The Sturm Liouville Problems with a random variable in Boundary Conditions

Hui Wu

Department of Mathematics, Clark Atlanta University, Atlanta, GA, 30314

Abstract

We discussed the Sturm-Liouville problems with random variable ξ n involving in bound-ary conditions which represent a support coefficient for elastic rope. We have aconclusion that if the random variable in the boundary condition have convergence property, then the eigenvalues will also have a similar convergence property. We also give an asymptotic formula to approximate the large eigenvalues. This formula give an asymptotic relationship between eigenvalues and the support coefficient ξ n when the eigenvalues are very large.

1 Introduction

1.1 Background of Sturm Liouville problem with boundary conditionsSturm-Liouville problem plays an important role in math and physics theory. In past decades, many mathematicians discussed the relationship between the boundary conditions and the eigen-values [1, 2, 4]. In 1996, Kong proved that with separated boundary conditions, the eigenvalue functions of Sturm-Liouville problem would not only be continuous, but also be differentiable [2, 3]. In 2005, Zettle summarized different boundary conditions of Sturm-Liouville problems [4].

In this paper, we are discussing about the Sturm-Liouville problem with separated boundary conditions and study the relationship between the eigenvalue and a stochastic variable in boundary conditions.

1.2 Formulation of Sturm Liouville with stochastic boundary conditions

Consider differential equation

 $\varphi''(x) + \lambda \varphi(x) = 0$ (1) with boundary conditions

$\phi(0) = 0$	(2)
$\varphi'(L) + \xi(w)\varphi(L) = 0$	(3)

Here $x \in [0, L]$. This boundary condition has physics background: A elastic rope is fixed at one endpoint x = 0. Whether or not it is also fixed at the other endpoint, that depends on the support coefficient ξ . ($\xi \ge 0$ is a stochastic variable.) When $\xi > 0$, the rope is fixed at x = L, When $\xi = 0$, the rope is not fixed at x = L.

Assume equation 1 satisfy one of the following boundary conditions:

 $\phi'(L) + \xi 1(w)\phi(L) = 0$

 $\varphi'(L) + \xi 2(w)\varphi(L) = 0(4)$

••••

 $\varphi'(L) + \xi n(w)\varphi(L) = 0$

•••••

Here $\xi_1(w) \ge 0$, $\xi_2(w) \ge 0$,... $\xi_n(w) \ge 0$... are stochastic variables for $\forall n \in N$ the equation 1 together with any of these boundary values conditions will generate a Sturm- Liouville problem. Each $\xi_n(w)$ has infinitely many eigenvalues $\lambda_{ni}(w)$, $i = 1, 2, 3, ... \infty$.

If $\xi_1(w)$, $\xi_2(w)...\xi_n(w)$ convergent to $\xi(w)$ almost everywhere, in other words, the probability that $\lim_{n\to\infty} \xi_n(w) = \xi(w)$ is equal to 1. Written as

$$P\{w \in \omega : \lim_{n \to \infty} \xi_n(w) = \xi(w)\} = 1$$
(5)

then

 $P\{w \in \omega: \lim_{w \to \infty} \lambda_{ni}(w) = \lambda_{i}(w)\} = 1 (6)$

In other words, each eigenvalues will have a similar convergence property.

2 Convergence Result of Eigenvalues

For $\forall n \in N$, any $\xi_n(w) \ge 0$, it is easy to see that for this kind of boundary value problem, only when eigenvalues $\lambda_n > 0$, non-trivial solutions exist. In equation 1, a general solution is given as

$$\varphi_n(x) = A_n \cos(x\sqrt{\lambda}n) + B_n \sin(x\sqrt{\lambda}n)$$
(7)

Because the 1st boundary condition $\varphi_n(0) = 0$, $\Rightarrow A_n = 0$. Because of the 2nd boundary condition,

International Educative Research Foundation and Publisher © 2017

 $\varphi_n'(L) + \xi_n \varphi_n(L) = 0$

So

 $\sqrt{\lambda n} \cos(L\sqrt{\lambda n}) + \xi_n \sin(L\sqrt{\lambda n}) = 0$

If We get $\begin{array}{l} tan(L\sqrt{\lambda_n}) = -\sqrt{\lambda_n}/ \ \xi_n \end{array}$

then

 $\cot(L\sqrt{\lambda_n}) = -\xi_n/\sqrt{\lambda_n} (8)$

If We let $x_n = L \sqrt{\lambda n}$, then

 $\cot(x_n) = -L \xi_n / x_n$ (9)

The Figure 1 gives us an illustration of intersection of functions y=cot(x) and y= - L $\xi n/\ xn$.

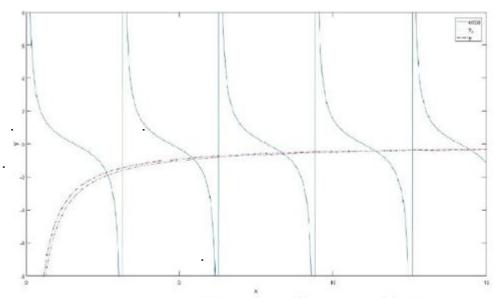


Figure 1: intersection of graph of $\cot(x)$ with $y_n = -\frac{L\xi_n}{x}$ and $y = -\frac{L\xi}{x}$: $\lim_{n\to\infty} \xi_n = \xi$ The i-th intersection point of $y_n = -\frac{L\xi_n}{x}$ with $\cot(x)$ is (\bar{x}_i, \bar{y}_i) , corresponding i-th eigenvalue is $\lambda_{ni} = (\frac{x_i}{L})^2$. similarly, the i-th intersection point of $y = -\frac{L\xi}{x}$ with $\cot(x)$ is (x_i, y_i) , corresponding i-th eigenvalue is $\lambda_i = (\frac{x_i}{L})^2$. Because of the continuity of $y = -\frac{L\xi}{x}$, when $\lim_{n\to\infty} \xi_n = \xi$, $\lim_{n\to\infty} \bar{x}_i = x_i$. So $\lim_{n\to\infty} \lambda_{ni} = \lambda_i$.

In summary, $\lambda_{n\,i},\,i\in N\,$ are eigenvalues corresponding to boundary condition

International Journal for Innovation Education and Research

$$\varphi(0) = 0$$
(10)

 $\varphi'(L) + \xi_n(w)\varphi(L) = 0$
(11)

 $\lambda_i,\,i\in N\,$ are eigenvalues corresponding to boundary condition

$$\varphi(0) = 0$$
(12)

 $\varphi'(L) + \xi(w)\varphi(L) = 0$
(13)

- .

. .

If

$$\begin{split} & P \left\{ w \in \omega : \text{ lim } \xi_n(w) = \xi(w) \right\} = 1 \\ & n {\longrightarrow} \infty \end{split}$$

then

 $P \{ w \in \omega : \lim \lambda_{ni}(w) = \lambda_{i}(w) \} = 1$ $n \rightarrow \infty$

3 Asymptotic Analysis of large eigenvalues

By observation, we are able to make a more detailed asymptotic analysis of eigenvalues λ_{nk} when $k \rightarrow \infty$.

 $\pi/2 < L \; \sqrt{\lambda}n1 \; < \!\!\pi, \; 3\pi/2 < L \sqrt{\lambda_n}_2 < 2\pi \; \text{Here} \; L \sqrt{\lambda_n}_k - (k \; -1/2 \;) \; \pi \to 0 \; \text{as} \; k \to \infty.$

When k is large, we assume that

$$L \sqrt{\lambda_{nk}} = (k - 1/2) \pi + e(k)$$
 (14)

e(k) > 0 is an error term that $\lim_{k \to \infty} e(k) = 0$.

Apply Taylor expansion of $\cot(x)$ around $x=(k-1/2)\pi$ we get

 $\cot((k - 1/2) \pi + e(k)) = -e(k) + O(e(k)^3)$ (15)

then as $e(k) \rightarrow 0$, substituting (14), (15) into (9):

-
$$e(k)+O(e(k)^3)= -L \xi n/((k-1/2) \pi + e(k))$$
 (16)

From (16) we derived that the error

So we have derived the following asymptotic formula

 $L \sqrt{\lambda_{nk}} = (k - 1/2) \pi + L \xi_n / k \pi + O(1/k^2) \text{ as } k \to \infty.$ (18)

References

[1] T. N. Harutyunyan MATEMATIQKI VESNIK, 285-294, (60) 2008: The Dependence of the eigenvalues of the Sturm-Liouville Problem on Boundary Conditions

[2] Kong, A. Zettl Journal of Differential Equations Volume 126, Issue 2, 10 Pages 389-407, April 1996: Dependence of Eigenvalues of SturmLiouville Problems on the Boundary

[3] Qingkai Kong, Hongyou Wu, Anton Zettl Journal of Differential Equations Volume 156, Issue2, 10 Pages 328 - 354, August 1999: Dependence of the nth SturmLiouville Eigenvalue on theProblem

[4] A.Zettl American Mathematical Society: 94-95, 2005: Sturm-Liouville Theory

[5] Z. Akdogan, M. Demirci, O. Sh. Mukhtarov Acta Applicandae Mathematica: Volume 86, Issue 3, pp 329-344 May 2005: Discontinuous SturmLiouville Problems with Eigenparameter-Dependent Boundary and Transmissions Conditions