈< cosθ >lock 

There are totally N terms θ1,θ2,...θN. Without loss of generality, we suppose the first n terms θ1,θ2,...θn are 

synchronized, and the last N −n terms θn+1,θn+2,...θN are not synchronized. Here 

0 < n < N. 

From equation (26), we get 

  (27) 

Suppose , 

then 

S1 + S2 = S = Nr 

and 

S2 ≈ 0, S1 ≈ S = Nr 

. 

For a fixed number N, if we also fix a series of natural frequency ω1,ω2,...ωN, and these series of natural 

frequency satisfies the Lorentzian distribution very well-proportionally, the density function is 

 
. 

Take different series of initial values of θj, j = 1,2,...N. 

These series of θj are taken randomly which satisfy uniformly distribution. We will get different values of order 

parameter r for each series of θj, j = 1,2,...N. 

Question: When the value of N is very large, what is the distribution of the value of order parameter r? 

When N is large, n and N-n are large. According to central limit theorem, 
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. Here µ1 and σ1 are the mean and variance of locked terms cosθj, j = 1,2,...n. 

 
Here µ2 and σ2 are the mean and variance of unlocked terms cosθj, j = n + 1,n + 2,...N 

We know that S1 and S2 both satisfy Gaussian distribution. From equation (27) the order parameter 

 
is the linear combination of Gaussian distributed functions. So r also satisfies Gaussian distribu- 

tion. The variance of and the variance of ), 

σ satisfies the following equation: 

 
. 

So the question is reduced to calculate the value of σ1 and σ2. σ1 is the variance of locked terms 

cosθ1,cosθ2,...,cosθn. σ1 = V ar(θ)locked = E(cos2 θ)locked − (E(cosθ)locked)2 

  (28) 

Here 

 

 
Plug these results into the equation (28), we can get 

  (29) 

The variance of unlocked terms is 

σ2 = V ar(θ)unlocked = E(cos2 θ)unlocked − (E(cosθ)unlocked)2 

 
and 

 

Here . 

These integrals are relatively hard to simplify, but we can use numerical methods to get the variance of the 

unlocked terms. The variance of order parameter  

i.e 
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  (30) 

Taking 1000 series of uniformly distributed initial values θ1, θ2, ... θN, we can get 1000 values of order parameter 

r. The order parameter r approximately satisfies Gaussian distribution, the equation for this distribution is (30). 

The graphs in Figure 6 compare the LHS of (30) with N(0,1) (standard normal distribution). The blue line is the 

density function of standard normal distribution, the red line is the density function of the distribution of LHS 

function. 

Conclusion 

Kuramoto model is important for us to understand the dynamics of synchronization among genetic oscillators. 

Kuramoto already give a theoretical predict for the order parameter γ which describes 

 N=1000, k=5.2 N=1000, k=6 N=1000, k=6.5 
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Figure 6: Comparison of distribution of order parameter and normal distribution 
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the strength the oscillators are coupled together. Our main purpose here is to further predict the numerical 

distribution around Kuramoto’s theoretical prediction. To have a comprehensive understanding on the 

synchronization of all coupled oscillators, we investigated the density function for synchronized and 

unsynchronized oscillators individually. We found that when the number of oscillators is very large, in a rotating 

frame, the sin function of oscillators made no contribution to the order parameter. So we just need to consider 

cos function for these oscillators. We also found that the mechanism of the order parameters generated from 

these synchronized oscillators have their own distribution pattern. Basically, the distribution of numerical result 

of order parameter will satisfy a Gaussian distribution around Kuramoto’s analytical prediction. When we make 

a comparison of the numerical result with the Gaussian distribution, Fig 6. shows that the numerical result 

basically coinside with a Gaussian distribution. 
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