Photosensitizer Using Visible Light

An Undergraduate Laboratory Experiment Utilizing an Affordable Photocatalytic Reactor

Authors

  • Ahmed Alzamly United Arab Emirates University, UAE
  • Ali Alawadhi United Arab Emirates University, UAE
  • Salwa Ahmed United Arab Emirates University, UAE
  • Maram Bakiro United Arab Emirates University, UAE
  • Muna Bufaroosha United Arab Emirates University, UAE

DOI:

https://doi.org/10.31686/ijier.vol6.iss11.1232

Keywords:

Diclofenac Potassium, visible light, photosensitizer (PS), Chlorophyllin sodium copper salt

Abstract

In this experiment, the visible light reactive photosensitizer (PS) derived from chlorophyllin sodium copper salt has been synthesized via a simple synthetic route. The enhanced photocatalytic activity for the decomposition of the pharmaceutical compound Diclofenac Potassium available as Voltfast sachets under visible light irradiation was demonstrated by comparing the photocatalytic decomposition of Diclofenac Potassium in the presence and absence of the new synthesized visible light photosensitizer under the same photocatalytic conditions. Based on the experimental results, higher activity was achieved for the sample composed of the new synthesized visible light photosensitizer. The photosensitized sample using the new derivative of chlorophyllin sodium copper salt exhibited approximately 21 times higher rate when compared with that of Chlorophyllin sodium copper salt sample. This photocatalytic activity can be attributed to the enhanced visible light harvesting of the new derivative of Chlorophyllin sodium copper salt.  

Downloads

Download data is not yet available.

Author Biographies

  • Ahmed Alzamly, United Arab Emirates University, UAE

    Department of Chemistry

  • Ali Alawadhi, United Arab Emirates University, UAE

    Department of Chemistry

  • Salwa Ahmed, United Arab Emirates University, UAE

    Department of Chemistry

  • Maram Bakiro, United Arab Emirates University, UAE

    Department of Chemistry

  • Muna Bufaroosha, United Arab Emirates University, UAE

    Department of Chemistry

References

(1) Murphy, A. B.; Barnes, P. R. F.; Randeniya, L. K.; Plumb, I. C.; Grey, I. E.; Horne, M. D.; Glasscock, J. A. Efficiency of Solar Water Splitting Using Semiconductor Electrodes. Int. J. Hydrogen Energy 2006, 31 (14), 1999–2017.
(2) Gao, Y.; Ma, L.; Luo, J. Photocatalytic Destruction of VOCs in the Gas-Phase Using Titanium Dioxide. Appl. Catal. B Environ. 1997, 14, 55–68.
(3) Prairie, M. R.; Evans, L. R.; Stange, B. M.; Martinez, S. L. An Investigation of TiO2 Photocatalysis for the Treatment of Water Contaminated with Metals and Organic Chemicals. Environ. Sci. Technol. 1993, 27 (9), 1776–1782.
(4) Linsebigler, A. L.; Lu, G.; Yates, J. T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95 (3), 735–758.
(5) Abellán, M. N.; Dillert, R.; Giménez, J.; Bahnemann, D. Evaluation of Two Types of TiO2-Based Catalysts by Photodegradation of DMSO in Aqueous Suspension. J. Photochem. Photobiol. A Chem. 2009, 202 (2–3), 164–171.
(6) D’Amato, C.; Giovannetti, R.; Zannotti, M.; Rommozzi, E.; Minicucci, M.; Gunnella, R.; Di Cicco, A. Band Gap Implications on Nano-TiO2 Surface Modification with Ascorbic Acid for Visible Light-Active Polypropylene Coated Photocatalyst. Nanomaterials 2018, 8 (8), 599.
(7) Shi, R.; Lin, J.; Wang, Y.; Xu, J.; Zhu, Y. Visible-Light Photocatalytic Degradation of BiTaO4 Photocatalyst and Mechanism of Photocorrosion Suppression. J. Phys. Chem. C 2010, 114 (14), 6472–6477.
(8) Blankenship, R. E.; Tiede, D. M.; Barber, J.; Brudvig, G. W.; Fleming, G.; Ghirardi, M.; Gunner, M. R.; Junge, W.; Kramer, D. M.; Melis, A.; et al. Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement. Science 2011, 332 (6031), 805–809.
(9) Yamori, W.; Sakata, N.; Suzuki, Y.; Shikanai, T.; Makino, A. Cyclic Electron Flow around Photosystem i via Chloroplast NAD(P)H Dehydrogenase (NDH) Complex Performs a Significant Physiological Role during Photosynthesis and Plant Growth at Low Temperature in Rice. Plant J. 2011, 68 (6), 966–976.
(10) Bailey, S.; Grossman, A. Photoprotection in Cyanobacteria: Regulation of Light Harvesting. Photochem. Photobiol. 2008, 84 (6), 1410–1420.
(11) Hagiwara, H.; Inoue, T.; Kaneko, K.; Ishihara, T. Charge-Transfer Mechanism in Pt/KTa(Zr)O3 Photocatalysts Modified with Porphyrinoids for Water Splitting. Chem. - A Eur. J. 2009, 15 (46), 12862–12870.
(12) Lai, Y. S.; Su, Y. H.; Lin, M. I. Photochemical Water Splitting Performance of Fluorescein, Rhodamine B, and Chlorophyll-Cu Supported on ZrO2 Nanoparticles Layer Anode. Dye. Pigment. 2014, 103, 76–81.
(13) Joshi, M.; Kamble, S. P.; Labhsetwar, N. K.; Parwate, D. V.; Rayalu, S. S. Chlorophyll-Based Photocatalysts and Their Evaluations for Methyl Orange Photoreduction. J. Photochem. Photobiol. A Chem. 2009, 204 (2–3), 83–89.
(14) Benjamin, S.; Vaya, D.; Punjabi, P. B.; Ameta, S. C. Enhancing Photocatalytic Activity of Zinc Oxide by Coating with Some Natural Pigments. Arab. J. Chem. 2011, 4 (2), 205–209.
(15) Wada, N.; Sakamoto, T.; Matsugo, S. Multiple Roles of Photosynthetic and Sunscreen Pigments in Cyanobacteria Focusing on the Oxidative Stress. Metabolites 2013, 3 (2), 463–483.
(16) Ferruzzi, M. G.; Böhm, V.; Courtney, P. D.; Schwartz, S. J. Antioxidant and Antimutagenic Activity of Dietary Chlorophyll Derivatives Determined by Radical Scavenging and Bacterial Reverse Mutagenesis Assays. J. Food Sci. 2002, 67 (7), 2589–2595.
(17) Aydin, M. E.; Farag, A. A. M.; Abdel-Rafea, M.; Ammar, A. H.; Yakuphanoglu, F. Device Characterization of Organic Nanostructure Based on Sodium Copper Chlorophyllin (SCC). Synth. Met. 2012, 161 (23–24), 2700–2707.
(18) Farag, A. A. M. Electrical and Photovoltaic Characteristics of Sodium Copper Chlorophyllin/n-Type Silicon Heterojunctions. Appl. Surf. Sci. 2009, 255 (9), 4938–4943.
(19) Farag, A. A. M. Optical Absorption of Sodium Copper Chlorophyllin Thin Films in UV-Vis-NIR Region. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2006, 65 (3–4), 667–672.
(20) Calogero, G.; Citro, I.; Crupi, C.; Di Marco, G. Absorption Spectra and Photovoltaic Characterization of Chlorophyllins as Sensitizers for Dye-Sensitized Solar Cells. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2014, 132, 477–484.
(21) Oster, G.; Bellin, J. S.; Broyde, S. B. Photochemical Properties of Chlorophyllin A. J. Am. Chem. Soc. 1964, 86 (7), 1313–1318.
(22) Witte, K.; Mantouvalou, I.; Sánchez-De-Armas, R.; Lokstein, H.; Lebendig-Kuhla, J.; Jonas, A.; Roth, F.; Kanngießer, B.; Stiel, H. On the Electronic Structure of Cu Chlorophyllin and Its Breakdown Products: A Carbon K-Edge X-Ray Absorption Spectroscopy Study. J. Phys. Chem. B 2018, 122 (6), 1846–1851.
(23) Luo, L.; Xiao, Z.; Chen, B.; Cai, F.; Fang, L.; Lin, L.; Luan, T. Natural Porphyrins Accelerating the Phototransformation of Benzo[a]Pyrene in Water. Environ. Sci. Technol. 2018, 52 (6), 3634–3641.
(24) Liu, S.; Zhang, M.; Lu, R.; Li, X.; Che, G.; Liu, S.; Zhang, M.; Lu, R.; Li, X.; Che, G. Sodium Copper Chlorophyllin Catalyzed Chemoselective Oxidation of Benzylic Alcohols and Diarylmethanes in Water. Molecules 2018, 23 (8), 1883.
(25) Mackinney, G.; Weast, C. A. Color Changes in Green Vegetables: Frozen-Pack Peas and String Beans. Ind. Eng. Chem. 1940, 32 (3), 392–395.
(26) SCHWARTZ, S. J.; ELBE, J. H. VON. Kinetics of Chlorophyll Degradation to Pyropheophytins in Green Vegetables. J. Food Sci. 1983, 48, 1303–1306.
(27) Schwartz, S. J.; Lorenzo, T. V. Chlorophylls in Foods. Crit. Rev. Food Sci. Nutr. 1990, 29 (1), 1–17.
(28) CANJURA, F. L.; SCHWARTZ, S. J.; NUNES, R. V. Degradation Kinetics of Chlorophylls and Chlorophyllides. J. Food Sci. 1991, 56 (6), 1639–1643.
(29) Ryan-Stoneham, T.; Tong, C. H. Degradation Kinetics of Chlorophyll in Peas as a Function of PH. J. Food Sci. 2000, 65 (8), 1296–1302.
(30) Penttilä, A.; Boyle, C. R.; Salin, M. L. Active Oxygen Intermediates and Chlorophyllin Bleaching. Biochem. Biophys. Res. Commun. 1996, 226 (1), 135–139.
(31) Salin, M. L.; Alvarez, L. M.; Lynn, B. C.; Habulihaz, B.; Fountain 3rd, A. W. Photooxidative Bleaching of Chlorophyllin. Free Radic Res 1999, 31 Suppl (May), S97-105.
(32) Uchoa, A. F.; Konopko, A. M.; Baptista, M. S. Chlorophyllin Derivatives as Photosensitizers: Synthesis and Photodynamic Properties. J. Braz. Chem. Soc. 2015, 26 (12), 2615–2622.

Downloads

Published

2018-11-01

How to Cite

Alzamly, A., Alawadhi, A., Ahmed, S., Bakiro, M., & Bufaroosha, M. (2018). Photosensitizer Using Visible Light: An Undergraduate Laboratory Experiment Utilizing an Affordable Photocatalytic Reactor. International Journal for Innovation Education and Research, 6(11), 74-84. https://doi.org/10.31686/ijier.vol6.iss11.1232