Biofortification of Chia Genotypes with Lithium Hydroxide

Authors

  • Rodrigo Ribeiro Fidelis Federal University of Tocantins
  • Guillermo Arturo Herrera Chan Federal University of Tocantins
  • Gil Rodrigues dos Santos Federal University of Tocantins
  • Joênes Mucci Peluzio Federal University of Tocantins
  • Renato de Almeida Sarmento Federal University of Tocantins
  • Marilene Alves Ramos dias Federal University of Tocantins
  • Danilo Pereira Ramos Federal University of Tocantins
  • Dayara Vieira Silva Federal University of Tocantins
  • Patrícia Sumara Moreira Fernandes Federal University of Tocantins
  • Thiago Henrick Viana Leal Federal University of Tocantins
  • Gabriel Queiroz Vanderleis Federal University of Tocantins
  • Marcos Rodrigues da Costa Aguair Federal University of Tocantins
  • Vitor Stefanello Fernandes Federal University of Tocantins
  • Myrlla Raynnara de Almeida Barbosa Federal University of Tocantins

DOI:

https://doi.org/10.31686/ijier.vol10.iss3.3593

Keywords:

Salvia hispanica L, lithium accumulation, development, dose

Abstract

Lithium (Li) is an important alkali metal that exists in the elemental form of nature. Thus, the objective was to evaluate the effect of foliar fertilization with doses of lithium hydroxide on the development and productivity of two chia genotypes, in the south of the state. The experiment was carried out at the Federal University of Tocantins, Campus de Gurupi-TO, in the agricultural year 2017/18 in pots of 8 dm-3 containing red-yellow dystrophic oxisol, deep and clayey texture, in a randomized block design, under a factorial 5x2 scheme, with four replications. The characteristics of plant height, upper stem height, stem diameter, bunch length, number of bunches, liquid photosynthesis, transpiration, stomach conductance and, after harvest (145 days), thousand grain mass, grain yield and Lí content in the grains were evaluated leaf and soil. The highest concentrations of lithium in the chia grains are obtained with the application of 24.6 g ha-1 and 18.5 g ha-1 of LiOH for the genotypes originating in Paraguay and Argentina, respectively. The best responses in height, length of bunch, number of bunches, lithium content in the grain, mass of a thousand grains, liquid photosynthesis, transpiration and stomach conductance were obtained with the genotype from Paraguay.

Downloads

Download data is not yet available.

Author Biographies

  • Rodrigo Ribeiro Fidelis, Federal University of Tocantins

    Doctorate degree

  • Guillermo Arturo Herrera Chan, Federal University of Tocantins

    Doctorate degree

  • Gil Rodrigues dos Santos, Federal University of Tocantins

    Doctorate degree

  • Joênes Mucci Peluzio, Federal University of Tocantins

    Doctorate degree

  • Renato de Almeida Sarmento, Federal University of Tocantins

    Masters

  • Marilene Alves Ramos dias, Federal University of Tocantins

    Doctorate degree

  • Danilo Pereira Ramos, Federal University of Tocantins

    Masters

  • Dayara Vieira Silva, Federal University of Tocantins

    Masters

  • Patrícia Sumara Moreira Fernandes, Federal University of Tocantins

    Master's Student

  • Thiago Henrick Viana Leal, Federal University of Tocantins

    Undergraduate Academic

  • Gabriel Queiroz Vanderleis, Federal University of Tocantins

    Undergraduate Academic

  • Marcos Rodrigues da Costa Aguair, Federal University of Tocantins

    Undergraduate Academic

  • Vitor Stefanello Fernandes, Federal University of Tocantins

    Undergraduate Academic

  • Myrlla Raynnara de Almeida Barbosa, Federal University of Tocantins

    Undergraduate Academic

References

ALLENDER, W. J.; CRESSWELL, G. C.; KALDOR, J.; KENNEDY, I. R. Effect of lithium and lanthanum on herbicide induced hormesis in hydroponically-grown cotton and corn. Journal of Plant Nutrition, v. 20, n. 1, p. 81-95, 1997. DOI: 10.1080/01904169709365235. DOI: https://doi.org/10.1080/01904169709365235

ANJUM, N. A.; ADAM, V.; KIZEK, R.; DUARTE, A. C.; PEREIRA, E.; IQBAL, M.; AHMAD, I. Nanoscale copper in the soil-plant system-toxicity and underlying po-tential mechanisms. Environmental research, v. 138, n. 1, p. 306-325, 2015. DOI: doi.org/10.1016/j.envres.2015.02.019. DOI: https://doi.org/10.1016/j.envres.2015.02.019

ANJUM, S. A.; ASHRAF, U.; KHAN, I.; TANVEER, M.; ALI, M.; HUSSAIN, I.; WANG, L. C. Chromium and aluminum phytotoxicity in maize: morpho-physiological responses and metal uptake. CLEAN-Soil, Air, Water, v. 44, n. 8, p. 1075-1084, 2016. DOI: doi.org/10.1002/clen.201500532. DOI: https://doi.org/10.1002/clen.201500532

ANTONKIEWICZ, J.; JASIEWICZ, C.; KONCEWICZ-BARAN, M.; BĄCZEK-KWINTA, R. Determination of lithium bioretention by maize under hydroponic condi-tions. Archives of environmental protection, v. 43, n. 4, p. 94-104, 2017. DOI 10.1515/aep-2017-0036. DOI: https://doi.org/10.1515/aep-2017-0036

ARAL, H.; VECCHIO-SADUS, A. Toxicity of lithium to humans and the environment a literature review. Ecotoxicology and Environmental Safety, v. 70, n. 3, p. 349-356, 2008. DOI: https://doi.org/10.1016/j.ecoenv.2008.02.026. DOI: https://doi.org/10.1016/j.ecoenv.2008.02.026

AYERZA, R. Antioxidants, protein, oil content and fatty acids profiles of chia seeds (Salvia hispanica L.) genotype Tzotzol growing in three tropical ecosystems of Bolivia, Ecuador and Paraguay. International Journal of Agriculture Environment and Food Sciences, v. 3, n. 3, p. 191-196, 2019. DOI: 10.31015/jaefs.2019.3.11. DOI: https://doi.org/10.31015/jaefs.2019.3.11

AYERZA R., R.; COATES, W. Influence of environment on growing period and yield, protein, oil and alfa-linolenic content of three chia (Salvia hispanica L.) selections. In-dustrial Crops and Products, v. 30, n. 2, p. 321-324, 2009. DOI: https://doi.org/10.1016/j.indcrop.2009.03.009. DOI: https://doi.org/10.1016/j.indcrop.2009.03.009

BAKHAT, H. F.; RASUL, K.; FAROOQ, A. B. U.; ZIA, Z.; FAHAD, S.; ABBAS, S.; HAMMAD, H. M. Growth and physiological response of spinach to various lithium concentrations in soil. Environmental Science and Pollution Research, v. 124, n. 1 p. 1-9, 2019. DOI: 10.1007/s11356-019-06877-2. DOI: https://doi.org/10.1007/s11356-019-06877-2

BARTOLO, M. E.; CARTER, J. V. Lithium decreases cold-induced microtubule de-polymerization in mesophyll cells of spinach. Plant physiology, v. 99, n. 4, p. 1716-1718, 1992. DOI: https://doi.org/10.1104/pp.99.4.1716. DOI: https://doi.org/10.1104/pp.99.4.1716

BOLDRIN, P. F.; FAQUIN, V.; RAMOS, S. J.; GUILHERME, L. R. G.; BASTOS, C. E. A.; CARVALHO, G. S.; COSTA, E. T. de S. Selenate and selenite in the production and agronomic biofortification with selenium in rice. Pesquisa Agropecuária Brasilei-ra, v. 47, n. 6, p. 831-837, 2012. DOI: 10.1590/S0100-204X2012000600014. DOI: https://doi.org/10.1590/S0100-204X2012000600014

BUESO, E.; ALEJANDRO, S.; CARBONELL, P.; PEREZ-AMADOR, M.A.; FAY-OS, J.;BELLES, J.M.; RODRIGUES, P.L.; SERRANO, R. The lithium tolerance of the Arabidopsis cat2 mutant reveals a cross-talk between oxidative stress and ethylene. The

Plant Journal, v. 52, n. 6, p. 1052-1065, 2007. DOI: https://doi.org/10.1111/j.1365-313X.2007.03305.x DOI: https://doi.org/10.1111/j.1365-313X.2007.03305.x

CHICCO, A. G.; D'ALESSANDRO, M. E.; HEIN, G. J.; OLIVA, M. E.; LOMBAR-DO, Y. B. Dietary chia seed (Salvia hispanica L.) rich in alpha-linolenic acid improves adiposity and normalises hypertriacylglycerolaemia and insulin resistance in dyslipaemic rats. British Journal of Nutrition, v. 101, n. 1, p. 41-50, 2009. DOI: 10.1017/S000711450899053X. DOI: https://doi.org/10.1017/S000711450899053X

CIPRIANI, A.; PRETTY, H.; HAWTON, K.; GEDDES, J. R. Lithium in the preven-tion of suicidal behavior and all-cause mortality in patients with mood disorders: a sys-tematic review of randomized trials. American Journal of Psychiatry, v. 162, n. 10, p. 1805-1819, 2005. DOI: 10.1176/appi.ajp.162.10.1805. DOI: https://doi.org/10.1176/appi.ajp.162.10.1805

DANGL, J.; COOK, D.; HASELKORN, R.; LAST, R.L.; MARTIENSSEN, R.; MCCOUCH, S.; RETZEL, E.F.; SOMERVILLE, C.R.; WESSLER, S.; YATES, J. The national plant genomics initiative: objectives for 2003-2008. Plant Physiology, v. 130, n. 1, p. 1741-1744, 2002. DOI: https://doi.org/10.1104/pp.900055. DOI: https://doi.org/10.1104/pp.900055

DI SAPIO, O.; BUENO; M.; BUSILACHI; H.; QUIROGA; M.; SEVERIN; C. Marofoanatomic characterization of leaf, stem, fruit and seed of Salvia hispanica L. (Lamiaceae). Latin American and Caribbean Bulletin of Medicinal and Aromatic Plants, v. 11, n. 3, p. 249-268, 2012. Available at: http://www.redalyc.org/articulo.oa?id=85622739007.

DUTRA, C. C.; do PRADO E. A. F.; PAIM, L. R.; SCALON, S. D. P. Q. Develop-ment of sunflower plants under different water supply conditions. Semina: Agricultural Sciences, v. 33, n. 1, p. 2657-2667, 2012. DOI: 10.5433/1679-0359.2012v33Supl1p2657. DOI: https://doi.org/10.5433/1679-0359.2012v33Supl1p2657

EKMEKCIOGLU, C.; MARKTL W. Essential trace elements: clinical and nutrition-al medicine. 1 online resource, Berlin: Springer, 2006, p. 173-177. DOI: doi.org/10.1007/3-211-35107-8.

EL-AAL, F. S. A.; SHAHEEN, A. M.; AHMED, A. A.; MAHMOUD, A. R. Effect of foliar application of urea and amino acids mixtures as antioxidants on growth, yield and characteristics of squash. Research Journal of Agriculture and Biological Sciences, v. 6, n. 5, p. 583-588, 2010. Disponível em: https://www.cabdirect.org/cabdirect/abstract/20103372601.

EMBRAPA. National ground research center. Brazilian soil classification system. 3. ed. Brasília: Centro Nacional de Pesquisa de Solos, 2013, p. 353.

EMBRAPA. Brazilian Agricultural Research Company National Soil Research Center. Manual of soil analysis methods. 2. ed. Rio de Janeiro: Embrapa, 1997.

EVANGELOU, M. W. H.; A. BÜRGI, B. H.; ROBINSON, M. S.; GUNTHARDT-GOERG, M.; SCHÖNGENS R. S. New method to determine the concentrations of elements in the foliage of poplar and willow cuttings . International Journal of Phy-toremediation, v. 18, n. 9, p. 943-948, 2016. DOI: 10.1080/ 15226514.2015.1131234. DOI: https://doi.org/10.1080/15226514.2015.1131234

FALCO, B.; INCERTI, G.; BOCHICCHIO, R.; PHILLIPS, T. D.; Amato, M.; Lanzot-ti, V. Metabolomic analysis of Salvia hispanica seeds using NMR spectroscopy and mul-tivariate data analysis. Industrial crops and products, v. 99, n. 1, p. 86-96, 2017. DOI: https://doi.org/10.1016/j.indcrop.2017.01.019. DOI: https://doi.org/10.1016/j.indcrop.2017.01.019

FERREIRA, D. F. SISVAR: a program for analysis and teaching of statistics. Revista Symposium, Lavras, v. 6, n. 1, p. 36-41, 2008.

FIDELIS R. R.; CHAN G. A. H.; RAUBER, W. A.; TAVARES, T. C. O. LOPES, M. B. S.; MARQUES, K. R.; OSORIO, P. R. A.; BURIN, L. X.; VELOSO, D. A.; OLIVEIRA L. B.; FERNANDES, P. S M. DIAS, M. A. R. SANTOS, M. M.; AGUIAR R. W. S. Response curve of Salvia hispanica L. to different dosages of phos-phorus in soils of the cerrado. International Journal of Advanced Engineering Re-search and Science, v. 6, n. 8, p. 2349-6495, 2019. DOI: 10.22161/ijaers.68.4. DOI: https://doi.org/10.22161/ijaers.68.4

FORBES, V. E. Is hormesis an evolutionary expectation. Functional Ecology, v. 14, n. 1, p. 14-24, 2000. DOI:10.1046/j.1365-2435.2000.00392.x. DOI: https://doi.org/10.1046/j.1365-2435.2000.00392.x

FRANZARING, J.; SCHLOSSER, S.; DAMSOHN, W.; FANGMEIER, A. Regional differences in plant levels and investigations on the phytotoxicity of lithium. Environ-mental pollution, v. 216, n. 2, p. 858-865, 2016. DOI:10.1016/j.envpol.2016.06.059. DOI: https://doi.org/10.1016/j.envpol.2016.06.059

FURQUIM, L. C.; DOS SANTOS, M. P.; DE ANDRADE, C. A. O.; DE OLIVEIRA, L. A.; EVANGELISTA, A. W. P. Relationship between native plants of the cerrado and water. Scientific@-Multidisciplinary Journal, v. 5, n. 2, p. 146-156, 2018. DOI: https://doi.org/10.29247/2358-260X.2018v5i2.p146-156. DOI: https://doi.org/10.29247/2358-260X.2018v5i2.p146-156

GALLICCHIO, V. S. Lithium-still interesting after all these years. Trace Elements & Electrolytes, v. 28, n. 1, p. 56-69, 2011. DOI: 10.4103/0019-5545.49460. DOI: https://doi.org/10.5414/TEP28056

GONÇALVES, A. S. F.; GONÇALVES, W. M.; SILVA, K. M. J.; OLIVEIRA, R. M. The biofortification vegetable use: The review. Cerrado Agrociências, v. 6, n. 1, p. 75-87, 2015. Available at: https://chesci.com/?s=biofortification.

GRIMES, S. J.; PHILLIPS T. D.; CAPEZZONE F.; GRAEFF-HÖNNINGER S. Im-pact of Row Spacing, Sowing Density and Nitrogen Fertilization on Yield and Quality Traits of chia (Salvia hispanica L.) Cultivated in southwestern Germany. Agronomy, v. 9, n. 3 p. 1-21, 2019. DOI: 10.3390/agronomy9030136. DOI: https://doi.org/10.3390/agronomy9030136

GUMBER, S. C.; LOEWUS, M. W.; LOEWUS, F. A. Further studies on myo-inositol-1-phosphatase from the pollen of Lilium longiflorum Thunb. Plant physiology, v. 76, n. 1, p. 40-44, 1984. DOI: https://doi.org/10.1104/pp.76.1.40. DOI: https://doi.org/10.1104/pp.76.1.40

HARWOOD, A. J. Lithium and bipolar mood disorder: the inositol-depletion hypothe-sis revisited. Molecular psychiatry, v. 10, n. 1, p. 117-126, 2005. DOI: 10.1038/sj.mp.4001618. DOI: https://doi.org/10.1038/sj.mp.4001618

HAWRYLAK-NOWAK, B.; KALINOWSKA M.; SZYMAŃSKA M. A study on selected physiological parameters of plants grown under lithium supplementation. Bio-logical Trace Element Research, v. 149, n. 3, p. 425-430. 2012. DOI: 10.1007/s12011-012-9435-4. DOI: https://doi.org/10.1007/s12011-012-9435-4

JIANG, L.; WANG, L.; MU, S. Y.; TIAN, C. Y. Apocynum venetum: A newly found lithium accumulator. Flora-Morphology, Distribution, Functional Ecology of Plants, v. 209, n. 5-6, p. 285-289, 2014. DOI: http://dx.doi.org/10.1016/j.flora.2014.03.007. DOI: https://doi.org/10.1016/j.flora.2014.03.007

JIANG, L.; WANG, L.; TANVEER M.; TIAN C. Lithium biofortification of medicinal tea Apocynum venetum. Scientific Reports, v. 9, n. 8182, p. 1-8, 2019. DOI: 10.1038/s41598-019-44623-3. DOI: https://doi.org/10.1038/s41598-019-44623-3

JIN, F.; NIEMAN, D. C.; SHA, W.; XIE, G.; QIU, Y.; JIA, W. Suplementation of Milled Chia Seeds Increases Plasma ALA and EPA in Postmenopausal Women. Plasts Food for Human Nutrition, v. 67, n. 2, p. 105-110, 2012. DOI: 10.1007 / s11130-012-0286-0. DOI: https://doi.org/10.1007/s11130-012-0286-0

JURKOWSKA, H.; ROGÓŻ, A.; WOJCIECHOWICZ, T. Comparison of lithium toxic influence on some cultivars of oats, maize and spinach. Acta Agraria et Silvestria. Se-ries Agraria, v. 36, n. 1, p. 37-42, 1998. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624008.

KALINOWSKA, M.; HAWRYLAK-NOWAK, B.; SZYMAŃSKA, B. The infl uence of two lithium forms on the growth, L-Ascorbic acid content and lithium accumulation in lettuce plants. Biological trace element research, v. 152, n. 2, p. 251-257, 2013. DOI: 10.1007/s12011-013-9606-y. DOI: https://doi.org/10.1007/s12011-013-9606-y

KASHIN, V. K. Lithium in Soils and Plants of Western Transbaikalia. Eurasian Soil Science, v. 52, n. 4, p. 359-369, 2019. DOI: 10.1134/S1064229319040094. DOI: https://doi.org/10.1134/S1064229319040094

KAVANAGH, L.; KEOHANE, J.; CABELLOS, G. G. "Induced Plant Accumulation of Lithium". Geosciences, v. 8, n. 2, p. 56-73, 2018. DOI: 10.3390/geosciences8020056. DOI: https://doi.org/10.3390/geosciences8020056

LANZA, M. G. D. B.; SILVA, V. M.; MONTANHA, G. S.; LAVRES, J.; de CAR-VALHO, H. W. P.; DOS REIS, A. R. Assessment of selenium spatial distribution using μ-XFR in cowpea (Vigna unguiculata (L.) Walp.) plants: Integration of physiological and biochemical responses. Ecotoxicology and Environmental Safety, v. 207, p. 111216, 2020. DOI: https://doi.org/10.1016/j.ecoenv.2020.111216. DOI: https://doi.org/10.1016/j.ecoenv.2020.111216

LIANG, X.; SHEN, N. F.; Theologis A. Li+-regulated 1-aminocyclopropane-1-carboxylate synthase gene expression in Arabidopsis thaliana. The Plant Journal, v. 10, n. 6, p. 1027-1036, 1996. DOI: https://doi.org/10.1046/j.1365-313X.1996.10061027.x. DOI: https://doi.org/10.1046/j.1365-313X.1996.10061027.x

LIAUGAUDAITE, V.; NAGINIENE, R.; RASKAUSKIENE, N.; MICKUVIENE, N.; BUNEVICIUS, A.; SHER, L. Relationship between lithium levels in drinking water and suicide rates: a nationwide study in Lithuania. Archives of suicide research, v.1, s/n, p. 1-13, 2019. DOI: https://doi.org/10.1080/13811118.2019.1674226. DOI: https://doi.org/10.1080/13811118.2019.1674226

LI, X.; GAO, P.; GJETVAJ, B.; WESTCOTT, N.; GRUBER, M. Y. Analysis of the metabolome and transcriptome of Brassica carinata seedlings after lithium chloride ex-posure. Plant Science. v. 177, n. 1, p. 68-80, 2009. DOI: 10.1016/j.plantsci.2009.03.013. DOI: https://doi.org/10.1016/j.plantsci.2009.03.013

MAKUS, D. J.; ZIBILSKE, L.; LESTER, G. Effect of light intensity, soil type, and lithium addition on spinach and mustard greens leaf constituents. Subtropical Plant Science, v. 58, n. 1, p, 35-41, 2015. DOI: https://pubag.nal.usda.gov/catalog/57340.

MALAVOLTA, E; VITTI, G. C.; OLIVE TREE, S. A. Evaluation of the nutritional state of the plants. Principles and applications. 2nd ed. Piracicaba : POTAFOS, 1997, 319p.

MARSHALL, T. M. Lithium as a nutrient. Journal of American. Physicians and Sur-geons, v. 20, n. 4, p. 104-109, 2015. Disponivel em: https://www.jpands.org/jpands2004.htm.

MARTINEZ, N. E.; SHARP, J. L.; JOHNSON, T. E.; KUHNE, W. W.; STAFFORD, C. T.; DUFF, M. C. Reflectance-Based Vegetation Index Assessment of Four Plant Species Exposed to Lithium Chloride. Sensors, v. 18, n. 9, p. 2750, 2018. DOI: https://doi.org/10.3390/s18092750. DOI: https://doi.org/10.3390/s18092750

MARTINSSON, L. Y.; WEI, D. Xu.; MELAS, P. A.; MATHÉ, A. A.; SCHALLING, M.; LAVEBRATT, C.; BACKLUND, L. Long-term lithium treatment in bipolar disor-der is associated with longer leukocyte telomeres. Translational Psychiatry, v. 3, n. 5, p. 261-267, 2013. DOI: 10.1038/tp.2013.37. DOI: https://doi.org/10.1038/tp.2013.37

MATSUNAGA, S.; KISHI, T.; ANNAS, P.; BASUN, H.; HAMPEL, H.; IWATA, N. Lithium as a treatment for Alzheimer's disease: a systematic review and meta-analysis. Journal of Alzheimer's Disease, v. 48, n. 2, p. 403-410, 2015. DOI: 10.3233/JAD-150437. DOI: https://doi.org/10.3233/JAD-150437

MIRANDA, F. Technical guide for the management of Chia (Salvia hispanica L.) cultivation in Nicaragua Sébaco: Central de Cooperativas de Servicios Multiples Ex-portacion e Importacion Del Norte (Cecoopsemein RL.), 2012. 14p. Available at: http://cecoopsemein.com/Manual_de_poduccion_de_CHIA_SALVIA_HISPANICA.pdf. Access: 18 Aug. 2019.

MLECZEK, M.; SIWULSKI, M.; RZYMSKI, P.; BUDZYŃSKA, S.; GĄSECKA, M.; KALAČ, P.; NIEDZIELSKI, P. Cultivation of mushrooms for production of food bio-fortified with lithium. European Food Research and Technology v. 243, n. 6, p. 1097-1104, 2017. DOI: 10.1007/s00217-016-2823-9. DOI: https://doi.org/10.1007/s00217-016-2823-9

MŁYNIEC K; DAVIES C. L.; SÁNCHEZ I. G. A.; PYTKA K, BUDZISZEWSKA B, NOWAK G. Essential elements in depression and anxiety. Pharmacol Rep. v. 66, n. 2, p. 534-544, 2014. DOI: 10.1016 / j.pharep.2014.03.001. DOI: https://doi.org/10.1016/j.pharep.2014.03.001

NARANJO, M.A.; ROMERO, C.; BELLES, J.M.; MONTESINOS, C.; VICENTE, O..;

SERRANO, R. Lithium treatment induces a hypersensitive-like response in tobacco.

Plant, v. 217, n. 3, p. 417-424, 2003. DOI: 10.1007/s00425-003-1017-4. DOI: https://doi.org/10.1007/s00425-003-1017-4

NORRA, C.; FEILHAUER, J.; WIESMÜLLER, G. A.; KUNERT, H. J. Differential effects of endogenous lithium on neurobehavioural functioning: a study on auditory evoked potentials. Psychiatry research, v. 178, n. 1, p. 176-181, 2010. DOI: https://doi.org/10.1016/j.psychres.2009.04.021. DOI: https://doi.org/10.1016/j.psychres.2009.04.021

QIAO, L.; TANVEER, M.; WANG, L.; TIAN, C. Subcellular distribution and chemical forms of lithium in Li-accumulator Apocynum venetum. Plant physiology and bio-chemistry, v. 132, n. 1, p. 341-344, 2018. DOI: 10.1016/j.plaphy.2018.09.022. DOI: https://doi.org/10.1016/j.plaphy.2018.09.022

ROBINSON, B. H.; YALAMANCHALI, R.; REISER, R.; DICKINSON, N. M. Lith-ium as an emerging environmental contaminant: Mobility in the soil-plant system. Che-mosphere, v. 197, n. 1, p. 1-6, 2018. DOI: https://doi.org/10.1016/j.chemosphere.2018.01.012. DOI: https://doi.org/10.1016/j.chemosphere.2018.01.012

ROLDÃO, F. A.; FERREIRA, O. V. Climatologia do Estado do Tocantins-Brasil. Ca-derno de Geografia, v. 29, n. 59, p. 1161-1181, 2019. DOI: https://doi.org/10.5752/P.2318-2962.2019v29n59p1161. DOI: https://doi.org/10.5752/P.2318-2962.2019v29n59p1161

RZYMSKI, P.; NIEDZIELSKI, P.; SIWULSKI, M.; MLECZEK, M.; BUDZYŃSKA, S.; GĄSECKA, M.; PONIEDZIAŁEK, B. Piotr et al. Lithium biofortification of me-dicinal mushrooms Agrocybe cylindracea and Hericium erinaceus. Journal of food sci-ence and technology, v. 54, n. 8, p. 2387-2393, 2017. DOI: 10.1007/s13197-017-2679-4. DOI: https://doi.org/10.1007/s13197-017-2679-4

SANTOS, A. C. M.; MARQUES, K. R.; RODRIGUES, L. U.; FARIA, A. J. G.; NASCIMENTO, V. L.; FIDÉLIS R. R. Biofortification of soybean grains with foliar application of Li sources. Journal of Plant Nutrition, v. 42, n. 19, p. 1532-4087, 2019. DOI: 10.1080/01904167.2019.1659339. DOI: https://doi.org/10.1080/01904167.2019.1659339

SEREGIN, I. V.; KOZHEVNIKOVA, A. D. Low-molecular-weight ligands in plants: role in metal homeostasis and hyperaccumulation. Photosynthesis Research, v.1, p. 1-46, 2020. DOI: 10.1007/s11120-020-00768-1 DOI: https://doi.org/10.1007/s11120-020-00768-1

SCHÄFER, U. Evaluation of beneficial and adverse effects on plants and animals fol-lowing lithium deficiency and supplementation, and on humans following lithium treat-ment of mood disorders. Trace Elements & Electrolytes, v. 29, n. 2, p. 91-112, 2012. DOI: 10.5414/TEX01222. DOI: https://doi.org/10.5414/TEX01222

SCHRAUZER, G. N. Lithium: Occurrence, dietary intakes, nutritional essentiality. Journal of the American College of Nutrition, v. 21, n. 1, p. 14-21, 2002. DOI: 10.1080/07315724.2002.10719188. DOI: https://doi.org/10.1080/07315724.2002.10719188

SHAHZAD, B.; TANVEER, M.; HASSAN, W.; SHAH, A. N.; ANJUM, S. A.; SAR-DAR ALAM CHEEMA, S. A.; ALI, I. Lithium toxicity in plants: Reasons, mechanisms and remediation possibilities e a review. Plant physiology and biochemistry, v. 107, n. 1, p. 104-115, 2016. DOI: 10.1016/j.plaphy.2016.05.034. DOI: https://doi.org/10.1016/j.plaphy.2016.05.034

SILVA R. R.; FARIA A. J. G.; ALEXANDRINO, G. C.; RIBEIRO E. A.; SANTOS, A. C. M.; DEUSDARA, T. T. Enrichment of lithium in lettuce plants through agro-nomic biofortification. Journal of Plant Nutrition, v. 32, n. 17, p. 2102-2113, 2019. DOI: 10.1080/01904167.2019.1648671. DOI: https://doi.org/10.1080/01904167.2019.1648671

SOBOLEV, O. I.; GUTYJ, B. V.; DARMOHRAY, L. M.; SOBOLIEVA, S. V.; IVANINA, V. V.; KUZMENKO, O. A.; KARKACH P. M.; FESENKO V. F.; BILKEVYCH V. V.; MASHKIN Y. O.; TROFYMCHUK A. M.; STAVETSKA R. V.; TKACHENKO S. V.; BABENKO O. I.; KLOPENKO N. I.; CHERNYUK S. V. Lithium in the natural environment and its migration in the trophic chain. Ukrainian Journal of Ecology, v. 9, n. 2, p. 195-203, 2019. Disponivel em: http://rep.btsau.edu.ua/handle/BNAU/2489.

SOUZA, R. S.; CHAVES, L. H. G. Initial growth of chia (Salvia hispanica L.) submit-ted to nitrogen, phosphorus and potassium fertilization. Australian Journal of Crop Science, v. 11, n. 5, p. 610-615, 2017. Disponivel em: https://search.informit.com.au/documentSummary;dn=957807698316448;res=IELHS. DOI: https://doi.org/10.21475/ajcs.17.11.05.p442

STOLARZ, M.; KRÓL, E.; DZIUBIŃSKA, H. Lithium distinguishes between growth and circumnutation and augments glutamate-induced excitation of Helianthus annuus seedlings. Acta physiologiae plantarum, v. 37, n. 4, p. 69, 2015. DOI: 10.1007/s11738-015-1814-y. DOI: https://doi.org/10.1007/s11738-015-1814-y

SZKLARSKA, D.; RZYMSKI, P. Is Lithium a Micronutrient? From biological activity and epidemiological observation to food fortification. Biological trace element re-search, v. 189, n. 1, p. 18-27, 2019. DOI: https://doi.org/10.1007/s12011-018-1455-2. DOI: https://doi.org/10.1007/s12011-018-1455-2

TANVEER, M.; HASANUZZAMAN, M.; WANG, L. Lithium in Environment and Potential Targets to Reduce Lithium Toxicity in Plants. Journal of Plant Growth Reg-ulation, v. 38, n. 4, p. 1574-1586, 2019. Disponível em: https://pubag.nal.usda.gov/catalog/6763117. DOI: https://doi.org/10.1007/s00344-019-09957-2

VETTER, J. Lithium content of some common edible wild-growing mushrooms. Food Chemistry, v. 90, n. 1-2, p. 31-37, 2005. DOI: https://doi.org/10.1016/j.foodchem.2004.03.019. DOI: https://doi.org/10.1016/j.foodchem.2004.03.019

VITA A.; PERI L.; SACCHETTI E. Lithium in drinking water and suicide prevention: a review of evidence. Int Clin Psychopharmacol, v. 30, n. 1, p. 1-5, 2015. DOI: 10.1097 / YIC.000000000048. DOI: https://doi.org/10.1097/YIC.0000000000000048

WEHR, R.; COMMANE, R.; MUNGER, W. J.; MCMANUS, B. J.; NELSON, D. D.; ZAHNISER, M. S. Dynamics of canopy stomatal conductance, transpiration, and evap-oration in a temperate deciduous forest, validated by carbonyl sulfide uptake. Biogeo-sciences, v. 14, n. 1, p. 389-401, 2017. DOI: 10.5194/bg-14-389-2017. DOI: https://doi.org/10.5194/bg-14-389-2017

WHITE, P. J.; BROADLEY, M. R. Biofortification of crops with seven mineral ele-ments of ten lacking in human diets iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, v. 182, n. 1, p, 49-84, 2009. DOI: 10.1111/j.1469-8137.2008.02738.x. DOI: https://doi.org/10.1111/j.1469-8137.2008.02738.x

ZODAPE, S. T.; GUPTA, S. A.; BHANDARI, U. S.; RAWAT, D. R.; CHAUDHRY, K. ESWARAN J.; CHIKARA. Foliar application of seaweed sap as biostimulant for enhancement of yield and quality of tomato (Lycopersicon esculentum Mill.), Journal of Scientific & Industrial Research, v.70, n. 3, p.215-219, 2011.

Downloads

Published

2022-03-01

How to Cite

Ribeiro Fidelis, R. ., Arturo Herrera Chan, G. ., Rodrigues dos Santos, G. ., Mucci Peluzio, J. ., de Almeida Sarmento, R. ., Alves Ramos dias, M. ., Pereira Ramos, D., Vieira Silva, D. ., Sumara Moreira Fernandes, P. ., Henrick Viana Leal, T. ., Queiroz Vanderleis, G. ., Rodrigues da Costa Aguair, M. ., Stefanello Fernandes, V. ., & Raynnara de Almeida Barbosa, M. . (2022). Biofortification of Chia Genotypes with Lithium Hydroxide. International Journal for Innovation Education and Research, 10(3), 105-124. https://doi.org/10.31686/ijier.vol10.iss3.3593
Received 2021-11-16
Accepted 2021-12-31
Published 2022-03-01