Neurotoxicity evaluation of meloxicam in the alternative in vivo model, Caenorhabditis elegans

Authors

  • Juliana Cyrillo Guimarães da Silva Graduate Program in Toxicology and Experimental Toxicology, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil; Department of Bioanalysis, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil.
  • Cassiana Bigolin Graduate Program in Toxicology and Experimental Toxicology, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil. Department of Bioanalysis, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil.
  • Laura Cé da Silva Department of Bioanalysis, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil.
  • Thalia Emmanoella Sebulsqui Saraiva Graduate Program in Toxicology and Experimental Toxicology, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil. Department of Bioanalysis, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil.
  • Julia Machado Menezes Department of Bioanalysis, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil.
  • Andriele Veiverberg Department of Bioanalysis, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil.
  • Mariele Feiffer Charão Graduate Program in Toxicology and Experimental Toxicology, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil. Department of Bioanalysis, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil.
  • Andresa Heemann Betti Graduate Program in Toxicology and Experimental Toxicology, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil. Department of Bioanalysis, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil. https://orcid.org/0000-0002-7116-5465

DOI:

https://doi.org/10.31686/ijier.vol8.iss8.2522

Keywords:

C. elegans, neurotoxicity, meloxicam, NSAID

Abstract

Inflammatory processes cause changes in the permeability of the blood brain barrier. Non-steroidal anti-inflammatory drugs (NSAID) are most commonly used to treat these inflammatory processes, including meloxicam, and they can reach the central nervous system (CNS) and cause neurotoxicity. Since there are no studies evaluating the neurotoxicity of NSAID in alternative models of toxicity, the aim of this study was to evaluate the acute neurotoxicity (through nematodes changes in behavior) of meloxicam in an alternative in vivo model, Caenorhabditis elegans, as well as, to determine meloxicam toxicity through LD50 and development assessments. Meloxicam LD50 was high (50.03 mg/mL) and only the highest dose (100 mg/mL) caused a decrease in the nematode body size, indicating low toxicity in this alternative model. Besides, a neurological effect was observed only in the highest dose. Meloxicam showed neurotoxicity only at a very high dose, suggesting low potential to cause toxicity in the CNS. However, further studies are necessary to evaluate meloxicam neurotoxicity.

Downloads

Download data is not yet available.

References

Hansson, E. Long-term pain, neuroinflammation and glial activation. Scandinavion Journal of Pain. 2 (1): 67-72, 2010. DOI: https://doi.org/10.1016/j.sjpain.2010.01.002

Levoin, N.; Blondeau, C.; Guillaume, C.; Grandcolas, L.; Chretien, F.; Jouzeau, J.Y; Lapicque, F. Elucidation of the mechanism of inhibition of cyclooxygenases by acyl-coenzyme A and acylglucuronic conjugates of ketoprofen. Biochem. Pharmacol, 68(10): 1957-1969, 2004. DOI: https://doi.org/10.1016/j.bcp.2004.07.015

Batlouni, M.; Anti-inflamatórios não esteroides: Efeitos cardiovasculares, cérebro-vasculares e renais. Arquivos Brasileiros de Cardiologia, 94(4): 522-530, 2010. DOI: https://doi.org/10.1590/S0066-782X2010000400019

Slikker, W.; Bowyer, J.F. Biomarkers of adult and developmental neurotoxicity. Toxicol Appl Pharmacol, 206(2): 255-260, 2005. DOI: https://doi.org/10.1016/j.taap.2004.09.022

Brenner, S.; The genetics of Caenorhabditis elegans. Genetics,77(1): 71–94, 1974. DOI: https://doi.org/10.1093/genetics/77.1.71

Caito, S.; Fretham, S.; Martinez-Finley, E.; Chakraborty, S.; Ávila, D.; Chen, P. Aschner M. Genome-wide analyses of metal responsive genes in Caenorhabditis elegans. Frontiers in Genetics,52(3): 230-38, 2012. DOI: https://doi.org/10.3389/fgene.2012.00052

Abbott, A.L.; Alvarez-Saavedra, E.; Miska, E.A.; Lau, N.C.; Bartel, D.P.; Horvitz, H.R.; Ambros. The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Cell Developmental, 9(3):403-414, 2005. DOI: https://doi.org/10.1016/j.devcel.2005.07.009

Ávila, D.S.; Somlyai, G.; Somlyai, I.; Aschner, M.; Antiaging effects of deuterium depletion on Mn-induced toxicity in a C. elegans model. Toxicology Letters, 211(3): 319-324, 2012. DOI: https://doi.org/10.1016/j.toxlet.2012.04.014

Hasegawa, K.; Miwa, S.; Tsutsumiuchi, K.; Miwa, J. Allyl isothiocyanate that induces GST and UGT expression confers oxidative stress resistance on C. elegans, as demonstrated by nematode biosensor. Plos One, 5(2): 215–225, 2010. DOI: https://doi.org/10.1371/journal.pone.0009267

Schouest, K.; Zitova, A.; Spillane, C.; Papkovsky, D.B. Toxicological assessment of chemicals using Caenorhabditis elegans and optical oxygen respirometry. Environ. Toxicol Chem, 28(4):791-799, 2009. DOI: https://doi.org/10.1897/08-083.1

Wu, Q.; Nouara, A.; Li, Y.; Zhang, M.; Wang, W.; Tang, M.; Wang, D. Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. Chemosphere, 90(3): 1123-1131, 2013. DOI: https://doi.org/10.1016/j.chemosphere.2012.09.019

Boyd, W.A.; Cole, R.D.; Anderson, G.L; Williams, P.L.; The effects of metals and food availability on the behavior of Caenorhabditis elegans. Environmental Toxicology Chemistry, 22(12): 3049-3055, 2003. DOI: https://doi.org/10.1897/02-565

Charão, M.F.; Baierle, M.; Gauer, B.; Goethel, G.; Fracasso, R.; Paese, K.; Matte, U.S. Protective effects of melatonin-loaded lipid-core nanocapsules on paraquat-induced cytotoxicity and genotoxicity in a pulmonary cell line. Mutation Res Genet Toxicol and Environ Mutagen, 9(1):784-785, 2015. DOI: https://doi.org/10.1016/j.mrgentox.2015.04.006

Hu, Y.O.; Wang. Y.; Y.e B.P. Wang, D.Y. Phenotypic and behavioral defects induced by iron exposure can be transferred to progeny in Caenorhabditis elegans. Biomed Environ Sci, 21(6): 467-473, 2008. DOI: https://doi.org/10.1016/S0895-3988(09)60004-0

Ura, K. Aquatic acute toxicity testing using the nematode Caenorhabditis elegans. Journal of Health Science, 48(6): 583-582, 2000. DOI: https://doi.org/10.1248/jhs.48.583

Lagadic, L.; Caquet, T. Invertebrates in Testing of Environmental Chemicals. Are They Alternatives? Environmental Health Perspectives, 106(2): 593-611, 1998. DOI: https://doi.org/10.1289/ehp.98106593

Cha, Y.J.; Lee, J.; Choi, S.S. Apoptosis-mediated in vivo toxicity of hydroxylated fullerene nanoparticles in soil nematode Caenorhabditis elegans. Chemosphere, 87(1): 49-54, 2012. DOI: https://doi.org/10.1016/j.chemosphere.2011.11.054

Jiang, Y.; Chen, J., Wu, Y.; Wang, Q.; Li, H. Sublethal Toxicity Endpoints of Heavy Metals to the Nematode Caenorhabditis elegans. Plos One, 11(1): 1-12, 2016. DOI: https://doi.org/10.1371/journal.pone.0148014

Shen, L.; Xiao, J. Y. H. Wang, D. Toxicity evaluation in nematode Caenorhabditis elegans after chronic metal exposure. Environmental Toxicology Pharmacology, 28(1): 125–132, 2009. DOI: https://doi.org/10.1016/j.etap.2009.03.009

Wang, X.; Wang, X.; Wand, D. Lifespan extension in Caenorhabditis elegans by DMSO is dependent on sir-2.1 and daf-16. Biochem Biophys Res Commun. 400(4): 613-618, 2010. DOI: https://doi.org/10.1016/j.bbrc.2010.08.113

Jacques, M.T.; Avila, D.S. Avaliação toxicológica de glifosato e sua formulação comercial em caenorhabditis elegans. Anais do Salão Internacional de Ensino Pesquisa e Extensão, 7(2): 1-2, 2015.

Yu, H.; Aleman-Meza, B.; Gharib, S.; Labocha, M.K.; Cronin, C.J.; Sternberg, P.W.; Zhong, W. Systematic profiling of Caenorhabditis elegans locomotive behaviors reveals additional components in G-protein Gαq signaling. Proc Natl Acad Sci U S A. 110(29): 11940-11945, 2013. DOI: https://doi.org/10.1073/pnas.1310468110

Riddle, D.L.; Blumenthal, T.; Meyer, B.J.; Priess, J.R. C. elegans II, 2 ed, Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 1997.

Downloads

Published

2020-08-01

How to Cite

Cyrillo Guimarães da Silva, J. ., Bigolin, C. ., Cé da Silva, L., Sebulsqui Saraiva, T. E. ., Machado Menezes, J. ., Veiverberg, A., Feiffer Charão, M. ., & Heemann Betti, A. (2020). Neurotoxicity evaluation of meloxicam in the alternative in vivo model, Caenorhabditis elegans . International Journal for Innovation Education and Research, 8(8), 319-325. https://doi.org/10.31686/ijier.vol8.iss8.2522
Received 2020-07-06
Accepted 2020-07-18
Published 2020-08-01

Most read articles by the same author(s)