Synthesis and photocatalytic properties of ultra-smooth TiO₂ thin films with superhydrophilicity

Min Lai (Corresponding author)

School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China

Haibo Yong

School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China

Abstract

Functional TiO₂ films were fabricated on glass substrates by using modified dip coating method. The properties of the films including crystal structures, thickness, surface morphology and optical properties were studied. The film coated once possessed an ultra-smooth surface with a root mean square (RMS) roughness of 2.6 \pm 0.7 nm, which was attributed to the effect of N₂ flow during the formation of film. The TiO₂ films exhibited superhydrophilicity without UV illumination and the superhydrophilic performance was enhanced with the increase of film thickness. Tests on degradation of dyes under UV illumination indicated that the annealing temperature and thickness of the TiO₂ films accounted for their photocatalytic performance. An increase of annealing temperature led to a decrease of the amount of defects and the recombination rate of electron-hole pairs. Because of change of film thickness, light absorption and amount of defects of the TiO₂ films influenced photocatalytic performance simultaneously.

Keywords: TiO₂ films; modified dip coating; superhydrophilicity; ultra-smooth;

1. Introduction

Semiconductor photocatalysts have boosted intriguing scientific research areas for the last decades that follows the extensively increasing demands in detoxification of organic pollutants and solar-energy conversion^{1,2}. Since the water splitting phenomenon on TiO₂ electrode was first discovered by Fujishima in 1972³, TiO₂ has attracted intensive interests for its potential applications in photocatalysis^{4,5}, environmental protection⁶, sensors⁷ and solar cells^{8,9} owing to the advantages on photocatalytic performance, chemical stability and production cost. A variety of techniques have been used to prepare TiO₂ thin films including chemical vapor deposition (CVD)¹⁰, sol-gel approaches¹¹⁻¹², gold-assisted electrochemical etching¹³, pulse laser deposition¹⁴, sputtering^{15,16}, electrochemical anodization¹⁷. These procedures usually need rigid environments, complicated processes or expensive vessels.

In this research, a widely applicable and straightforward alternate method without formation of sols or gels

has been developed to fabricate ultra-smooth titanium dioxide thin films, which exhibit efficient photocatalytic properties under UV illumination and superhydrophilicity without UV irradiation. The thin films are prepared by dipping glass substrates into a solution containing titanium precursor, followed by purging and drying with nitrogen flow and annealing in air.

2. Experimental:

2.1 Preparation of TiO₂ thin films

Ordinary microscope glass slides were used as substrates for TiO₂ film coating. Functional TiO₂films were prepared by using an improved dip coating method. A precursor solution was prepared by mixing tetrabutyl titanate (Ti(OC₄H₉)₄, TTBO) and isopropyl alcohol (IPA). The cleaned glass slide was then immersed into the precursor solution for 1 min and taken out quickly. After that, the slide was transferred to nitrogen flow with a rate of 500 sccm, in order to purge the remaining liquid on the glass surface. Such a procedure was repeated for several times. The samples were marked as TiO₂-x, in which x is the total coating times through the procedure above. Finally, the resultant samples were annealed at 200 – 500 °C in air for 5 h. In order to investigate the effect of N₂ flow in the preparation process, a sample marked as n-TiO₂ was fabricated by the same procedure excluding N₂ purging.

2.2 Characterization

The X-ray diffraction (XRD) patterns of the samples were recorded using an X-ray diffractometer XRD-6100x (Shimadzu, Japan) with Cu K_{α 1} radiation (λ =0.154056 nm) and a Ni filter in a continuous scanning mode. The surface morphology of the specimens was obtained by an atomic force microscope (AFM) Nano Wizard II (JPK, Germany). The RMS roughness of the films was based on statistical results of the height distributions for the corresponding AFM images. The surface morphological features of the films were also observed using a field-emission scanning electron microscope (FE-SEM) SU1510 (Hitachi, Japan) operating at 15 kV. The thickness of TiO₂ thin film was determined by scanning an ellipsometer Alpha-SE (J.A. Woollam, USA). The water contact angles (WCAs) of TiO₂ thin films were measured by

Figure 1. XRD patterns of the as-prepared TiO₂ (a) and TiO₂-1 thin films annealed at 200°C (b), 300 °C (c) ,400 °C (d) and 500 °C (e).

using CAM 200 (KSV instrument, Finland) without UV irradiation at ambient temperature. Water droplets were automatically generated with a volume of 5 μ L. Samples were stored in a dark box for 48 h before measurements. Photocatalytic activities of samples were evaluated by degradation of methylene blue under light irradiation of a 500 W high-pressure mercury lamp. In each experiment, TiO₂ film on glass substrate as a photocatalyst was placed into 3.5 ml methylene blue solution (1×10⁻⁵ M) in a quartz vessel and the solution was stirred for 1 h in dark to reach absorption equilibrium between the catalyst and the solution. The solution was then exposed to light irradiation. After irradiation for a given time, the film was removed out of the solution, and the concentration of the solution was determined using UV–Vis spectra (Shimadzu UV-3600).

3. Results and discussion:

3.1 Structures and morphology

Figure 1 shows the X-ray diffraction patterns of the TiO₂-1 thin films prepared on glass slides, which were annealed in air for 5h at 200 °C, 300 °C, 400 °C and 500 °C, respectively. The diffraction peaks indicated that annealing over 400 °C has greatly improved the crystallinity of the samples. The peaks shows the films are in accordance with anatase TiO₂ structures.

Figure 2 (a) and (c) shows FE-SEM images of the TiO₂-1 thin film annealed at 400°C in air for 5h and

the n-TiO₂ thin film prepared by the same procedure excluding N₂ blowing. Figure 2 (b) and (d) exhibits the AFM image of the corresponding samples. It is obvious that the annealed TiO₂-1 film possessed an ultra-smooth surface. The calculated RMS roughness of the annealed films is 2.6 ± 0.7 nm, which is consistent with the result of SEM image. The SEM image of the n-TiO₂ sample prepared shows a rough

surface and the analysis of AFM image yield an RMS roughness of 9.1 ± 6.5 nm, which is significantly larger than that of annealed TiO₂-1 film.

The formation of ultra-smooth surface of the annealed TiO_2 -1 films may be attributed to the effect of N₂ blowing, which is demonstrated in Figure 3. Without N₂ flow, a much thicker layer of solution remained

Figure 3. Schematic of formation of TiO_2 thin filmfacilitated by N_2 flow.

on the substrate and liquid droplets were generated before the evaporation of solvent since the glass surface was not superhydrophilic, which resulted in a rougher surface.

Ellipsometric analysis of TiO₂ films were performed at an incidence angle of 70° with optical range of 350–900 nm. The thicknesses of TiO₂ films after annealing at 400 °C obtained by spectroscopic ellipsometry were shown versus the corresponding coating times in Figure 4. The thicknesses of TiO₂-1, TiO₂-2, TiO₂-3 and TiO₂-5 films were measured to be 76 nm, 236 nm, 389 nm and 705 nm, respectively. The linear correlation between the thickness and coating times showed that the fabrication method can offer

Figure 4. Relationship between the film thickness and coating times. A linear fit to the data is displayed. Inset is the measured ellipsometric parameters and fittings of the data to the EMT model for the TiO₂-1film on glass substrate annealed at 400 $^{\circ}$ C in air.

control of the thickness of the TiO₂ films. The measured data of Δ (delta) and ψ (psi) were fitted using the Bruggeman effective-medium theory (EMT)¹⁸, as shown in the inset of Figure 4. The effective dielectric function was calculated by considering the sample type of a TiO₂ layer on a glass substrate. The EMT model extracts the refractive index of the TiO₂ layer as a function of wavelength, which yields an value of 1.92 ± 0.03 in the visible wavelength range, lower than that (~2.5) of bulk TiO₂¹⁸.

3.2 Superhydrophilicity

By measurement of WCAs, the surface wettability of TiO₂ films was investigated. Figure 5 shows water spreading behaviors of the TiO₂ films coated with different times. The equilibrium WCAs were eventually close to zero, which showed the superhydrophilicity of all films. With the increase of film thickness, the time for the droplets to expand fully on contact surface decreased. The performance follows the Tanner's power-law behavior²⁰ described as $\theta \propto (t + t_0)^{-n}$, where θ is the contact angle, *t* is time from droplet deposition, t_0 is a constant, *n* is a power parameter and its value increases with the thickness of the superhydrophilic film²¹. In our results, the time *t* and the power parameter *n* are negatively correlated, which is in good agreement with the correlation of Tanner's power law.

3.3 Photocatalytic property

Figure 5. Optical images of water spreading behaviors on $TiO_2-1(a)$, $TiO_2-2(b)$, $TiO_2-3(c)$, $TiO_2-5(d)$ thin films annealed at 400 °C.

By investigating the photocatalytic degradation of methylene blue on TiO₂ thin films, the effects of the thickness and annealing temperature of the films on photocatalytic properties were taken into account, which is shown in Figure 6. Figure 6 (a) shows the degradation rate on TiO₂-1, TiO₂-2, TiO₂-3 and TiO₂-5 films annealed at 400 °C. With the film coating times $x \le 3$, the degradation efficiency of dyes increased with x. However, the efficiency dropped apparently for the films with x>3. Neglecting difference of reflection effect on the surface, the number of photons absorbed by the films has a positive correlation with the film thickness in a moderate range. However, if the thickness of the film exceeds a critical value, photons will not be able to travel through the films and an increase of thickness will not enhance light absorption. In addition, charge carriers generated by lights may diffuse towards the substrate because of the concentration gradient, which impedes their contact with dye molecules.¹⁹ Figure 6 (b) shows the degradation rate on TiO₂-1 annealed at 200°C, 300 °C, 400°C and 500°C. The degradation efficiency increased with the annealing temperatures, which is consistent with the fact that the increase of annealing temperature led to the improvement of crystallinity and less defects, i.e., lower recombination rate of electron-hole pairs.

Figure 7 (a), (b) and (c) shows the degradation rate of methylene blue on as-prepared TiO₂-1, TiO₂-2, TiO₂-3 and TiO₂-5 films and the films annealed at 200°C or 300°C. With increasing coating times, the degradation rate decreased. The XRD results have demonstrated the formation of these amorphous TiO₂ films with the annealing temperatures less than 400°C. With comparison to crystalline TiO₂ films,

Figure 7. Degradation rate of methylene blue on the as-prepared TiO_2 -x films(a) and the films annealed at 200°C (b) and 300°C (c), respectively; Degradation rate of methylene blue on the TiO₂-x films with UV illumination for 160 min (d).

International Educative Research Foundation and Publisher @ 2018 12

amorphous TiO₂ films possessed a large amount of defects, which resulted in a high recombination rate of electron-hole pairs and dominated the photocatalytic activity. Figure 7 (d) shows the effect of annealing temperature on the degradation rate. With increasing annealing temperatures, all TiO₂-x films showed increasing degradation rates due to decreasing defects.

4. Conclusion

In summary, an easy modified dip coating method has been used to fabricate ultra-smooth TiO₂ layers on glass slides. After annealing at the 400°C, the TiO₂ films exhibit an anatase structure and the RMS roughness of TiO₂-1 film measured by spectroscopic ellipsometry is 2.6 ± 0.7 nm. Tests on degradation of dyes under UV illumination indicated that the annealing temperature and thickness of the TiO₂ films account for their photocatalytic performance. A high annealing temperature resulted in a small of amount of defects and a low recombination rate of electron-hole pairs. Thickness of TiO₂ films may affect light absorption and amount of defects simultaneously. All the TiO₂films showed superhydrophilicity without UV illumination. The hydrophilicity of the films was enhanced with the increase of film thickness. All these properties showed promising applications in self-cleaning coating, anti-UV light and sterilization.

6. Acknowledgement

This paper is based on the research sponsored by the National Natural Science Foundation of China (NSFC; Grant Nos. 51402154, 51502143 and 51472123).

7. References

1 . D.S. Xu, J.M. Li, Y.X. Yu, J.J. Li, From titanates to TiO₂ nanostructures: Controllable synthesis, growth mechanism, and application, Sci. China Chem. 55(2012) 2334-2345.

2 . M. Lai, S. Mubeen, N. Chartuprayoon, A. Mulchandani, M.A. Deshusses, N.V. Myung, Synthesis of Sn doped CuO nanotubes from core–shell Cu/SnO₂ nanowires by the Kirkendall effect, Nanotechnology 21(2010)295601.

3 . A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature 238(1972) 37-38.

^{4 .} Y.T. Xiao, S.S. Xu, Z.H. Li, X.H. An, L. Zhou, Y.L. Zhang, Progress of applied research on TiO₂ photocatalysis-membrane separation coupling technology in water and wastewater treatments, Chin. Sci. Bull. 14(2010)1345-1353.

5 . F. Bensouici, T. Souier, A.A. Iratni, R. Dakhel, M. Tala-Ighil, Effect of acid nature in the starting solution on surface and photocatalytic properties of TiO₂ thin films, Surf. Coat. Technol. 251(2014)170-176.

6 . M. Andersson, L. österlund, S. Ljungström, A. Palmqvist, Preparation of nanosize anatase and rutile Tio₂ by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol, J. Phys. Chem. B. 106(2002)10674-10679.

7 . A. Rothschild, A. Levakov, Y. Shapira, N. Ashkenasy, Y. Komem, Surface photovoltage spectroscopy study of reduced and oxidized nanocrystalline TiO₂ films, Surf. Sci. 532-535(2003)456-460.

8 . B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO₂ films, Nature 353(1991),737-740.

9 . G. Benkö, P. Myllyperkiö, J. pan, A.P. Yartsev, V. Sundström, Photoinduced electron injection from Ru(dcbpy)₂(NCS)₂ to SnO₂ and TiO₂ nanocrystalline films, J. Am. Chem. Soc. 125(2003)1118-1119.

10 . A. Borras, A. Barranco, A.R. Gonzalez-Elipe, Reversible Superhydrophobic to superhydrophilic conversion of Ag@TiO₂ composite nanofiber surfaces, Langmuir 24(2008)8021-8026.

11 . T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, K. Hashimoto, Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass, Thin Solid Films351(1999)260-263.

12 . U.O.A. Arier, F.Z. Tepehan, Influence of heat treatment on the particle size of nanobrookite TiO_2 thin films produced by sol–gel method, Surf. Coat. Technol. 206(2011)37-42.

13 . L.L. Cao, T.P. Price, M. Weiss, D. Gao, Super Water- and Oil-Repellent Surfaces on Intrinsically Hydrophilic and Oleophilic Porous Silicon Films, Langmuir 24(2008)1640-1643.

14I. Ruzybayev, S.I. Shah, The role of oxygen pressure in nitrogen and carbon co-doped TiO2 thin filmsprepared by pulsed laser deposition method, Surf. Coat. Technol. 241(2014)148-153.International Educative Research Foundation and Publisher © 2018pg.14

L. Sirghi, Y. Hatanaka, Hydrophilicity of amorphous TiO₂ ultra-thin films, Surf. Sci. 530(2003)L323-L327.

16 . L. Sirghi, T. Aoki, Y. Hatanaka, Hydrophilicity of TiO₂ thin films obtained by radio frequency magnetron sputtering deposition, Thin Solid Films422(2002)55-61.

17 . X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Vertically aligned single crystal Tio₂ nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications, Nano Lett. 8(2008)3781-3786.

18 . Y.B. Xiong, M. Lai, J. Li, H.B. Yong, H.Z Qian, C.Q Xun, K. Zhong, S.R. Xiao, Facile synthesis of ultra-smooth and transparent TiO_2 thin films with superhydrophilicity, Surf. Coat. Technol. 265(2015) 78-82.

19 . J.Q. Zhong, Z.Z. Wang, J.L. Zhang, C.A. Wright, K.D. Yuan, C.d. Gu, A. Tadich, D.C. Qi, H.X. Li, M.

Lai, K. Wu, G.Q. Xu, W.P. Hu, Z.Y. Li, W. Chen, Reversible tuning of interfacial and intramolecular charge transfer in individual MnPc molecules, Nano Lett. 15(2015)8091-8098.

20. G. McHale, N.J. Shirtcliffe, S. Aqil, C.C. Perry, M.I. Newton, Topography driven spreading, Phys. Rev. Lett. 93(2004) 036102.

21. W. Chen, K.P. Chen, M.D. Thoreson, A.V. Kildishev, V.M. Shalaev, Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing, Appl. Phys. Lett. 97(2010) 211107.

Copyright Disclaimer

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution License (<u>http://creativecommons.org/licenses/by/4.0/</u>).