Dynamic modeling and stability analysis of a nonlinear system with primary resonance
DOI:
https://doi.org/10.31686/ijier.vol8.iss3.2245Keywords:
nonlinear mechanical systems, primary resonances, multiple scales method, Lyapunov exponent, Poincaré map, stability analysis and chaosAbstract
In recent years, there has been growing interest in the study of nonlinear phenomena. This is due to the modernization of structures related to the need of using lighter, more resistant and flexible materials. Thus, this work aims to study the behavior of a mechanical system with two degrees of freedom with nonlinear characteristics in primary resonance. The structure consists of the main system connected to a secondary system to act as a Nonlinear Dynamic Vibration Absorber, which partially or fully absorbs the vibrational energy of the system. The numerical solutions of the problem are obtained using the Runge-Kutta methods of the 4th order and approximate analytical solutions are obtained using the Multiple Scales Method. Then, the approximation error between the two solutions is analyzed.
Using the aforementioned perturbation method, the responses for the ordinary differential equations of the first order can be determined, which describe the modulation amplitudes and phases. Thus, the solution in steady state and the stability are studied using the frequency response. Furthermore, the behavior of the main system and the absorber are investigated through numerical simulations, such as responses in the time domain, phase planes and Poincaré map; which shows that the system displays periodic, quasi-periodic and chaotic movements. The dynamic behavior of the system is analyzed using the Lyapunov exponent and the bifurcation diagram is presented to better summarize all the possible behaviors as the force amplitude varies. In general, the main characteristics of a dynamic system that experiences the chaotic response will be identified.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Romes Antonio Borges, Marcos N. Rabelo, Alcione B. Purcina, Marcos L. Henrique

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Copyrights for articles published in IJIER journals are retained by the authors, with first publication rights granted to the journal. The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author for more visit Copyright & License.