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Abstract 

 

Let t be sequence in (0,1) that converges to 1. The Abel   matrix is defined as 𝑎𝑛𝑘= (1-𝑡𝑛)
𝑘𝑡𝑛. We denote the 

Abel Matrix by At . At  is a sequence to sequence mapping?  When a matrix At is applied to a sequence x, 

we get a new sequence 𝐴𝑡𝑥 whose nth term is given by: 
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The sequence Atx is called the At -transform of the sequence x. 

The purpose of this research is to investigate the effect of applying At to convergent sequences, bounded 

sequences, divergent sequences, and absolutely convergent sequences. We considering and answer the 

following interesting main research questions. 

 

Research Questions. 

 (1)  What is the domain of t for which At maps convergent sequence into convergent sequence? 

(2)  What is the domain of t for which the At maps absolutely convergent sequence into absolutely 

convergent sequence? 

(3)  Does At maps unbounded sequence to convergent sequence? 

(4)  Does At maps divergent sequence to convergent sequence? 

(5) How is the strength of the At   comparing to the identity matrix? 

 

Notations and Background Materials 

 

w= {the set of all complex sequences} 

 

c= {the set of all convergent complex sequences} 

 

)(Ac ={y: Ayc} 

 

l = {y: ∑ |𝑦𝑘|
∞
𝑘=0 < ∞} 
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)(Al ={y: Ay l } 

     

Regular Matrix 

 

A matrix is regular if 𝑙𝑖𝑚𝑛⟶∞𝑍𝑛= a⇒ 𝑙𝑖𝑚𝑛⟶∞(𝐴𝑋)𝑛=a. That is a sequence Z is convergent to A⇒ the A-

transform of Z also converses to a. 

 

The Sliverman-Toeplitz Rule 

 

We state the following famous Sliverman-Toeplitz Rule as Proposition I without proof and apply it. 

 

Proposition I:  A matrix A = (an,k )  is regular if and only if  

(i) nlim an,k = 0 for each k= 0,1,…, 

(ii) nlim  
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The Main Results 

 

Theorem 1: The Abel Matrix 𝐴𝑡 is a regular matrix for all t. 

 

Proof: We use proposition 1 to prove the theorem. Note that 

(1) lim n
kna ,  lim n  (1-𝑡𝑛)

𝑘𝑡𝑛=0 

(2) lim n  
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Hence by Proposition I, the Abel Matrix 𝐴𝑡 is a regular matrix. 

 

Remark 1:   The 𝐴𝑡 matrix maps   a bounded sequence into a convergent sequence as shown by the following 

example. This shows that the tA  matrix is stronger than the identity matrix or c(A) is larger than c. 
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  Example 1:  Consider the bounded sequence given by xk = (-1)k  

Then (Atx)n =
kk
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nt xA =0; hence Atx Î c  

Remark 2:     Thee tA  matrix maps also   a divergent sequence x into a convergent sequence as shown by the 

following example. 

 

Example 2:   Consider the unbounded sequence given by  kx = (-1)k (k +1) . Note that 

 

(Atx)n =
k=0

¥

S(1- tn )tn
k (-1)k (k +1)

 

                      
= (1- tn )

k=0

¥

Stn
k (-1)k (k +1)
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Now ,  
n®¥
lim  

(Atx)n =
n®¥
lim

1- tn

(1+ tn )
2

= 0
 

 

Hence  
.cxAt 
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Definition: A matrix A is an x-y matrix if the image Au of u under the transformation A is in Y wherever u is 

in x. 

 

Knopp-Lorentz 

The Matrix A is an -  matrix if and only if there exists a number M > 0  such that for every k,  

 

                                               
n=0

¥

S ank £M.
 

Theorem 2: 
At  is - Û (1- t) Î

 

 

Lemma 1: 

At  - matrix 
Þ (1- t) Î  . 

Proof: We use the Knopp-Lorentz Rule. 

At
 is 

- Þ Mank

n




0

 for each k 
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 (for k=0) 

                            Þ (1- t) Î  

Lemma 2:  

1- t Î Þ At
is an 

- matrix 

Proof:  We use the Knopp-Lorentz Rule 
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 for some M>0  as (1- t) Î . 

 

 Now Theorem 2 follows by Lemmas 1&2. 

 

Corollary 1.   If tA  is an l-l matrix and  0< nt < nw <1, then wA is also an l-l matrix. 
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Proof: 0<
nt <

nw <1 (
nw1 )<  nt1  and hence  the corollary follows by Theorem 1. 

 

Corollary 2.    
tA  is an l-l matrix arcsint l  

 

Proof:  The corollary follows by Theorem 1 using the basic inequality 

21
arcsin

x

x
xx


  for 0<x<1. 

 

Remark 3.  An  l-l  𝐴𝑡 matrix maps   a bounded sequence into l  as shown by the following example. This 

shows that the
tA  matrix is stronger than the identity matrix  in the l-l setting or l(A) is larger than l. 

Example 3. 

 Assume 𝐴𝑡 matrix  is an l-l and consider the bounded sequence given by xk = (-1)k . We want to show 

that .lxAt   

Then (Atx)n =
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Now 𝐴𝑡 matrix is l-l   (1-t) l , by Theorem 2, and hence  .lxAt    

 

Remark 4:     An  l-l  𝐴𝑡 matrix maps   unbounded sequence into l  as shown by the following example.   

 

Example 4:   Assume 𝐴𝑡 matrix is  l-l and consider the unbounded sequence given by   

kx = (-1)k (k +1). Note that 

 

(Atx)n =
k=0

¥

S(1- tn )tn
k (-1)k (k +1)

 

                      
= (1- tn )

k=0

¥

Stn
k (-1)k (k +1)
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Now 𝐴𝑡 matrix is l-l   (1-t) l , by Theorem 2,  and hence  .lxAt    

Remark 5:   Every sequence x for which 1
1

k
kx  belongs to l(

tA ) provided 
tA is an l-l matrix. 

Example5. Let   .
3
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nx   Then x is not in l(A). Note that 13
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