Teaching Topographic Surface Concepts in Augmented Reality and Virtual Reality Web Environments

Authors

DOI:

https://doi.org/10.31686/ijier.vol7.iss10.1776

Keywords:

Augmented Reality, Virtual Reality, Topographic surfaces, Virtual Mockups

Abstract

This paper shows the use of web resources for the creation of Virtual Reality (VR) and Augmented Reality (AR) environments to teaching of topographic surface concepts. The mockups of the topographic surfaces were built with Sketchup software, include graphical representations of level contours, terrain cuts, topographic profiles and embankments. The terrains textures used are satellite photos available by the Digital Globe platform and contribute to improve the visualization of studied concepts. Developed environments enable students to view surfaces in AR ambient, using their webcam devices, such as smartphones, tablets, or notebooks, from a variety of points of view. Each topographic surface mockup has a link to its respective representation in VR, which allows its manipulation and detailed study of each concept. The environments presented in this work can be used in disciplines of Topography, Geography and Descriptive Geometry.

Downloads

Download data is not yet available.

References

[1] S.M. Attardi, and K.A. Rogers, “Design and implementation of an online systemic human anatomy course with laboratory,” Anatomical sciences education, v. 8, n.1, 2015, pp. 53-62.

[2] L.C. Cantos, J.L. Izquierdo, and E.C. Cantos, “Interactive multimedia application for teaching and learning in Analytical Geometry,” IEEE Latin America Transactions, v. 14, n. 7, 2016, pp. 3461-3466.

[3] C.C.R.G. Sena, and W.R. Carmo, “Cartografia Tátil: o papel das tecnologias na Educação Inclusiva,” Boletim Paulista de Geografia, v. 99, 2018, pp. 102-123.

[4] P.G. McMenamin, M.R. Quayle, C.R. McHenry, and J.W. Adams, “The production of anatomical teaching resources using three-dimensional (3D) printing technology,” Anatomical sciences education, v. 7, n. 6, 2014, pp. 479-486.

[5] M. Huleihil, “3D printing technology as innovative tool for math and geometry teaching applications,” IOP Conference Series: Materials Science and Engineering, v. 164, n. 1, 2017, pp. 1-7.


[6] C. Moro, Z. Stromberga, A. Raikos, and A. Stirling, “The effectiveness of virtual and augmented reality in health sciences and medical anatomy,” Anatomical sciences education, v. 10, n. 6, 2017, pp. 549-559.

[7] C. Kirner, and T.G. Kirner, “Development of an interactive artifact for cognitive rehabilitation based on augmented reality,” International Conference on Virtual Rehabilitation (ICVR’11), Zurich, Switzerland, 2011, pp. 1-7.

[8] N.A.A.A. González, “Development of spatial skills with virtual reality and augmented reality,” International Journal on Interactive Design and Manufacturing, v. 12, n. 1, 2017, pp. 133-144.

[9] P.P. Cerra, J.G. Rodríguez, H.F. Álvarez, and B.B. Parra, “Combining multimedia and self-assessment CAD tools in an interactive web environment to learn engineering drawing,” Interactive Learning Environments, v. 27, n. 2, 2018, pp. 1-14.

[10] F.S. Irwansyah, Y.M. Yusuf, I. Farida, and M.A. Ramdhani, “Augmented Reality (AR) Technology on The Android Operating System in Chemistry Learning,” IOP Conference Series: Materials Science and Engineering, v. 288, n. 1, 2018, pp. 233-237.

[11] F. Abdullah, M.H.B. Kassim, and N.Z. Sanusi, “Go virtual: exploring augmented reality application in representation of steel architectural construction for the enhancement of architecture education,” Advanced Science Letters, v. 23, n. 2, 2017, pp. 804-808.

[12] M.E.C. Santos, A. Chen, T. Taketomi, G. Yamamoto, J. Miyazaki, and H. Kato, “Augmented reality learning experiences: Survey of prototype design and evaluation,” IEEE Transactions on learning technologies, v. 7, n. 1, 2014, pp. 38-56.

[13] P.H. Siqueira, “Augmented Reality and Virtual Reality Web Environment to Visualizing the Planets of The Solar System,” To Physics Journal, v. 3, 2019, pp. 167-185.

[14] M. Akçayır, and G. Akçayır, “Advantages and challenges associated with augmented reality for education: A systematic review of the literature,” Educational Research Review, v. 20, 2017, pp. 1-11.

[15] J.A. Munoz-Cristóbal, V. Gallego-Lema, H.F. Arribas-Cubero, J.I. Asensio-Pérez, and A. Martínez-Monés, “Game of Blazons: Helping Teachers Conduct Learning Situations That Integrate Web Tools and Multiple Types of Augmented Reality,” IEEE Transactions on learning technologies, v. 11, n. 4, 2018, pp. 506-519.

[16] G. Andrade, A.C.C.A. Oliveira, and M.C.A. Diniz, “Geografia e Sandbox: Contribuições da Realidade Aumentada para o Ensino das Formas de Relevo,” 3o Congresso sobre tecnologias na Educação, Fortaleza, CE, Brasil, 2018, pp. 258-270.

[17] R.S. Santos, R.S. Santos, C.M.S. Alencar, and C.E.S. Macedo, “Realidade Aumentada no Processo de Ensino-Aprendizagem da Topografia em Projeto de Engenharia Civil,” 3o Congresso sobre tecnologias na Educação, Fortaleza, CE, Brasil, 2018, pp. 582-589.

[18] E.T. Santos, R. Mafalda, A. Kawano, L.Y. Cheng, J.R.D. Petreche, B.C.C. Leite, S.L. Ferreira, and L.R.A. Cardoso, “Da geometria cotada ao modelamento 3D: projeto didático,” Simpósio Nacional de Geometria Descritiva e Desenho Técnico e International Conference on Graphics Engineering for Arts and Design, Santa Cruz do Sul, RS, Brasil, 2003, pp. 1-7.

[19] E.L.S. Becker, and M.P. Nunes, “Relevo do Rio Grande do Sul, Brasil, e sua representação em maquete,” Revista Percurso, v. 4, n. 2, 2012, pp. 113-132.

[20] C.M. Silva, and G.C. Ferreira, “Produção de material didático: jogo das curvas de nível,” Boletim Goiano de Geografia, v. 28, 2008, pp. 157-170.

[21] R.R. Sousa, “Oficina de maquete de relevo: um recurso didático,” Terrae Didatica, v. 10, n.1, 2014, pp. 22-28.

[22] W.O. Souza, G.M. Espíndola, A.R.A. Pereira, and L.A.C.M. Sá, “A realidade aumentada na apresentação de produtos cartográficos,” Boletim de Ciências Geodésicas, v. 22, n. 4, 2016, pp. 790-806.

[23] C.C. Carrera, and L.A.B. Asensio, “Landscape interpretation with augmented reality and maps to improve spatial orientation skill,” Journal of Geography in Higher Education, v. 41, n. 1, 2017, pp. 119-133.

[24] Sketchup, “3D Design Software,” available in: https://www.sketchup.com, access in: 25.09.2019.

[25] Digital Globe, “Explore geospatial data in context,” available in: https://www.digitalglobe.com, access in: 25.09.2019.

[26] A-frame, “A-frame documentation of Virtual Reality,” available in: https://aframe.io/docs/0.8.0/ introduction, access in: 25.09.2019.

[27] J.R. Oliveira, “Visualização de conteúdos multimédia num ambiente de realidade virtual,” Masters dissertation: Faculdade de Engenharia da Universidade do Porto, Porto, Portugal, 2018.

[28] T. Hinrichs, “An Orbit Controls Component for A-Frame VR,” available in: https://github.com/tizzle/ aframe-orbit-controls-component, access in: 25.09.2019.

[29] W. Murphy, “All-in-one natural hand controller, pointer, and gaze interaction library for A-Frame,” available in: https://github.com/wmurphyrd/aframe-super-hands-component, access in: 25.09.2019.

[30] F. Serrano, “A-Frame teleport controls component,” available in: https://github.com/fernandojsg/ aframe-teleport-controls, access in: 25.09.2019.

[31] J. Etienne, “Efficient Augmented Reality for the Web,” available in: https://github.com/ jeromeetienne/AR.js, access in: 25.09.2019.

[32] H. Ishii, “Augmented Reality: Fundamentals and Nuclear Related Applications,” International Journal of Nuclear Safety and simulation, v. 1, n. 4, 2010, pp. 316-327.

Downloads

Published

2019-10-01

How to Cite

Siqueira, P. (2019). Teaching Topographic Surface Concepts in Augmented Reality and Virtual Reality Web Environments. International Journal for Innovation Education and Research, 7(10), 307-320. https://doi.org/10.31686/ijier.vol7.iss10.1776