Nitrogen in Shoots, Number of Tillers, Biomass Yield and Nutritive Value of Zuri Guinea Grass Inoculated with Plant-Growth Promoting Bacteria

Authors

  • Cecilio Viega Soares Filho Sao Paulo State University (UNESP)
  • Caroline Lopes Monteiro de Carvalho
  • Mariangela Hungria
  • Marco Antônio Nogueira
  • Adônis Moreira
  • Amário Nuno Meireles Duarte

DOI:

https://doi.org/10.31686/ijier.vol8.iss5.2360

Keywords:

Megathyrsus, biological nitrogen fixation, crude protein, SPAD, tropical forage grass

Abstract

The objective of this study was to evaluate the effects of plant growth-promoting bacteria (PGPB) strains of Azospirillum brasilense, Pseudomonas fluorescens and Rhizobium tropici on biomass yield, number of tillers, nitrogen accumulation and nutritive value of shoots of Megathyrsus (syn. Panicum) maximus cultivar BRS Zuri (Zuri Guinea grass). For that, one experiment was performed for 14 months to evaluate inoculation and re-inoculation with Azospirillum brasilense strains Ab-V5 and Ab-V6, Pseudomonas fluorescens strain CCTB 03 and of co-inoculation with Rhizobium tropici strain CIAT 899 + A. brasilense strain Ab-V6 combined with N-fertilizer (100 kg of N ha-1). Shoot dry weight yield (SDWY), number of tillers (NT), total N concentration (TNC), total N uptake (TNU) and nutritive value of Zuri Guinea grass was evaluated for eight cuts, and inoculation increased all parameters. In the NT, the treatments inoculated with PGPB were superior to the positive non-inoculated control receiving N-fertilizer, by up to 36%. For the accumulated of SDWY the treatment re-inoculated with P. fluorescens CCTB 03 after each cut was statistically superior tin 7% the positive control. The PGPB when combined N-fertilizer also increased SDWY, NT, the relative chlorophyll index, TNC, total N uptake, neutral detergent fiber, acid detergent fiber, crude protein and in vitro digestibility dry matter of Zuri Guinea grass. The results indicate that PGPB can represent a sustainable alternative for reducing the use of N-fertilizers. The lower effects of re-inoculation with PGPB on the nutrition or yield of Zuri Guinea grass, demonstrating that the determination of the method of application and periodicity of inoculation still require investigation.

Downloads

Download data is not yet available.

References

Do Valle, C.B., Jank, L., & Resende, R. M.S. O melhoramento de forrageiras tropicais no Brasil. Ceres, 56, (4). (2015).

Resende, R.M.S. et al. Melhoramento de forrageiras tropicais. In: Embrapa Gado de Corte. In: SIMPÓSIO DE PASTAGEM E FORRAGICULTURA DO CAMPO DAS VERTENTES, 2., 2015, São João del Rei. Anais. São João del Rei: UFSJ, p. 114-130., (2015).

Silva, E.B. et al. Availability and toxicity of cadmium to forage grasses grown in contaminated soil. Int. J. Phytoremediat, 18, 847-852, (2016). https://doi.org/10.1080/15226514.2016.1146225 DOI: https://doi.org/10.1080/15226514.2016.1146225

Nesper, M., Bünemann, E.K., Fonte, S.J., Rao, I.M., Velásquez, J.E., Ramirez, B., & Oberson, A. Pasture degradation decreases organic P content of tropical soils due to soil structural decline. Geoderma, 257(11), 123-133. (2015). doi: 10.1016/j. geoderma.2014.10.010 DOI: https://doi.org/10.1016/j.geoderma.2014.10.010

Dias, M.B.F. Diagnóstico das pastagens no Brasil. Belém: EMBRAPA Amazônia Oriental. (2014).

Chinnadurai, C., Gopalaswamy, G., & Balachandar, D. Long term effects of nutrient management regimes on abundance of bacterial genes and soil biochemical processes for fertility sustainability in a semi-arid tropical Alfisol. Geoderma, 232(11), 563572. (2014). doi: 10.1016/j.geoderma.2014.06.015 DOI: https://doi.org/10.1016/j.geoderma.2014.06.015

Fagundes, J.L., Fonseca, D.D., Morais, R.D., Mistura, C., Vitor, C.M.T., Gomide, J.A., & Lambertucci, D.M. Avaliação das características estruturais do capim-braquiária em pastagens adubadas com nitrogênio nas quatro estações do ano. Revista Brasileira de Zootecnia, 35(1), 30-37. (2006). DOI: https://doi.org/10.1590/S1516-35982006000100004

Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. Fisiologia e desenvolvimento vegetal. Porto Alegre: Artmed Editora. (2017).

De Salamone, I.E.G., Funes, J.M., Di Salvo, L.P., Escobar-Ortega, J.S., D’Auria, F., Ferrando, L., & Fernandez-Scavino, A. Inoculation of paddy rice with Azospirillum brasilense and Pseudomonas fluorescens: impact of plant genotypes on rhizosphere microbial communities and field crop production. Applied Soil Ecology, 61(10), 196-204. (2012). doi: 10.1016/j.apsoil.2011.12.012 DOI: https://doi.org/10.1016/j.apsoil.2011.12.012

Piccinin, G.G., Braccini, A.L., Dan, L.G., Scapim, C.A., Ricci, T.T., & Bazo, G.L. Efficiency of seed inoculation with Azospirillum brasilense on agronomic characteristics and yield of wheat. Industrial Crops and Products, 43(3), 393-397, (2013). doi: 10.1016/j.indcrop.2012.07.052 DOI: https://doi.org/10.1016/j.indcrop.2012.07.052

Carvalhais, L.C., Dennis, P.G., Fan, B., Fedoseyenko, D., Kierul, K., Becker, A., & Borriss, R. Linking plant nutritional status to plant-microbe interactions. PLoS One, 8(7), 1-13, (2013). doi: 10.1371/journal.pone.0068555 DOI: https://doi.org/10.1371/journal.pone.0068555

Hungria, M., Campo, R.J., Souza, E.M. & Pedrosa, F.O. Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant and Soil, 331(1/2), 413-425, (2010). https://doi.org/10.1007/s11104-009-0262-0 DOI: https://doi.org/10.1007/s11104-009-0262-0

Hungria, M., Nogueira, M.A. & Araújo, R.S. Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: An environment-friendly component in the reclamation of degraded pastures in the tropics. Agriculture, Ecosystems and Environment, 221, 125–131, (2016). https://doi.org/10.1016/j.agee.2016.01.024 DOI: https://doi.org/10.1016/j.agee.2016.01.024

Amaral, G.F. et al. Panorama da pecuária sustentável. BNDES Setorial, 36, p. 249-288, (2012).

Sá, J.C. de M. et al. Low-carbon agriculture in South America to mitigate global climate change and advance food security. Environment International, 98, 102-112, (2017). DOI: https://doi.org/10.1016/j.envint.2016.10.020

Vejan, P. et al. Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules, 21(5), 573, (2016). DOI: https://doi.org/10.3390/molecules21050573

Leite, R. da C. et al. Productivity increase, reduction of nitrogen fertiliser use and drought-stress mitigation by inoculation of Marandu grass (Urochloa brizantha) with Azospirillum brasilense. Crop and Pasture Science, 70(1), p. 61-67, (2019). DOI: https://doi.org/10.1071/CP18105

Duarte, C.F.D. et al. Morphogenetic and structural characteristics of Urochloa species under inoculation with plant-growth-promoting bacteria and nitrogen fertilisation. Crop & Pasture Science, 7(1), 82-89, (2020). https://doi.org/10.1071/CP18455 DOI: https://doi.org/10.1071/CP18455

Okon, Y., & Labandera-Gonzalez, C.A. Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biology and Biochemistry, 26(12), p. 1591-1601, (1994). DOI: https://doi.org/10.1016/0038-0717(94)90311-5

Glick, B.R. Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 2012, ID 963401, (2012). DOI: https://doi.org/10.6064/2012/963401

Fukami, J. et al. Revealing different strategies of quorum sensing in Azospirillum brasilense strains Ab-V5 and Ab-V6. Archives of Microbiology, 200(1), 47-56, (2018). https://doi.org/ 10.1007/s00203-017-1422-x). DOI: https://doi.org/10.1007/s00203-017-1422-x

Gouda, S. et al. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206, 131-140, (2018). DOI: https://doi.org/10.1016/j.micres.2017.08.016

Fukami J., Ollero F.J., Megías M., & Hungria M. Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express, 7, 153-166, (2017). https://dx.doi.org/10.1186%2Fs13568-017-0453-7

Fukami, J. et al. Co-inoculation of maize with Azospirillum brasilense and Rhizobium tropici as a strategy to mitigate salinity stress. Functional Plant Biology, 45, 328-339, (2017). https://doi.org/10.1071/FP17167 DOI: https://doi.org/10.1071/FP17167

Hungria, M., Mendes, I.C. & Mercante, F.M. A fixação biológica do nitrogênio como tecnologia de baixa emissão de carbono para as culturas do feijoeiro e da soja. Embrapa Soja, Londrina. (2013).

Sandini, I.E, Pacentchuk. F., Hungria, M., Nogueira, M.A., Cruz, S.P., Nakatani, A.S., & Araujo, R.S. Seed inoculation with Pseudomonas fluorescens promotes growth, yield and reduces nitrogen application in maize. International Journal of Agriculture and Biology, 22, 1369‒1375, (2019). https://doi:10.17957/IJAB/15.1210

Santos, H.G. et al. Brazilian system of soil classification (5th ed.). Brasilia, DF. Embrapa. (2018).

Van Raij. et al. Chemical analysis for fertility evaluation of tropical soils. 284 p. Campinas: Instituto Agronômico. (2001).

Quaggio, J.A., Van Raij, B., & Malavolta, E. Alternative use of the SMP-buffer solution to determine lime requirement of soils. Communications in Soil Science and Plant Analysis, 16(3), 245-260. (1985). doi: 10.1080/00103628509367600 DOI: https://doi.org/10.1080/00103628509367600

Döbereiner, J., Marriel, I. & Nery, M. Ecological distribution of Spirillum lipoferum. Canadian Journal of Microbiology, 22, 1464–1473. (1976). https://doi.org/10.1139/m76-217 DOI: https://doi.org/10.1139/m76-217

Hungria, M. & Araujo, R.S. Manual de métodos empregados em estudos de microbiologia agrícola. EMBRAPA, Brasília (1994). Available at: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/199952/manual-de-metodos-empregados-em-estudos-de-microbiologia-agricola>

Malavolta, E., Vitti, G.C., & Oliveira, S.A. Avaliação do estado nutricional das plantas: princípios e aplicações. Piracicaba: Potafos; (1997). 319 p.

Goering, H.K.; & Van Soest, P.J. Forage fiber analyses: apparatus, reagents, procedures, and some applications. Agricultural Research Service, US Department of Agriculture, (1970).

Holden, L.A. Comparison of methods of in vitro dry matter digestibility for ten feeds. Journal of Dairy Science, 82(8), 1791-1794, (1999). DOI: https://doi.org/10.3168/jds.S0022-0302(99)75409-3

Pimentel-Gomes, F., &Garcia, C.H. Estatística aplicada a experimentos agronômicos e florestais: exposição com exemplos e orientações para uso de aplicativos. Piracicaba: FEALQ. (2002).

Roesch, L.F., Camargo, F.O., Selbach, P.A., & Sá, E.S. Reinoculação de bactérias diazotróficas aumentando o crescimento de plantas de trigo. Ciência Rural, 35, 1201 1204, (2005). http://dx.doi.org/10.1590/S0103-84782005000500035 DOI: https://doi.org/10.1590/S0103-84782005000500035

Lana, M.C., Dartora, J., Marini, D. & Hann, J.E. Inoculation with Azospirillum, associated with nitrogen fertilization in maize. Revista Ceres, 59(3), 399-405, (2012). http://dx.doi.org/10.1590/S0034-737X2012000300016 DOI: https://doi.org/10.1590/S0034-737X2012000300016

Duca, D. et al. Indole-3-acetic acid in Plant-microbe interactions. Antonie van Leeuwenhoek, 106: 85-125, (2014). https://doi.org/10.1007/s10482-013-0095-y DOI: https://doi.org/10.1007/s10482-013-0095-y

Tullio, L.D et al. Revealing the roles of y4wF and tidC genes in Rhizobium tropici CIAT 899: Biosynthesis of indolic compounds and impact on symbiotic properties. Archives of Microbiology, 201(2), 171-183, (2019). https://doi.org/10.1007/s0023-018-1607-y DOI: https://doi.org/10.1007/s00203-018-1607-y

Guimarães, S.L. et al. Nutritional characteristics of marandu grass (Brachiaria brizantha cv. ‘Marandu’) subjected to inoculation with associative diazotrophic bacteria. African Journal of Microbiology Research, 10(24), 873-882, (2016). https://doi.org/10.5897/AJMR2016.7951 DOI: https://doi.org/10.5897/AJMR2016.7951

Sá, G.C.R., Hungria, M., Carvalho, C.L.M., Moreira, A., Nogueira, M.A., Heinrichs, R., & Soares Filho, C.V. Nutrients uptake in shoots and biomass yields and roots and nutritive value of Zuri guinea grass inoculated with plant growth-promoting bacteria. Communications in Soil Science and Plant Analysis, 50(22), 2927-2940, (2019). https://doi.org/10.1080/00103624.2019.1689256 DOI: https://doi.org/10.1080/00103624.2019.1689256

Heinrichs, R. et al. Azospirillum inoculation of ‘Marandu’ palisade grass seeds: effects on forage production and nutritional status. Semina: Ciências Agrárias, 41(2), 465-478, (2020). https://doi.org/ 10.5433/1679-0359.2020v41n2p465 DOI: https://doi.org/10.5433/1679-0359.2020v41n2p465

Sipione, M.S., Limede, A.C., Oliveira, C.E.S., Zoz, A., Silva, C.S., & Zoz, T. Ways of inoculation of Azospirillum brasilense in the initial growth of triticale. Revista Scientia Agraria, 18, 86–94, (2017). DOI: https://doi.org/10.5380/rsa.v18i4.50714

Dutta, D., & Gachhui, R. Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from Kombucha tea. International Journal Systematic Evolutionary Microbiology, 56, 1899–1903, (2006). DOI: https://doi.org/10.1099/ijs.0.64101-0

Shweta, S., Shivanna, M.B.; Gurumurthy, B.R., Shaanker, U., Santhosh Kumar, T.R., & Ravikanth, G. Inhibition of fungal endophytes by camptothecine produced by their host plant, Nothapodytes nimmoniana (Grahm) Mabb. (Icacinaceae). Current Science, 107, 994–1000, (2014).

Aly A.H., Debbab, A., & Proksch, P. Fungal endophytes: secret producers of bioactive plant metabolites. Pharmazie, 68(7), 499–505, (2013).

Yang, Y., Zhao, H., Barrero, R.A., Zhang, B., Sun, G., & Wilson, I. Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantogriseum NRRL 62431. BMC Genomics, 15(69), (2014). DOI: https://doi.org/10.1186/1471-2164-15-69

Brown, M.E. Plant growth substances produced by microrganismos of soil and rizosphere. Journal Applied Bacteriology, 35, 443-451, (1972). DOI: https://doi.org/10.1111/j.1365-2672.1972.tb03721.x

Bárbaro, I.M. et al. Técnica alternativa: co-inoculação de soja com Azospirillum e Bradyrhizobium visando incremento de produtividade. (2008). http://www.infobibos.com/Artigos/2008_4/coinoculacao/index.htm

Ferlini, H.A. Co-Inoculación en Soja (Glicyne max) con Bradyrhizobium japonicum y Azospirillum brasilense. International Business Comunity Related to Animal Production (2006). http://www.engormix.com/co_inoculacion_soja_glicyne_s_articulos_800_AGR.htm

Ilyas, N. & Bano, A. Azospirillum strains isolated from roots and rhizosphere soil of wheat (Triticum aestivum.) grown under different soil moisture conditions. Biology and Fertility of Soils, 46, 393-406, (2010). https://doi.org/10.1007/s00374-009-0438-z DOI: https://doi.org/10.1007/s00374-009-0438-z

García-Fraile, P. et al. Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS One, 7(5), e38122 (2012). https://doi.org/10.1371/journal.pone.0038122 DOI: https://doi.org/10.1371/journal.pone.0038122

Yanni, Y.G. & Dazzo, F.B. Occurrence and ecophysiology of the natural endophytic Rhizobium–rice association and translational assessment of its biofertilizer performance within the Egypt Nile delta. Biological nitrogen fixation. (Ed. FJ de Bruijn) 747–756, (2015). https://doi.org/10.1002/9781119053095.ch111 DOI: https://doi.org/10.1002/9781119053095.ch111

Itzigsohn, R. et al. Plant-growth promotion in natural pastures by inoculation with Azospirillum brasilense under suboptimal growth conditions. Arid Soil Research, 13, 151-158, (2000). https://doi.org/10.1080/089030600263076 DOI: https://doi.org/10.1080/089030600263076

Malik, K.A. et al. Association of nitrogen-fixing, plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice. Plant and Soil, 194, 37-44, (1997). https://doi.org/10.1023/A:1004295714181 DOI: https://doi.org/10.1007/978-94-011-5744-5_5

Muleta, D., Assefa, F., Börjesson, E. & Granhall, U. Phosphate-solubilising rhizobacteria associated with Coffea arabica L. in natural coffee forests of southwestern Ethiopia. Journal of the Saudi Society of Agricultural Sciences, 12, 73-84, (2013). https://doi.org/10.1016/j.jssas.2012.07.002 DOI: https://doi.org/10.1016/j.jssas.2012.07.002

Criollo, P., Obando, M., Sánchez, L. & Bonilla, R. Efecto de bacterias promotoras del crecimiento vegetal (PGPR) asociadas a Pennisetum clandestinum en el altiplano cundiboyacense‖. Revista Corpoica – Ciencia y Tecnologia Agropecuaria, 13(2), 189-195, (2012). https://doi.org/10.21930/rcta.vol13_num2_art:254 DOI: https://doi.org/10.21930/rcta.vol13_num2_art:254

Aguirre, P.F. et al. Forage yield of Coastcross-1 pastures inoculated with Azospirillum brasilense. Acta Scientiarium Animal Sciences, 40, e36392, (2018). http://dx.doi.org/10.4025/actascianimsci.v40i0.36392 DOI: https://doi.org/10.4025/actascianimsci.v40i0.36392

De Salamone, I.E.G., Di Salvo, L.P., Ortega, J.S.E., Sorte, P.M.B., Urquiaga, S., & Teixeira, K.R. Field response of rice paddy crop to Azospirillum inoculation: physiology of rhizosphere bacterial communities and the genetic diversity of endophytic bacteria in different parts of the plants. Plant and Soil, 336(1-2), 351-362, (2010). doi: 10.1007/ s11104-010-0487-y DOI: https://doi.org/10.1007/s11104-010-0487-y

Díaz-Zorita, M., & Fernández-Canigia, M. V. Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. European Journal of Soil Biology, 45(1), 3-11. (2009). doi: 10.1016/j. ejsobi.2008.07.001 DOI: https://doi.org/10.1016/j.ejsobi.2008.07.001

Kazi, N., Deaker, R., Wilson, N., Muhammad, K., & Trethowan, R. The response of wheat genotypes to inoculation with Azospirillum brasilense in the field. Field Crops Research, 196(12), 368-378, (2016). doi: 10.1016/j.fcr.2016.07.012 DOI: https://doi.org/10.1016/j.fcr.2016.07.012

Saubidet, M.I., Fatta, N., & Barneix, A.J. The effect of inoculation with Azospirillum brasilense on growth and nitrogen utilization by wheat plants. Plant and Soil, 245, p. 215 222, (2002). DOI: https://doi.org/10.1023/A:1020469603941

Roesch, L.F., Camargo, F.O., Selbach, P.A., & Sá, E.S. Reinoculação de bactérias diazotróficas aumentando o crescimento de plantas de trigo. Ciência Rural, 35, 1201 1204, (2005). http://dx.doi.org/10.1590/S0103-84782005000500035 DOI: https://doi.org/10.1590/S0103-84782005000500035

Oliveira, P.P.A., Oliveira, W.S., & Barioni, W.J. Produção de forragem e qualidade de Brachiaria brizantha cv. Marandu com Azospirillum brasilense e fertilizada com nitrogênio. São Carlos: Embrapa pecuária sudeste. 4 p. (Circular Técnico, 54). (2007).

Bashan, Y. & De-Bashan, L.E. How the plant growth-promoting bacterium Azospirillum promotes plant growth-a critical assessment. Advances in Agronomy, 108, 77–136, (2010). https://doi.org/10.1016/S0065-2113(10)08002-8 DOI: https://doi.org/10.1016/S0065-2113(10)08002-8

Aguirre, P.F., Olivo, C.J., Rodrigues, P.F., Falk, D.R., Adams, C.B., & Schiafino, H.P. Produção de forragem em pastos de Coastcross-1 inoculados com Azospirillum brasilense. Acta Scientiarum Anima, 40, p. e36392, (2018). DOI: https://doi.org/10.4025/actascianimsci.v40i0.36392

Sá, G.C.R., Carvalho, C.L.M., Moreira, A., Hungria, M., Nogueira, M.A., Heinrichs, R., & Soares Filho, C.V. Biomass yield, nitrogen accumulation and nutritive value of Mavuno grass inoculated with plant growth-promoting bacteria. Communications in Soil Science and Plant Analysis, 50(15), 1931-1942, (2019). https://doi.org/10.1080/00103624.2019.1648498 DOI: https://doi.org/10.1080/00103624.2019.1648498

Boer, C.A. et al. Ciclagem de nutrientes por plantas de cobertura na entressafra em um solo de cerrado. Pesquisa Agropecuária Brasileira, 42(9), 1269-1276, (2007). https://dx.doi.org/10.1590/S0100-204X2007000900008 DOI: https://doi.org/10.1590/S0100-204X2007000900008

Torres, J.L. et al. Decomposição e liberação de nitrogênio de resíduos culturais de plantas de cobertura em um solo de cerrado. Revista Brasileira de Ciência do Solo, 29(4), 609-618, (2005). http://dx.doi.org/10.1590/S0100-06832005000400013 DOI: https://doi.org/10.1590/S0100-06832005000400013

Gupta, K., Dey, A. & Gupta, B. Plant polyamines in abiotic stress responses. Acta Physiologiae Plantarum, 35(7), 2015–2036, (2013). https://doi.org/10.1007/s11738-013-1239-4 DOI: https://doi.org/10.1007/s11738-013-1239-4

Machado, A.T., Sodek, L., Döbereiner, J. & Reis, V.M. Efeito da adubação nitrogenada e da inoculação com bactérias diazotróficas no comportamento bioquímico da cultivar de milho Nitroflint. Pesquisa Agropecuária Brasileira, 33, 961-970, (1998).

Unno, H. et al. Atomic Structure of Plant Glutamine Synthetase. The Journal of Biological Chemistry,281(39), 29287-29296, (2006). https://doi.org/10.1074/jbc.M601497200 DOI: https://doi.org/10.1074/jbc.M601497200

Reuter, D., & Robinson, J. B. Plant analysis: an interpretation manual. Collingwood: CSIRO Publishing. (1997). DOI: https://doi.org/10.1071/9780643101265

Leite, R.C., Santos, J.G.D., Silva, E.L., Alves, C.R.C.R., Hungria, Leite, M., R.C., & Santos, A. C. Productivity increase, reduction of nitrogen fertiliser use and drought-stress mitigation by inoculation of Marandu grass (Urochloa brizantha) with Azospirillum Brasilense. Crop & Pasture Science, 70, 61–67, 2018. DOI: https://doi.org/10.1071/CP18105

Hanisch, A.L., Balbinot Júnior, A.A., & Vogt, G.A. Desempenho produtivo de Urochloa brizantha cv. Marandú em função da inoculação com Azospirillum e doses de nitrogênio. Revista Agroambiente, 11(3), p. 200-208, (2017). DOI: https://doi.org/10.18227/1982-8470ragro.v11i3.3916

Bernd, L.P., Souza, T.M., Oliveira, M.A., Ono, E.Y.S., Zucareli, C., & Hirooka, E.Y. Inoculação de Pseudomonas fluorescens e adubação NPK na composição química e contaminação fungo-fumonisina de milho. Revista Brasileira de Engenharia Agrícola e Ambiental 18(12), 1274-1280, (2014). DOI: https://doi.org/10.1590/1807-1929/agriambi.v18n12p1274-1280

Downloads

Published

2020-05-01

How to Cite

Soares Filho, C. V., Carvalho, C. L. M. de ., Hungria, M., Nogueira, M. A., Moreira, A., & Duarte, A. N. M. . (2020). Nitrogen in Shoots, Number of Tillers, Biomass Yield and Nutritive Value of Zuri Guinea Grass Inoculated with Plant-Growth Promoting Bacteria. International Journal for Innovation Education and Research, 8(5), 437-463. https://doi.org/10.31686/ijier.vol8.iss5.2360
Received 2020-04-20
Accepted 2020-05-03
Published 2020-05-01

Most read articles by the same author(s)