Morphologic, structural, and magnetic characterization of cobalt ferrite nanoparticles synthesized at different temperatures
DOI:
https://doi.org/10.31686/ijier.vol9.iss9.3355Keywords:
Co-precipitation, temperature, cobalt ferrite nanoparticle, hysteresis cycleAbstract
In this study we report on the synthesis and characterization of cobalt ferrite (CoFe2O4) nanoparticles (NPs), synthesized by chemical co-precipitation in alkaline medium. Two samples were synthesized at two different temperatures, 35 and 90 oC. Both samples were characterized by Transmission Electron Microscopy (TEM), x-ray diffraction (XRD), and room-temperature (RT) magnetization. Two samples showed superparamagnetic behavior (SPM) at RT. TEM reveals morphological mean diameter increasing 5.8 nm to 10.4 nm, with the increase of the co-precipitation temperature. XRD confirm the inverse cubic spinel structure. The RT magnetization curves were analyzed by the first-order Langevin function averaged out by a lognormal distribution function of magnetic moments. This analysis showed saturation magnetization and magnetic moment increases from 60.2 to 74.8 emu/g and from 3.9 x 103 to 8.2 x 103 mB, respectively.
Downloads
References
E. Tirosh, G. Shemer, and G. Markovich, “Optimizing cobalt ferrite nanocrystal synthesis using a magneto-optical probe,”. Chem. Mater. 18, 465 – 470 (2006). DOI: https://doi.org/10.1021/cm052401p
H. Gu, K. Xu, Z. Yang, C. K. Chang, and B. Xu, “Synthesis and cellular uptake of porphyrin decorated iron oxide nanoparticles-a potential candidate for bimodal anticâncer therapy,” Chem. Commun. 34, 4270-4272 (2005). DOI: https://doi.org/10.1039/b507779f
P. C. Morais, E. C. O. Lima, “Técnicas de preparação de nanopartículas magnéticas e fluidos magnéticos,” In: N. Duran, L. H. C. Mattoso, and P. C. Morais, (Org). “Nanotecnologia: Introdução, preparação e caracterização de nanomateriais e exemplos de aplicação,” 1 ed. São Paulo: artliber, 1, 83 (2006).
G. Baldi, D. Bonacchi, C. Innocenti, G. Lorenzi, and C. Sangregorio, “Cobalt ferrite nanoparticles: The control of the particle size and surface state and their effects on magnetic properties,” J. Magn. Magn. Mater. 311, 10-16 (2007). DOI: https://doi.org/10.1016/j.jmmm.2006.11.157
U. Luders, A. Barthelemy, M. Bibes, K. Bouzehouane, S. Fusil, E. Jacquet, J. P. Contour, J. F. Bobo, J. Fontcuberta, and A. Fert, “NiFe2O4: A versatile spinel material brings new opportunities for spintronics,” Adv. Mater. 18, 1733-1736 (2006). DOI: https://doi.org/10.1002/adma.200500972
B. Payet, D. Vincent, L. Delaunay, G. Noyel, “Influence of particle size distribution on the initial susceptibility of magnetic fluids in the Brown relaxation range” J. Magn. Magn. Mater. vol. 186, pp. 168-174, Jul. 1998. DOI: https://doi.org/10.1016/S0304-8853(98)00082-1
C. R. Stein, M. T. S. Bezerra, G. H. A. Holanda, J. André-Filho, and P. C. Morais, “Structural and magnetic properties of cobalt ferrite nanoparticles synthesized by co-precipitation at increasing temperatures,” AIP Adv. 8, pp. 056303 (1-8) 2017. DOI: https://doi.org/10.1063/1.5006321
Z. Iatridi, K. Vamvakidis, I. Tsougos, K. Vassiou, C. Dendrinou-Samara, and G. Bokias, “Multifunctional Polymeric Platform of Magnetic Ferrite Colloidal Superparticles for Luminescence, Imaging, and Hyperthermia Applications,” ACS Appl. Mater. Interfaces, 8, pp. 35059–35070, 2016. DOI: https://doi.org/10.1021/acsami.6b13161
A. Rossato, L. S. Silveira, P. S. Oliveira, T. T. Souza, A. P. Becker, R. Wagner, B. Kein, W. P. Souza Filho, R. C. V. Santos, D. Souza, M. D. Baldissera, M. R. Sagrillo, “Safety profile, antimicrobial and antibiofilm activities of a nanostructured lipid carrier containing oil and butter from Astrocaryum vulgare: in vitro studies” International Journal for Innovation Education and Research.9(5), 478-497 (2021). DOI: https://doi.org/10.31686/ijier.vol9.iss5.3113
B. M. Lacava, R. B. Azevedo, L. P. Silva, Z. G. M. Lacava, K. Skeff Neto, N. Buske, A. F. Bakuzis, and P. C. Morais, “Particle sizing of magnetite-based magnetic fluid using atomic force microscopy: A comparative study with electron microscopy and birefringence,” Appl. Phys. Lette. 77 1876-1878 (2000). DOI: https://doi.org/10.1063/1.1311320
S. Zhang, D. Dong, Y. Sui, Z. Liu, H. Wang, Z. Qian, and W. Su, “Preparation of core shell particles consisting of cobalt ferrite and silica by sol-gel process,” J. Alloy. Comp. 415 257-260 (2006). DOI: https://doi.org/10.1016/j.jallcom.2005.07.048
E. Tirosh, G. Shemer, and G. Markovich, “Optimizing cobalt ferrite nanocrystal synthesis using a magneto-optical probe,” Chem. Mater. 18 465-470 (2006). DOI: https://doi.org/10.1021/cm052401p
K. V. P. M. Shafi, A. Gedanken, R. Prozorov, and J. Balogh, “Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles” Chem. Mater. 10 3445 – 3450 (1998). DOI: https://doi.org/10.1021/cm980182k
Q. Fanyao and P. C. Morais, “An oxide semiconductor nanoparticle in na aqueous medium: A surface charge density investigation,” J. Phys. Chem. 104 5232-5237 (2000). DOI: https://doi.org/10.1021/jp993783n
M. Rejandra, R. C. Pullar, A. K. Bhattacharya, D. Das, S. N. Chintalapudi, and C. K. Majumdar, “Magnetic properties of nanocrystalline CoFe2O4 powders prepared at room temperature: variation with crystallite size,” J. Magn. Magn. Mater. 232 71 – 83 (2001). DOI: https://doi.org/10.1016/S0304-8853(01)00151-2
J. F. Friedrich, J. T. Santos, A. R. Pohl, V. S. K. Nishihira, M. Brondani, J. D. Lara, I. D. Franceschi, L. R. Feksa, R. P. Raffin, “Nanocapsules with naringin and naringenin affect hepatic and renal energy metabolism without altering serum markers of toxicity in rats” International Journal for Innovation Education and Research.8(10), 250-262 (2020). DOI: https://doi.org/10.31686/ijier.vol8.iss10.2676
N. Moumen, and M. P. Pileni, “New Syntheses of cobalt ferrite particles in the range 2 – 5 nm: Comparison of the magnetic properties of the nanosized particles in dispersed fluid or in powder form,” Chem. Mater. 8, 1128 – 1134 (1996). DOI: https://doi.org/10.1021/cm950556z
Y. Li, and C. W. Park, “Particle size distribution in the synthesis of nanoparticles using microemulsions,” Langmuir, 15(4), 952-956 (1999). DOI: https://doi.org/10.1021/la980550z
R. Massart, “Magnetic fluid and process for obtaining them,” 4329241. US Patent (1982).
C. N. Chinnasamy, M. Senoue, B. Jeyadevan, O Perales-Perez, K. Shinoda, and K. Tohji, “Synthesis of size-controlled cobalt ferrite particles with high coercivity and squareness ratio,” J. Coll. Inter. Scien. 263, 80-83 (2003). DOI: https://doi.org/10.1016/S0021-9797(03)00258-3
V. M. Boujoreanu, and E. Segal, “On the dehydratation of mixed oxides powders coprecipitated from aqueous solutions,” Soli. Stat. Scien. 3, 407-415 (2001). DOI: https://doi.org/10.1016/S1293-2558(01)01152-9
Y. Kim, D. Kim, and C. S. Lee, “Synthesis and characterization of COFE2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method,” Phys. B. 337, 42-51 (2003). DOI: https://doi.org/10.1016/S0921-4526(03)00322-3
C. N. Chinnasamy, B. Jeyadevan, O. Perrales-Perez, K. Shinoda, K. Tohji, and A. Kasuya, “Growth dominant co-precipitaion process to achieve high coercivity at room temperature in CoFe2O4 nanoparticles,” IEEE Trans. Magn. 38(5), 2640-2642 (2002). DOI: https://doi.org/10.1109/TMAG.2002.801972
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Kétlin Santos Alberton, Liza Bruna Reis Monteiro, Anne Beatriz Ramos Moraes, Raynara Vitória dos Santos Paiva Bucar, Maicon Maciel Ferreira de Araujo, Moacy José Stoffes Junior, Cléver Reis Stein
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Copyrights for articles published in IJIER journals are retained by the authors, with first publication rights granted to the journal. The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author for more visit Copyright & License.
How to Cite
Accepted 2021-08-13
Published 2021-09-01