A Note on The Abel Matrix Transformations

Mulatu Lemma, Latrice Tanksley, Keisha Brown
Department of Mathematics
College of Science \& Technology
Savannah State University
USA

Abstract

Let t be sequence in $(0,1)$ that converges to 1 . The Abel matrix is defined as $a_{n k}=\left(1-t_{n}\right)^{k} t_{n}$. We denote the Abel Matrix by A_{t}. A_{t} is a sequence to sequence mapping? When a matrix A_{t} is applied to a sequence x, we get a new sequence $A_{t} x$ whose nth term is given by: $$
\left(A_{t} x\right)_{n}=\left(1-t_{n}\right) \sum_{k=o}^{\infty} t_{n}^{k} x_{k}
$$

The sequence $A_{t} x_{\text {is called the }} A_{t \text {-transform of the sequence x. }}$ The purpose of this research is to investigate the effect of applying A_{t} to convergent sequences, bounded sequences, divergent sequences, and absolutely convergent sequences. We considering and answer the following interesting main research questions.

Research Questions.

(1) What is the domain of t for which $A_{t \text { maps convergent sequence into convergent sequence? }}$
(2) What is the domain of t for which the A_{t} maps absolutely convergent sequence into absolutely convergent sequence?
(3) Does A_{t} maps unbounded sequence to convergent sequence?
(4) Does $A_{t \text { maps divergent sequence to convergent sequence? }}$
(5) How is the strength of the A_{t} comparing to the identity matrix?

Notations and Background Materials

$\mathrm{w}=\{$ the set of all complex sequences $\}$
$c=\{$ the set of all convergent complex sequences $\}$
$c(A)=\{\mathrm{y}: \mathrm{Ay} \in \mathrm{c}\}$
$l=\left\{\mathrm{y}: \sum_{k=0}^{\infty}\left|y_{k}\right|<\infty\right\}$
$l(A)=\{\mathrm{y}: \mathrm{Ay} \in l\}$

Regular Matrix

A matrix is regular if $\lim _{n \rightarrow \infty} Z_{n}=\mathrm{a} \Rightarrow \lim _{n \rightarrow \infty}(A X)_{n}=\mathrm{a}$. That is a sequence Z is convergent to $\mathrm{A} \Rightarrow$ the $\mathrm{A}-$ transform of Z also converses to a.

The Sliverman-Toeplitz Rule

We state the following famous Sliverman-Toeplitz Rule as Proposition I without proof and apply it.
$\underline{\text { Proposition I: A matrix A }}=\left(a_{n, k}\right)$ is regular if and only if
(i) $\lim _{n \rightarrow \infty} a_{n, k}=0$ for each $\mathrm{k}=0,1, \ldots$,
(ii) $\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} a_{n, k}=1$, and
(iii) $\sup _{n}\left\{\sum_{k=0}^{\infty}\left|a_{n ; k}\right|\right\} \leq M<\infty$ for some $M>0$.

The Main Results

Theorem 1: The Abel Matrix A_{t} is a regular matrix for all t .
Proof: We use proposition 1 to prove the theorem. Note that
(1) $\lim _{n \rightarrow \infty} a_{n, k}=\lim _{n \rightarrow \infty}\left(1-t_{n}\right)^{k} t_{n}=0$
(2) $\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} a_{n k}=\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} t_{n}{ }^{k}\left(1-t_{n}\right)=\lim _{n \leftarrow \infty}\left(1-t_{n}\right) \sum_{k=0}^{\infty} t_{n}^{k}=\frac{1-t_{n}}{1-t_{n}}=1$ and
(3) $\operatorname{Sup}_{n} \sum_{k=0}^{\infty} a_{n, k}=1$

Hence by Proposition I, the Abel Matrix A_{t} is a regular matrix.

Remark 1: The A_{t} matrix maps a bounded sequence into a convergent sequence as shown by the following example. This shows that the A_{t} matrix is stronger than the identity matrix or $\mathrm{c}(\mathrm{A})$ is larger than c .

Example 1: Consider the bounded sequence given by $x_{k}=(1)^{k}$
Then $\left(A_{t} x\right)_{n}=\left(1-t_{n}\right) \sum_{k=0}^{\infty}\left(t_{n}\right)^{k}(-1)^{k}$

$$
\begin{aligned}
& =\left(1-t_{n}\right) \sum_{k=0}^{\infty}\left(-t^{n}\right)^{k} \\
& =\left(1-t_{n}\right) \frac{1}{1+t_{n}}
\end{aligned}
$$

$$
\left(A_{t} x\right)_{n}=\frac{1-t_{n}}{1+t_{n}} \Rightarrow \lim _{n \rightarrow \infty}\left(A_{t} x\right)_{n}=0 ; \text { hence } A_{t} x \quad c
$$

Remark 2: Thee A_{t} matrix maps also a divergent sequence x into a convergent sequence as shown by the following example.

Example 2: Consider the unbounded sequence given by $x_{k}=(1)^{k}(k+1)$. Note that

$$
\begin{aligned}
\left(A_{t} x\right)_{n} & =\left(1 \quad t_{n}\right) t_{n}^{k}(1)^{k}(k+1) \\
& =\left(\begin{array}{ll}
1 & t_{n}
\end{array}\right) t_{k=0}^{k}(1)^{k}(k+1) \\
& =\left(1-t_{n}\right) \sum_{k=0}^{\infty}\left(-t_{n}\right)^{k}(k+1) \\
& =\frac{1-t_{n}}{\left(1+t_{n}\right)^{2}}
\end{aligned}
$$

Now, $\lim _{n \rightarrow \infty}\left(A_{t} x\right)_{n}=\lim _{n \rightarrow \infty} \frac{1 t_{n}}{\left(1+t_{n}\right)^{2}}=0$

Hence $A_{t} x \in c$.

Definition: A matrix A is an x -y matrix if the image Au of u under the transformation A is in Y wherever u is in x .

Knopp-Lorentz

The Matrix A is an $\ell \quad \ell$ matrix if and only if there exists a number $M>0$ such that for every k,

$$
\left|a_{n k}\right| \quad M .
$$

Theorem 2: $A_{t \text { is }} \ell$ $\ell \Leftrightarrow(1 \quad t) \quad \ell$

Lemma 1:

$A_{t} \ell$
$\ell_{\text {matrix }}$
$(1 \quad t) \quad \ell$.

Proof: We use the Knopp-Lorentz Rule.

$$
\begin{array}{cc}
A_{t_{\text {is }}} \ell \quad \ell \quad \leq \sum_{n=0}^{\infty}\left|a_{n k}\right| \leq M_{\text {for each k }} \\
& \begin{array}{ll}
\mid(1 & \left.t_{n}\right) t_{n}^{k} \mid
\end{array} M_{n=0} \\
\left.\left\lvert\, \begin{array}{ll}
1 & t_{n}
\end{array}\right.\right) \mid M_{\text {(for k=0) }} \\
& \left(\begin{array}{llll}
1 & t
\end{array}\right)
\end{array}
$$

Lemma 2:

$$
\overline{1 t} \ell \quad A_{t_{\mathrm{i} \text { san }}} \ell \ell_{\text {matrix }}
$$

Proof: We use the Knopp-Lorentz Rule

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left|a_{n k}\right| & =\left|\left(\begin{array}{ll}
1 & t_{n}
\end{array}\right) t_{n}^{k}\right| \\
& \leq \sum_{n=0}^{\infty}\left(1-t_{n}\right) \leq M \text { for some } \mathrm{M}>0 \text { as }\left(\begin{array}{ll}
1 & t
\end{array}\right) \quad \ell
\end{aligned}
$$

Now Theorem 2 follows by Lemmas $1 \& 2$.

Corollary 1. If A_{t} is an 1-1 matrix and $0<t_{n}<w_{n}<1$, then A_{w} is also an 1-1 matrix.

Proof: $0<t_{n}<w_{n}<1 \Rightarrow\left(1-w_{n}\right)<\left(1-t_{n}\right)$ and hence the corollary follows by Theorem 1.

Corollary 2. $\quad A_{t}$ is an 1-1 matrix $\Leftrightarrow \operatorname{arcsint} \in l$
Proof: The corollary follows by Theorem 1 using the basic inequality
$x<\arcsin x<\frac{x}{\sqrt{1-x^{2}}}$ for $0<\mathrm{x}<1$.

Remark 3. An l-l A_{t} matrix maps a bounded sequence into l as shown by the following example. This shows that the A_{t} matrix is stronger than the identity matrix in the $l-l$ setting or $l(\mathrm{~A})$ is larger than l.

Example 3.

Assume A_{t} matrix is an $l-l$ and consider the bounded sequence given by $x_{k}=(1)^{k}$. We want to show that $A_{t} x \in l$.

Then $\left(A_{t} x\right)_{n}=\left(1-t_{n}\right) \sum_{k=0}^{\infty}\left(t_{n}\right)^{k}(-1)^{k}$

$$
\begin{aligned}
& =\left(1-t_{n}\right) \sum_{k=0}^{\infty}\left(-t^{n}\right)^{k} \\
& =\left(1-t_{n}\right) \frac{1}{1+t_{n}} \\
& \leq\left(1-t_{n}\right)
\end{aligned}
$$

Now A_{t} matrix is $1-l \Rightarrow(l-t) \in 1$, by Theorem 2 , and hence $A_{t} x \in l$.

Remark 4: An 1-1 A_{t} matrix maps unbounded sequence into l as shown by the following example.
Example 4: Assume A_{t} matrix is $l-l$ and consider the unbounded sequence given by
$x_{k}=(1)^{k}(k+1)$. Note that

$$
\begin{aligned}
\left(A_{t} x\right)_{n} & =\left(\begin{array}{ll}
1 & t_{n}
\end{array}\right) t_{n}^{k}(1)^{k}(k+1) \\
& =\left(\begin{array}{ll}
1 & t_{n}
\end{array}\right) t_{k=0}^{k}(1)^{k}(k+1)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(1-t_{n}\right) \sum_{k=0}^{\infty}\left(-t_{n}\right)^{k}(k+1) \\
& =\frac{1-t_{n}}{\left(1+t_{n}\right)^{2}} \\
& \leq\left(1-t_{n}\right)
\end{aligned}
$$

Now A_{t} matrix is $1-l \Rightarrow(l-t) \in 1$, by Theorem 2 , and hence $A_{t} x \in l$.
Remark 5: Every sequence x for which $\left|x_{k}\right|^{\frac{1}{k}} \leq 1$ belongs to $\mathrm{l}\left(A_{t}\right)$ provided A_{t} is an 1-1 matrix.
Example5. Let $x_{n}=(-3)^{n .}$ Then x is not in $\mathrm{l}(\mathrm{A})$. Note that $\left|x_{k}\right|^{\frac{1}{k}}=3>1$

References

- Mulatu Lemma, The Abel-type transformations into ℓ, International Journal of Mathematics and Mathematical Sciences (1999) Volume: 22, Issue: 4, page 775-784 ISSN: 0161-1712
- Mulatu Lemma, Logarithmic and Abel-Type Transformations into Gw Southeast Asian Bulletin of Mathematics;2010, Vol. 34 Issue 2, p299

