Effects of Multiple representations and Problem- solving learning strategies on Physics students’ problem-solving abilities
DOI:
https://doi.org/10.31686/ijier.vol9.iss4.3045Keywords:
Multiple representations, problem-solving, representational abilities, problem-solving abilitiesAbstract
Student’s learning in physics takes many forms. Equations, diagrams, graphs and words all can be used to describe physical phenomena. Constructing descriptions of physical situations with these representations and focusing on their correct usage led to this study which investigated physics students’ knowledge of multiple representations and problem-solving abilities using multiple representations learning strategy and problem-solving learning strategy as an intervention. The pretest-posttest, control group quasi-experimental design with a 3x2x3 factorial matrix was used. A total of 294 Senior Secondary School-two (SSII) Physics students selected from six purposively sampled co-educational schools in Education Districts V of Lagos State formed the sample. Test of Knowledge of Multiple Representations Abilities in Projectiles and Equilibrium of forces (TKMRA-PE), Multiple Representations Abilities Assessment Instrument (MRAI) and Problem-Solving Assessment Instrument (PSAI). The reliability coefficient of the TKMRA-PE, MRAI, and PSAI were 0.83, 0.75 and 0.70 respectively. Data gathered were subjected to statistical techniques of Analysis of Covariance (ANCOVA) at 0.05 level of significant. Findings from the results showed significant effect of multiple representations learning strategies on problem-solving abilities; F (2, 291) = 4.440; p< 0.05, Ƞ2 =0.030. The descriptive statistics revealed the magnitude of problem-solving abilities across the groups. Students exposed to multiple representations learning strategy had the highest problem-solving abilities (x= 3.83), than their counterparts in problem-solving learning strategy( x = 29.4), and those conventional strategy group had the least problem-solving abilities(x =22.3). The finding showed that irrespective of gender and ability level, multiple representations and problem-solving strategies facilitate learning and should be recommended for teaching and learning of physics in senior secondary schools in Nigeria.
References
Ainsworth, S. (1999).The functions of multiple representations. Computers & education, 33(2), 131-152. DOI: https://doi.org/10.1016/S0360-1315(99)00029-9
Arons, A. B., & Redish, E. F. (1997). Teaching introductory physics (Vol. 22). New York: Wiley DOI: https://doi.org/10.1063/1.881810
Cook, M. (2006). Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles. Science Education, 90(6), 1073-1091. DOI: https://doi.org/10.1002/sce.20164
Dufresne, R. J., Gerace, W. J., & Leonard, W. J. (1997). Solving physics problems with multiple representations. Physics Teacher, 35, 270–275. DOI: https://doi.org/10.1119/1.2344681
Finkelstein, N., D., Perkins, K.K., Adams, W., Kohl, P., & Podolefsky, N. (2005). Can computer simulations replace real equipment in undergraduate laboratories? In AIP Conference Proceedings, 790, 101. DOI: https://doi.org/10.1063/1.2084711
Fredlund, T., Airey, J., & Linder, C. (2012).Exploring the role of physics representations: an illustrative example from students sharing knowledge about refraction. European Journal of Physics, 33(3), 657. DOI: https://doi.org/10.1088/0143-0807/33/3/657
Hegarty, M., & Sims, V.K. (1994).Individual differences in mental animation during mechanical reasoning.Memory and Cognition, 22(4), 411-430. DOI: https://doi.org/10.3758/BF03200867
Hestenes, D. (1996). Modeling Methodology for Physics Teachers.Retrieved from http://modeling.la.asu.edu/modeling/MODELING.PDF. DOI: https://doi.org/10.1063/1.53196
Ibrahim, B., & Rebello, N. S. (2012). Representational task formats and problem solvingstrategies in kinematics and work. Physical Review Special Topics-Physics Education Research 8(010126.). DOI: https://doi.org/10.1103/PhysRevSTPER.8.010126
Kay, C. (2010). Latin American theories of development and underdevelopment (Vol. 102).Routledge. DOI: https://doi.org/10.4324/9780203835418
Kearney, M., & Treagust, D. F. (2001).Constructivism as a referent in the design and development of a computer program using interactive digital video to enhance learning in physics.Australasian Journal of Educational Technology, 17(1). DOI: https://doi.org/10.14742/ajet.1773
Kohl, P.B., & Finkelstein, N.D. (2005).Student representational competence and self-assessment when solving physics problems.Physical Review Special Topics—Physics Education Research, 1(1), 010104-1–010104-11. DOI: https://doi.org/10.1103/PhysRevSTPER.1.010104
Kohl, P., & Finkelstein, N. (2006a).Student representational competence and the role of instructional environment in introductory physics. In P. Heron, L. McCullough & J. Marx (Eds.), 2005 Physics Education Research Conference (Vol. 818, pp. 93-96). DOI: https://doi.org/10.1063/1.2177031
Kohl, P. B., & Finkelstein, N. D. (2006b).Effect of instructional environment on physics students’ representational skills.PhysicalReviewSpecialTopics–PhysicsEducation Research, 2(010102). DOI: https://doi.org/10.1103/PhysRevSTPER.2.010102
Kohl P.B., Finkelstein N. (2017) Understanding and Promoting Effective Use of Representations in Physics Learning. In: Treagust D., Duit R., Fischer H. (eds) Multiple Representations in Physics Education. Models and Modeling in Science Education, vol 10. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-58914-5_11
Kohl, P. B., Rosengrant D., & Finkelstein, N. D. (2007). Strongly and weakly directed approaches to teaching multiple representation use in physics. Physical Review Special Topics – Physics Education Research, 3(010108), 1-10. DOI: https://doi.org/10.1103/PhysRevSTPER.3.010108
Laras, W., Siswoyo, & Fauzi, B. (2015). Pendekatan multi representasi. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 1(1), 31-38.
Larkin, J.H. (1981a). Cognition of learning physics.American Journal of Physics, 49(6),534-541. DOI: https://doi.org/10.1119/1.12667
Masrifah, Agus, S., Parlindungan , S.& Wawan, S.(2020). An Investigation of Physics Teachers’
Multiple Representation Ability on Newton’s Law Concept . Jurnal Penelitian
dan Pengembangan Pendidikan Fisika) Volume 6 Issue 1, Morris,G.A., Branum-Martin, L., Harshman,N. Baker, S.D., Mazur, E., Mzoughi T. & McCauley V. (2006). “Testing the test: Item response curves and test quality.”Am. J. Phys. 74(5), 449-453. DOI: https://doi.org/10.1119/1.2174053
Nurrahmawati, Cholis Sa’dijah, Sudirman & Makbul Muksar (2019) .Multiple Representations’ Ability in Solving Word Problem .International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878,Volume-8, Issue- 1C2
Opfermann, M., Schmeck, A., & Fischer, H. E. (2017). Multiple Representations in Physics and Science Education - Why Should We Use Them? In D. F. Treagust, R. Duit, & H. E. Fischer (Eds.), Multiple Representations in Physics Education (pp. 1-22). Springer, Cham. https://doi.org/10.1007/978-3-319-58914-5_1 DOI: https://doi.org/10.1007/978-3-319-58914-5_1
Redish, E. F., & Steinberg, R. N. (1999). Teaching Physics: Figuring Out What Works. DOI: https://doi.org/10.1063/1.882568
Reif, U. (1995). A unified approach to subdivision algorithms near extraordinary vertices.Computer Aided Geometric Design, 12(2), 153-174. DOI: https://doi.org/10.1016/0167-8396(94)00007-F
Rosengrant, D., E. Etkina .E, &. Van Heuvelen,A.(2006)National Association for Research in Science Teaching 2006 Proceedings, San Francisco, CA .
Sari, AP, Feranie, S, & Karim, S (2015).‘Penerapan Pembelajaran Berbasis Masalah dengan Pendekatan Multirepresentasi untuk Meningkatkan Prestasi Belajar dan Konsistensi Ilmiah Berbasis Multirepresentasi pada Materi Elastisitas’, Jurnal Penelitian & Pengembangan Pendidikan Fisika, vol. 1, no. 2, pp. 45-50. DOI: https://doi.org/10.21009/1.01208
Siswanto, J, Susantini, E, & Jatmiko, B .(2016) ‘Kepraktisan Model Pembelajaran Investigasi Based Multiple Representation (IBMR) dalam pembelajaran Fisika’, Journal Penelitian Pembelajaran Fisika, vol. 7, pp. 127-31. DOI: https://doi.org/10.26877/jp2f.v7i2.1307
Treagust, D., Won, M., & McLure, F. (2018). Multiple representations and students’ conceptual change in science. In T. G. Amin & O. Levrini (Eds.), Converging Perspectives on Conceptual Change (p. 121-128). Routledge, London. https://doi.org/10.4324 /9781315467139 DOI: https://doi.org/10.4324/9781315467139-16
Van Heuvelen, A. (1991). Overview, case study physics. American Journal of Physics, 59(10), 898-907. DOI: https://doi.org/10.1119/1.16668
Van Heuvelen, A., & Etkina, E. (2006).The physics active learning guide. San Francisco, CA: Pearson, Addison Wesley.
Van Heuvelen, A., & Zou, X. L. (2001). Multiple representations of work energy processes. American Journal of Physics, 69(2), 184–194. DOI: https://doi.org/10.1119/1.1286662
Vygotsky, L. S. (1978). Mind in society: The development of higher mental process.
Waldrip, B. & V. Prain, V.(2004). Enhancing learning through using multi-modal representations of concepts. Paper presented at the annual meeting of the American Education Research Association (AERA).
West African Examination Council (2010).Chief examiner’s report.General Certificate/School Certificate O’Level paper.Retrieved from www.waeconline.org.ng/e-learning/index.htm.
West African Examination Council (2012).Chief examiner’s report.General Certificate/School Certificate O’Level paper. Retrieved from www.waeconline.org.ng/e-learning/index.htm
West African Examination Council (2013).Chief examiner’s report.General Certificate/School Certificate O’Level paper.Retrieved from www.waeconline.org.ng/e-learning/index.htm.
West African Examination Council (2015).Chief examiner’s report.General Certificate/School Certificate O’Level paper. Retrieved from www.waeconline.org.ng/e-learning/index.htm
West African Examination Council (2017).Chief examiner’s report.General Certificate/School Certificate O’Level paper.Retrieved from www.waeconline.org.ng/e-learning/index.htm.
West African Examination Council (2018).Chief examiner’s report.General Certificate/School Certificate O’Level paper. Retrieved from www.waeconline.org.ng/e-learning/index.htm
Widianingtiyas, L, Siswoyo, S, Bakri, F (2015). ‘Pengaruh pendekatan multi representasi dalam pembelajaran fisika terhadap kemampuan kognitif siswa SMA’, Jurnal Penelitian & Pengembangan Pendidikan Fisika, vol. 1, no. 1, pp. 31-7. DOI: https://doi.org/10.21009/1.01105
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Yinka Tosin Orulebaja, Olatunde Lawal Owolabi, Hakeem Akintoye
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Copyrights for articles published in IJIER journals are retained by the authors, with first publication rights granted to the journal. The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author for more visit Copyright & License.
How to Cite
Accepted 2021-03-22
Published 2021-04-01