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Abstract

The Mulatu numbers were introduced in [1]. The numbers are sequences of numbers of the form: 4,1,
5,6,11,17,28,45... The numbers have wonderful and amazing properties and patterns.
In mathematical terms, the sequence of the Mulatu numbers is defined by the following recurrence relation:

4 if n=0;
M, = 1 if n=1
M +M_, if n>1,

The double Angel Formulas for Fibonacci and Lucas numbers are given by the following formulas
respectively.
5F % + L

2

Since both the Fibonacci and Lucas numbers have double angle Formulas, It is natural to ask if such formula
exist for Mulatu Numbers. The answer is affirmative and produces the following paper.

(1) F,=FL, and (2 L,, =

2000 Mathematical Subject Classification: 11

Key Words: Mulatu numbers, Mulatu sequences, Fibonacci numbers, Lucas numbers, Fibonacci sequences, and
Lucas sequences.

1. Introduction and Background.

As given in [1], the Mulatu numbers are a sequence of numbers recently introduced by Mulatu Lemma, an
Ethiopian Mathematician and Professor of Mathematics at Savannah State University, Savannah, Georgia,
USA. The Mulatu sequence has wealthy mathematical properties and patterns like the two celebrity

sequences of Fibonacci and Lucas.

In this paper, more interesting relationships of the Mulatu numbers to the Fibonacci and Lucas numbers will be
presented.

Here are the First 21 Mulatu, Fibonacci, and Lucas numbers for quick reference.
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Mulatu(Mn), Fibonacci(Fn) and Lucas(Ln) Numbers

(Tables 1 & 2)

Table 1

Table 2

Remark 1: Throughout this paper M, F, and L stand for Mulatu numbers, Fibonacci numbers, and Lucas
number respectively.

The following well-known identities of Mulatu numbers, Fibonacci numbers, and Lucas numbers are required
in this paper and hereby listed for quick reference.

ML =F,+F,
@ F.,=F +F_
3) an = Fn I—n
@) L, =F +2F

L.,+L

5

®6)L,,=L,+L,,

) Fn+k = Fn—le + Fn Fk+1

(8) 5F2, —L% =4(-1)"™

L SRR LL,
(9) ~™mm 2

) F, =

(10) Mo =FaM =M, F

The Main Results.
We will state the following theorem proved in [1] as proposition 1 and use it.
Proposition1l. M =F ,+F ,+F, .,
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Theorem 1: The following are equivalent.
1) M,

(2) F ;+F ,+F
(3) L, +2F

(4) F +4F

(5) 4F 3F,

n+2

Proof: We will show that (1)= (2) =@3) = @) =5) =(1)

(1) (1)= (2) follows by Proposition 1.
(i) (2) )= (3) follows as shown:
FostFot P =F st Pt FatF,
=F tF L tF+F L +F
= Fn—l_ anz + Fn—1+ Fn+l+ Fn—l + anz
=2F ,+L,
(iii)(3) = (4) follows as shown:
L +2F ,=F _,+F ,+2F |
=F,+F , +F ,+2F
=F +4F
(iv) (4) = (5) follows as shown:
F,+4F =F +4(F ,-F.)

n-1

= 4F -3F n
(v) (5) =(1) follows as shown:
4F n+1_3F n = 4F n+l_3(F n+l_F n—l): F n+1+3 F 1= F na ¥ F et F nat F n-1

:Fn+1+ (Fn_Fn—2)+ I:n—l+|: +F

n-3 n—2 = I:n+l+I:n_Fn—2+Fn—l-i-Fn—C?;-i-I:

n-2

=F.,*tF. ,+F. _;=M_ byProposition 1 and hence) (5) = (1). Thus the theorem is proved.

Theorem2: L,*> =F_ (M, +F )-F,

n+l
Proof: L = (F +2F, )?=F’+4F F_ +4F

=-F (F,+2F, )+ (F +F ,)(F, +4F )+F’+F F_,

=-F L +F M +F (F+F)

=-F L+F. M +F_ F)
=-F L+F (M +F)
=F (M, +F)-F L,
= F,(M,+F)-F,

Hence the theorem is proved.
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Theorem3. M2= F, +6F _, F +16F%1

Proof: M? =MM = (L, +2F, ,)(F, +4F, )
= L F, +4F (F +2F )+2F F +8F%
=F,, +6F ,F +8F%1+8 F1
=F,, +6F, , F +16 F*,
Hence, the theorem is proved.

Lemmal. F, =F%+F%

Proof: Applying (7) above, we have F, ,=F . , = F2na+F2%

Lemma2. M, ,=F, ,+5F

Proof: using (10) above, we have
M.,= F. M +FM,=F , +5F,.

Theorem 4. The following are equivalent.
1. M,
2. F, +4F, |
3.4F, .- 3F,,
4. L, +2F

2n-1
OF %, + L% +4F %4
2
6. M L +5F?% -L%

5.

Proof (1)= (2) = (3)= (4) follows by Theorem 1. We will suffice to show that

@=0)=®)=>Q1)
. 5F2n + LG
(i) (4= (5). Note that Using (9) above and lemma 1, we have L ,, +2F2”’1:T +2F% +2 F %0
_9F %+ LA +4F %y
> :
(i)  (5)=(6). We show this using Theorem 3 and Lemmal.

Note that

OF % + L% +4F%1  5F% + L%, N
2

2F %, +2F%4

= I-2n + 2F2n—l: I:2n + 2F2n—1 + 2F2n—1 = I:n I-n +4 I:2n—1

=F,(F,+2F,,) +4 F?1+4F?%,=5F% +4F%, +2F ,F,=
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= (F%+8F%.1+6F, , F )+5F% -(F? «+4F , F +4F% )
= ( I:n +4Fn—1)(Fn +2Fn—1) +5F2” '( I:n +2 Fn—l) ?

=M, L, +5F%- L%,

D) (6)=>(1). We show this using Theorem 3 and Lemma 2.

Note that
M, L, +5F%-L%= M,L,-L*+5F%
=M, L, -(F +2F ,)*+5F%

= M,L, -(F?.+4F _ F +4F* )+ 5F%

=M,L, -(F,+F,_)(F, +4F _)+FF _ +5F%

= M,L,-F

n+1

M, +F F _ +5F%
=M, (L,-F,.) +F,(F_,+5F)
=M, F, +FM_,
=M,,..=M, .

Hence, (6)= (1) and the theorem is proved.

Corollary 1: M, = M L ++4(-1)™

Proof: The corollary easily follows by Theorem 4, using (8) above.
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