Content of basil essential oil on a loam texture soil under water regimes and different harvest stages

Authors

  • João Victor Ribeiro da Silva de Souza Universidade Estadual Paulista Júlio de Mesquita Filho
  • Marcos Antonio Liodorio dos Santos Universidade Estadual Paulista Júlio de Mesquita Filho
  • Maria Marcia Pereira Sartori Universidade Estadual Paulista Júlio de Mesquita Filho
  • James E Simon The State University of New Jersey
  • Hector Rodolfo Juliani The State University of New Jersey
  • João Carlos Cury Saad Universidade Estadual Paulista Júlio de Mesquita Filho

DOI:

https://doi.org/10.31686/ijier.vol8.iss8.2513

Keywords:

Medicinal plant, essential oil, hydric stress, linalool, irrigation

Abstract

The essential oil of basil (Ocimum basilicum L.) has high economic value and is produced in the plant by secondary metabolism. Its quantity and composition tend to vary as a response of the plant to stress situations due to changes in the environment and phenological phase. This work aimed to evaluate the development, the chemical composition, content, and the yield of essential oil of basil rich in Linalool, as a function of the soil water tensions and the harvest stages, in a loam texture soil. The experiment was carried out in a greenhouse and consisted of three harvest times (BF - beginning of flowering,  FF - full flowering,  and EF - end of flowering) and five values of soil water tension to define when to irrigate (20, 30, 40, 50, and 60 kPa), totalizing 15 treatments. The irrigation in the soil water tension of 60 kPa generated a reduction in the content and the yield of essential oils compared with 20 kPa, only in the FF harvest stage. However, it did not modify the composition of the essential oil. Regardless of the soil water tension to define irrigation, the highest levels and yields of essential oil were found in the EF harvest stage. Harvest stages did not change the composition of the essential oil or the content of Linalool. In turn, the contents of the components Cineol, Camphor, ∝-Terpeneol, and Isobornyl acetate increased with the harvesting period from BF to EF. Eugenol had the opposite trend, reducing the content from BF to EF. Linalool, a component in greater proportion in essential oil, showed a higher content in soil water tensions up to 50 kPa, decreasing only by 60 kPa. In loam textured soils, it is recommended that basil producers, who aim to extract Linalool, irrigate when the soil water tension reaches up to 50 kPa, with the harvest at any stage of flowering.

Downloads

Download data is not yet available.

Author Biographies

  • Marcos Antonio Liodorio dos Santos, Universidade Estadual Paulista Júlio de Mesquita Filho

    Faculdade de Ciências Agronômicas de Botucatu

  • Maria Marcia Pereira Sartori, Universidade Estadual Paulista Júlio de Mesquita Filho

    Faculdade de Ciências Agronômicas de Botucatu

  • James E Simon, The State University of New Jersey

    Rutgers University, Department of Plant Biology. Rutgers

  • Hector Rodolfo Juliani, The State University of New Jersey

    Rutgers University, Department of Plant Biology

  • João Carlos Cury Saad, Universidade Estadual Paulista Júlio de Mesquita Filho

    Faculdade de Ciências Agronômicas de Botucatu

References

Chalchat, J. C., & Özcan, M. M. 2008. Comparative essential oil composition of flowers, leavesand stems of basil (Ocimum basilicum L.) used as herb. Food Chemistry, 110(2), 501–503. https://doi.org/10.1016/j.foodchem.2008.02.018 DOI: https://doi.org/10.1016/j.foodchem.2008.02.018

Ahmed, E.A., Hassan, E.A., Tobgy, K.M.K.E., Ramadan, E.M., 2014. Evaluation of rhizobacteria of some medicinal plants for plant growth promotion and biological control. Ann. Agric. Sci. 59, 273–280. https://doi.org/10.1016/j.aoas.2014.11.016 DOI: https://doi.org/10.1016/j.aoas.2014.11.016

Agami, R.A., Medani, R.A., El-mola, I.A.A., Taha, R.S., 2016. Exogenous application with plant growth promoting rhizobacteria ( PGPR ) or proline induces stress tolerance in basil plants ( Ocimum basilicum L . ) exposed to water stress. Int. J. Environ. Agric. Res. 2, 78–92.

Hanif, M.A., Al-Maskari, Y., Al-Maskari, A., Al-Shukaili, A., Al-Maskari, A.Y., Al-Sabahi, J.N., 2011. Essential oil composition, antimicrobial and antioxidant activities of unexplored Omani basil. J. Med. Plants Res. 5, 751–757.

Suppakul, P., Miltz, J., Sonneveld, K., Bigger, S.W., 2003. Antimicrobial properties of basil and its possible application in food packaging. J. Agric. Food Chem. 51, 3197–3207. https://doi.org/10.1021/jf021038t DOI: https://doi.org/10.1021/jf021038t

Koroch, A. R.; Simon, J. E.; Juliani, H. R. Essential oil composition of purple basils, their reverted green varieties (Ocimum basilicum) and their associated biological activity. Industrial Crops and Products, v. 107, n. February, p. 526–530, 2017. DOI: https://doi.org/10.1016/j.indcrop.2017.04.066

Trapp, S.C., Croteau, R.B., 2001. Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158, 811–832. DOI: https://doi.org/10.1093/genetics/158.2.811

Padalia, R.C., Verma, R.S., Upadhyay, R.K., Chauhan, A., Singh, V.R., 2017. Productivity and essential oil quality assessment of promising accessions of Ocimum basilicum L. from north India. Ind. Crops Prod. 97, 79–86. https://doi.org/10.1016/j.indcrop.2016.12.008 DOI: https://doi.org/10.1016/j.indcrop.2016.12.008

Lachowicz, K.J., Jones, G.P., Briggs, D.R., Bienvenu, F.E., Palmer, M. V., Mishra, V., Hunter, M.M., 1997. Characteristics of Plants and Plant Extracts from Five Varieties of Basil ( Ocimum basilicum L.) Grown in Australia. J. Agric. Food Chem. 45, 2660–2665. https://doi.org/10.1021/jf960791h DOI: https://doi.org/10.1021/jf960791h

Saran, P. L.; Tripathy, V.; Meena, R. P.; Kumar, J.; Vasara, R. P. Chemotypic characterization and development of morphological markers in Ocimum basilicum L. germplasm. Scientia Horticulturae, v. 215, p. 164–171, 2017. DOI: https://doi.org/10.1016/j.scienta.2016.12.007

Blank, A.F., De Souza, E.M., Arrigoni-Blank, M.D.F., De Paula, J.W.A., Alves, P.B., 2007. Maria Bonita: Cultivar de manjericão tipo linalol. Pesqui. Agropecu. Bras. 42, 1811–1813. https://doi.org/10.1590/S0100-204X2007001200019 DOI: https://doi.org/10.1590/S0100-204X2007001200020

Veloso, R.A., Castro, H.G., Barbosa, L.C.., Cardoso, D.P., Chagas Júnior, A.F., Scheidt, G., 2014. Teor e composição do óleo essencial de quatro acessos e duas cultivares de manjericão (Ocimum basilicum L.). Rev. Bras. Pl. Med 16, 364–371. https://doi.org/10.1590/1983-084X/12 DOI: https://doi.org/10.1590/1983-084X/12_180

Blank, A. F.; Souza, E. M. De; Paula, J. W. De; Alves, P. B. Comportamento fenotípico e genotípico de populações de manjericão. Horticultura Brasileira, v. 28, n. 3, p. 305–310, 2010. DOI: https://doi.org/10.1590/S0102-05362010000300011

LUBBE, A.; VERPOORTE, R. Cultivation of medicinal and aromatic plants for specialty industrial materials. Industrial Crops and Products, v. 34, n. 1, p. 785–801, 2011. DOI: https://doi.org/10.1016/j.indcrop.2011.01.019

Prajapati, P.; Singh, A.; Jadhav, P. B.; Technologies, E.; Nagar, J. R Esearch A Rticle Value Addition In Floriculture Through Essential Oils. International Journal of Information Research and Review, v. 03, n. 9, p. 2795–2799, 2016.

Simões, C.M.O.; Spitzer, V. Óleos voláteis. In: Farmacognosia: da planta ao medicamento. Porto Alegre: Ed. Universidade Federal do Rio Grande do Sul, 2000. p. 394–412.

Sangwan, N.S., Farooqi, A.H.A., Shabih, F., Sangwan, R.S., 2001. Regulation of essential oil production in plants. Plant Growth Regul. 34, 3–21. https://doi.org/10.1023/A:1013386921596 DOI: https://doi.org/10.1023/A:1013386921596

Caliskan, O.; Kurt, D.; Temizel, K. E.; Odabas, M. S. Effect of Salt Stress and Irrigation Water on Growth and Development of Sweet Basil ( Ocimum basilicum L .). Open Agriculture, v. 2, p. 589–594, 2017. DOI: https://doi.org/10.1515/opag-2017-0062

Khalid, K.A., 2006. Influence of water stress on growth, essential oil, and chemical composition of herbs (Ocimum sp.). Int. Agrophysics 20, 289–296. https://doi.org/10.1016/j.plantsci.2004.05.034 DOI: https://doi.org/10.1016/j.plantsci.2004.05.034

Radácsi, P.; Inotai, K.; Sárosi, S.; Czövek, P.; Bernáth, J.; Németh, É. Effect of Water Supply on the Physiological Characteristic and Production of Basil ( Ocimum basilicum L .). Europ. J. Hort. Sci., v. 75, n. 5, p. 193–197, 2010.

Simon, J.E., Reiss-Bubenheim, D., Joly, R.J., Charles, D.J., 1992. Water stress-induced alterations in essential oil content and composition of sweet basil. J. Essent. Oil Res. 4, 71–75. https://doi.org/10.1080/10412905.1992.9698013 DOI: https://doi.org/10.1080/10412905.1992.9698013

Sirousmehr, A.; Arbabi, J.; Asgharipour, M. Effect of Drought Stress Levels and Organic Manures on Yield, Essential Oil Content and Some Morphological Characteristics of Sweet Basil (Ocimum basilicum). Advances in Environmental …, v. 8, n. March, p. 880–885, 2014.

Carvalho, L.M. de, Costa, J.A.M. da, Carnelossi, M.A.G., 2010. Qualidade em plantas medicinais. Embrapa 162, 1–56.

EMBRAPA. Centro Nacional de Pesquisa de Solos. Sistema Brasileiro de Classificação de Solos. 2. ed. Rio de Janeiro: Embrapa 2006. 306 p.

Raij, B., Andrade, J.C. De, Cantarella, H., Quaaggio, J.A., 2001. Análise Química para Avaliação da Fertilidade de Solos Tropicais. Campinas: IAC.

Claessen, M.E.C., Barreto, W.D.O., Paula, J.L. De, Duarte, M.N., 1997. Manual de Métodos de Análise de Solo, Embrapa.

Dourado-Neto, D., Nielsen, D.R., Hopmans, J.W., Reichardt, K., Bacchi, O.O.S., 2000. Software to model soil water retention curves (SWRC, version 2.00). Sci. Agric. 57, 191–192. https://doi.org/10.1590/S0103-90162000000100031 DOI: https://doi.org/10.1590/S0103-90162000000100031

Van GENUCHTEN, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44:892-898. DOI: https://doi.org/10.2136/sssaj1980.03615995004400050002x

Correa, J.C., 1984. Características físico-h ídr icas dos solos latossolo amarelo, podzõlico vermelho-amarelo e podzol hidromórfico do estado do amazonas. Pesq. agropec. bras, 19(3), 347-360.

Adams, R, 2007. Identification of Essential oil Components by Gas Chromatography/Mass Spectrometry, 4o ed. llured Publishing Corporation, Illinois.

Baher, Z.F., Mirza, M., Ghorbanli, M., Rezaii, M.B., 2002. The influence of water stress on plant height, herbal and essential oil yield and composition in Satureja hortensis L. Flavour Fragr. J. 17, 275–277. https://doi.org/10.1002/ffj.1097 DOI: https://doi.org/10.1002/ffj.1097

Padalia, R.C., Verma, R.S., Chauhan, A., Chanotiya, C.S., 2013. Changes in aroma profiles of 11 Indian Ocimum taxa during plant ontogeny. Acta Physiol. Plant. 35, 2567–2587. https://doi.org/10.1007/s11738-013-1293-y DOI: https://doi.org/10.1007/s11738-013-1293-y

Alves, M.F., Blank, A.F., Arrigoni-Blank, M.F., Fontes, S.S., Jesus, H.C.R. de, Alves, P.B., 2015. Establishment of methodology for drying leaves and storage of essential oil of linalool chemotype Ocimum basilicum L. Biosci. J. 31, 1441–1449. https://doi.org/10.14393/BJ-v31n5a2015-22056 DOI: https://doi.org/10.14393/BJ-v31n5a2015-22056

Baritaux, O., Richard, H., Touche, J., Derbesy, M., 1992. Effects of drying and storage of herbs and spices on the essential oil. Part I. Basil, Ocimum basilicum L. Flavour Fragr. J. 7, 267–271. https://doi.org/10.1002/ffj.2730070507 DOI: https://doi.org/10.1002/ffj.2730070507

Soares, R.D., Chaves, M.A., Silva, A.A.L. da, Silva, M.V. da, Souza, B. dos S., 2007. Influência da temperatura e velocidade do ar na secagem de manjericão (Ocimum basilicum L.) com relação aos teores de óleos essenciais e de linalol. Ciência e Agrotecnologia 31, 1108–1113. https://doi.org/10.1590/S1413-70542007000400025 DOI: https://doi.org/10.1590/S1413-70542007000400025

Verma, R.S., Padalia, R.C., Chauhan, A., Thul, S.T., 2013. Exploring compositional diversity in the essential oils of 34 Ocimum taxa from Indian flora. Ind. Crops Prod. 45, 7–19. https://doi.org/10.1016/j.indcrop.2012.12.005 DOI: https://doi.org/10.1016/j.indcrop.2012.12.005

Jordán, M.J., Quílez, M., Luna, M.C., Bekhradi, F., Sotomayor, J.A., Sánchez-Gómez, P., Gil, M.I., 2017. Influence of water stress and storage time on preservation of the fresh volatile profile of three basil genotypes. Food Chem. 221, 169–177. https://doi.org/10.1016/j.foodchem.2016.10.059 DOI: https://doi.org/10.1016/j.foodchem.2016.10.059

Omidbaigi, R., Hassani, a., Sefidkon, F., 2003. Essential oil content and composition of sweet basil (Ocimum basilicum ) at different irrigation regimes. J. Essent. Oil Bear. Plants 6, 104–108. https://doi.org/10.1080/0972-060X.2003.10643335 DOI: https://doi.org/10.1080/0972-060X.2003.10643335

Ekren, S., Sönmez, Ç., Özçakal, E., Kurttaş, Y.S.K., Bayram, E., Gürgülü, H., 2012. The effect of different irrigation water levels on yield and quality characteristics of purple basil (Ocimum basilicum L.). Agric. Water Manag. 109, 155–161. https://doi.org/10.1016/j.agwat.2012.03.004 DOI: https://doi.org/10.1016/j.agwat.2012.03.004

Abdollahi Mandoulakani, B., Eyvazpour, E., Ghadimzadeh, M., 2017. The effect of drought stress on the expression of key genes involved in the biosynthesis of phenylpropanoids and essential oil components in basil (Ocimum basilicum L.). Phytochemistry 139, 1–7. https://doi.org/10.1016/j.phytochem.2017.03.006 DOI: https://doi.org/10.1016/j.phytochem.2017.03.006

Downloads

Published

2020-08-01

How to Cite

Victor Ribeiro da Silva de Souza, J., Antonio Liodorio dos Santos, M., Marcia Pereira Sartori, M. ., E Simon, J. ., Rodolfo Juliani, H. ., & Carlos Cury Saad, J. . (2020). Content of basil essential oil on a loam texture soil under water regimes and different harvest stages. International Journal for Innovation Education and Research, 8(8), 250-266. https://doi.org/10.31686/ijier.vol8.iss8.2513