The Sturm Liouville Problems with a random variable in Boundary Conditions

Hui Wu

Department of Mathematics, Clark Atlanta University, Atlanta, GA, 30314

Abstract

We discussed the Sturm-Liouville problems with random variable ξ n involving in bound-ary conditions which represent a support coefficient for elastic rope. We have aconclusion that if the random variable in the boundary condition have convergence property, then the eigenvalues will also have a similar convergence property. We also give an asymptotic formula to approximate the large eigenvalues. This formula give an asymptotic relationship between eigenvalues and the support coefficient ξ n when the eigenvalues are very large.

1 Introduction

1.1 Background of Sturm Liouville problem with boundary conditions
Sturm-Liouville problem plays an important role in math and physics theory. In past decades,
many mathematicians discussed the relationship between the boundary conditions and the eigen-values [1, 2,
4]. In 1996, Kong proved that with separated boundary conditions, the eigenvalue
functions of Sturm-Liouville problem would not only be continuous, but also be differentiable
[2, 3]. In 2005, Zettle summarized different boundary conditions of Sturm-Liouville problems [4].

In this paper, we are discussing about the Sturm-Liouville problem with separated boundary conditions and study the relationship between the eigenvalue and a stochastic variable in boundary conditions.

1.2 Formulation of Sturm Liouville with stochastic boundary conditions

Consider differential equation

$$\varphi''(x) + \lambda \varphi(x) = 0$$
 (1) with boundary conditions

$$\varphi(0) = 0 \tag{2}$$

$$\varphi'(L) + \xi(w)\varphi(L) = 0 \tag{3}$$

Here $x \in [0, L]$. This boundary condition has physics background: A elastic rope is fixed at one endpoint x=0. Whether or not it is also fixed at the other endpoint, that depends on the support coefficient ξ . ($\xi \ge 0$ is a stochastic variable.) When $\xi > 0$, the rope is fixed at x=L, When $\xi = 0$, the rope is not fixed at x=L.

Assume equation 1 satisfy one of the following boundary conditions:

$$\varphi'(L) + \xi 1(w)\varphi(L) = 0$$

$$\varphi'(L) + \xi 2(w)\varphi(L) = 0(4)$$

.

$$\varphi'(L) + \xi n(w)\varphi(L) = 0$$

.

Here $\xi_1(w) \ge 0$, $\xi_2(w) \ge 0$,... $\xi_n(w) \ge 0$... are stochastic variables for $\forall n \in \mathbb{N}$ the equation 1 together with any of these boundary values conditions will generate a Sturm- Liouville problem. Each $\xi_n(w)$ has infinitely many eigenvalues $\lambda_{ni}(w)$, $i = 1, 2, 3, ... \infty$.

If $\xi_1(w)$, $\xi_2(w)...\xi_n(w)$ convergent to $\xi(w)$ almost everywhere, in other words, the probability that $\lim_{m\to\infty} \xi_n(w) = \xi(w)$ is equal to 1. Written as

$$P\{w \in \omega : \lim_{n \to \infty} \xi_n(w) = \xi(w)\} = 1 \tag{5}$$

then

$$P\{w \in \omega : \lim_{n \to \infty} \lambda_{ni}(w) = \lambda_{i}(w)\} = 1(6)$$

In other words, each eigenvalues will have a similar convergence property.

2 Convergence Result of Eigenvalues

For $\forall n \in N$, any $\xi_n(w) \ge 0$, it is easy to see that for this kind of boundary value problem, only when eigenvalues $\lambda_n > 0$, non-trivial solutions exist. In equation 1, a general solution is given as

$$\varphi_{\mathbf{n}}(\mathbf{x}) = \mathbf{A}_{\mathbf{n}} \cos(\mathbf{x} \sqrt{\lambda}_{\mathbf{n}}) + \mathbf{B}_{\mathbf{n}} \sin(\mathbf{x} \sqrt{\lambda}_{\mathbf{n}}) \tag{7}$$

Because the 1st boundary condition $\varphi_n(0) = 0$, $\Rightarrow A_n = 0$. Because of the 2nd boundary condition,

$$\phi'_n(L) + \xi_n \phi_n(L) = 0$$

So

$$\sqrt{\lambda_n} \cos(L\sqrt{\lambda_n}) + \xi_n \sin(L\sqrt{\lambda_n}) = 0$$

If We get

$$\tan(L\sqrt{\lambda_n}) = -\sqrt{\lambda_n}/\xi_n$$

then

$$\cot(L\sqrt{\lambda_n}) = -\xi_n/\sqrt{\lambda_n}$$
 (8)

If We let $x_n = L\sqrt{\lambda_n}$, then

$$\cot(x_n) = -L \xi_n / x_n$$
 (9)

The Figure 1 gives us an illustration of intersection of functions y=cot(x) and y= -L $\xi n/xn$.

Figure 1: intersection of graph of $\cot(x)$ with $y_n = -\frac{L\xi_n}{x}$ and $y = -\frac{L\xi}{x}$: $\lim_{n \to \infty} \xi_n = \xi$ The i-th intersection point of $y_n = -\frac{L\xi_n}{x}$ with $\cot(x)$ is (\bar{x}_i, \bar{y}_i) , corresponding i-th eigenvalue is $\lambda_{ni} = (\frac{\bar{x}_i}{L})^2$. similarly, the i-th intersection point of $y = -\frac{L\xi}{x}$ with $\cot(x)$ is (x_i, y_i) , corresponding i-th eigenvalue is $\lambda_i = (\frac{x_i}{L})^2$. Because of the continuity of $y = -\frac{L\xi}{x}$, when $\lim_{n \to \infty} \xi_n = \xi$, $\lim_{n \to \infty} \bar{x}_i = x_i$. So $\lim_{n \to \infty} \lambda_{ni} = \lambda_i$.

In summary, λ_{ni} , $i \in N$ are eigenvalues corresponding to boundary condition

$$\varphi(0) = 0 \tag{10}$$

$$\varphi'(L) + \xi_{\mathbf{n}}(\mathbf{w})\varphi(L) = 0 \tag{11}$$

 λ_i , $i \in N$ are eigenvalues corresponding to boundary condition

$$\varphi(0) = 0 \tag{12}$$

$$\varphi'(L) + \xi(w)\varphi(L) = 0 \tag{13}$$

.

If

P { w ∈ ω : lim
$$\xi_n(w) = \xi(w)$$
 } = 1

then

$$P\{w \in \omega : \lim \lambda_{n}i(w) = \lambda_{i}(w)\} = 1$$

 $n \rightarrow \infty$

3 Asymptotic Analysis of large eigenvalues

By observation, we are able to make a more detailed asymptotic analysis of eigenvalues λ_{nk} when $k\to\infty$.

$$\pi/2 < L \ \sqrt{\lambda} n 1 < \pi, \ 3\pi/2 < L \sqrt{\lambda} n 2 < 2\pi \ \text{Here} \ L \sqrt{\lambda} n k - (k-1/2 \) \ \pi \to 0 \ \text{as} \ k \to \infty.$$

When k is large, we assume that

$$L \sqrt{\lambda_{nk}} = (k - 1/2) \pi + e(k)$$
 (14)

e(k) > 0 is an error term that $\lim_{k \to \infty} e(k) = 0$.

Apply Taylor expansion of $\cot(x)$ around $x=(k-1/2)\pi$ we get

$$\cot((k-1/2)\pi + e(k)) = -e(k) + O(e(k)^3)$$
 (15)

then as $e(k) \rightarrow 0$, substituting (14), (15) into (9):

$$-e(k)+O(e(k)^3)=-L\xi n/((k-1/2)\pi+e(k))$$
 (16)

From (16) we derived that the error

$$- e(k) = - L \xi n/k \pi + O(1/k^2)$$
 as $k \to \infty$. (17)

So we have derived the following asymptotic formula

$$L \sqrt{\lambda_{n,k}} = (k-1/2) \pi + L \xi_{n/k} \pi + O(1/k^2) \text{ as } k \to \infty.$$
 (18)

References

- [1] T. N. Harutyunyan MATEMATIQKI VESNIK, 285-294, (60) 2008: The Dependence of the eigenvalues of the Sturm-Liouville Problem on Boundary Conditions
- [2] Kong, A. Zettl Journal of Differential Equations Volume 126, Issue 2, 10 Pages 389 407, April 1996: Dependence of Eigenvalues of SturmLiouville Problems on the Boundary
- [3] Qingkai Kong, Hongyou Wu, Anton Zettl Journal of Differential Equations Volume 156, Issue 2, 10 Pages 328-354, August 1999: Dependence of the nth SturmLiouville Eigenvalue on the Problem
- [4] A.Zettl American Mathematical Society: 94 95, 2005: Sturm-Liouville Theory
- [5] Z. Akdogan, M. Demirci, O. Sh. Mukhtarov Acta Applicandae Mathematica: Volume 86, Issue 3, pp 329-344 May 2005: Discontinuous SturmLiouville Problems with Eigenparameter-Dependent Boundary and Transmissions Conditions