Challenges in the use of extracorporal livers technologies

Authors

DOI:

https://doi.org/10.31686/ijier.vol10.iss1.3605

Keywords:

human liver, liver transplantation, extracorporeal liver support, survival

Abstract

The human liver is a necessary organ in metabolism but when its working is harmed,  can cause liver failure in varying degrees and raise the mortality rate. The only existing treatment for the disease so far is liver transplantation. Therefore, the objective of this research was to a evaluate the challenges of the artificial technologies of liver support (ATL) developed in the last nine years existing in the world. The technologies evaluated were those that consider the patient's need have a survival while waiting of the transplant or    confirm that  will not need the donated liver. This research is of type descriptive and bibliographical and was based on scientific articles published in the following databases: National Library of Medicine (PubMed), Scientific Electronic Library Online (SciELO), Academic Google, Latin American and Caribean Literature in Health Sciences (LACLHS), Virtual Health Library (VHL) and Capes Journal (Brazil).  In the studies found, was verified that extracorporeal liver support technologies of the bioartificial type and artificial liver do not guarantee sufficient patient survival.  Although this technologies have some clinical benefit with their use,  is possible that the recipient patients suffer from metabolic intoxication. So that technologies can produce survival expected in patients, should be considered three pillars: the disease, the technology used and the dose of therapy. This research is important because it will help in the development of new methodologies better suited to recipientes.

Downloads

Download data is not yet available.

References

Al-Akkad, W.;Felii, E.; Buchholz, B.; Pollok, J.M.; Al-Akkad, T.; Proctor, T.; Frenguelli, L.; Canestrari, S.; Bagordo, D.; Spoletini, G.; Tamburrino, D.; Vilia, M. G.; Rombouts K.; Malago, M.; De Coppi, P.; Sokal, E.; Pinzani, M.; Mazza, G. (2019). WholeHumanliverdecellularisation-recellularisation for future livertransplantationandextracorporealdeviceapplication,JournalofHepatology,70, 133–140. https://core.ac.uk/display/220120007. DOI:10.1016/S0618-8278 DOI: https://doi.org/10.1016/S0618-8278(19)30243-9

Da-Hyun, K.;Jungho, A.; Hyun, K.K.; Min-Soo, Kim.; Nam-Gyo Kim, Myung, G. K.; Soon, W. C.; Noo, L. J.; Heung,M.W.;Kyung,S. K. (2021). Developmentofhighlyfunctionalbioengineeredhumanliverwithperfusablevasculature. Biomaterials, 265. https://pubmed.ncbi.nlm.nih.gov/32987272/DOI:10.1016/j.biomaterials.2020.120417. DOI: https://doi.org/10.1016/j.biomaterials.2020.120417

Eapen, J.;Ayoola, R.; Subramaniean, R. M. (2018). The efficacyofextracorporealliversupportwith molecular adsorbentrecirculating system in severedrug-inducedliverinjury,Oxford Medical Case Reports, v. 1, p. 1–4, 2018. DOI: 10.1093/omcr/omx077 DOI: https://doi.org/10.1093/omcr/omx077

Geetha, B. R.; Muthoosamy, K.;Manickam, S.;Hilal, A.; A (2019). Graphene-based 3D scaffolds in tissueengineering: fabrication, applications, and future scope in livertissueengineering. Int J Nanomedicine. 14, 5753-5783. https://pubmed.ncbi.nlm.nih.gov/31413573/DOI: 10.2147/IJN.S192779. DOI: https://doi.org/10.2147/IJN.S192779

Hemmann S; Graf J; Roderfeld M; Roeb E. (2007). Expression ofMMPsandTIMPs in liverfibrosis - a systematicreviewwithspecialemphasisonanti-fibroticstrategies. J Hepatol. 46(5), 955-75. DOI: 10.1016/j.jhep.2007.02.003. DOI: https://doi.org/10.1016/j.jhep.2007.02.003

Gil, A. C. Como elaborar projeto de pesquisa. 6ª ed., São Paulo, Atlas, 2017.

Heydari, Z.;Najimi, M.; Mirzaei, H.; Shpichka, A.; Ruoss, M.; Farzaneh, Z.; Monheydari, Z.; Najimi, M.; Mirzaei, H.; Shpichka, A.; Ruoss, M.; Farzaneh, Z.; Montazeri, L.; Piryaei, A.; Timashev, P.; Gramignoli, R.; Nussler, A.; Baharvand, H.; Vosough, M. (2020). TissueEngineering in LiverRegenerative Medicine: Insights into Novel Translational Technologies. Cells9, 304.https://www.mdpi.com/2073-4409/9/2/304/htm DOI:10.3390/cells9020304 DOI: https://doi.org/10.3390/cells9020304

Katarey, D.; Jalan, R. (2020). Update onextracorporealliversupport,CurrentOpinio in CriticalCare, v. 6 (2), 180-185. : DOI: 10.1097/MCC.0000000000000708. DOI: https://doi.org/10.1097/MCC.0000000000000708

Kim, Suntae; Park, Myung Era; Choi, Cholong; Kim, JeongBeom; Cha, Chaenyung (2021). Synergisticcontrolofmechanicsandmicroarchitectureof 3D bioactivehydrogelplatformtopromotetheregenerativepotentialofengineeredhepatictissue. Biomaterials, 270. https://doi.org/10.1016/j.biomaterials.2021.120688. DOI: https://doi.org/10.1016/j.biomaterials.2021.120688

Khajavi, M.; Hashemi, M.; Kalelinia, F.(2021). Recentadvances in optimizationofliverdecellularization procedures used for liverregeneration, Life Sciences, 15. https://www.sciencedirect.com/science/article/abs/pii/S0024320521007876DOI: 10.1016/j.lfs.2021.119801 DOI: https://doi.org/10.1016/j.lfs.2021.119801

Kribben A.; Gerken G.; Haag S.; Herget–Rosenthal S.; Treichel U.; Betz C.; Sarrazin; Eric Hoste C.; Van Vlierberghe H.; Escorsell A.; Hafer C.; Schreiner O.; Galle P.; Mancini E.; Caraceni P.; Karvellas C. J.; Salmhofer H.; Knotek M.; Ginès P.; Kozik–Jeromin J.; Rifai K.; Helios Study Group (2012). EffectsofFractionated Plasma SeparationandAdsorptiononSurvival in PatientsWithAcute-on-ChronicLiverFailure. Gastroenterology. 142 (4), 782-789. https://doi.org/10.1053/j.gastro.2011.12.056 DOI: https://doi.org/10.1053/j.gastro.2011.12.056

Kwon, M.; Alvarez, F.; Franco, P. M.; Patel, A.; Canabal, J.; Haddad, T.; Erasmus, D. B.; Mallea, J. M.; Narula, (2020). T. Extracorporealliversupport for thetreatmentofhyperammonemiaafterlungtransplantation, Transplantation,104 (3), 75. https://pubmed.ncbi.nlm.nih.gov/31385932/ DOI: 10.1097/TP.0000000000002881. DOI: https://doi.org/10.1097/TP.0000000000002881

Pasqua, M.; Di Gesu, R.; Chinnici, C.; Conaldi, P. G.; Francipane, M. G. (2021). GenerationofHepatobiliaryCellLineagesfromHumanInducedPluripotentStemCells: Applications in DiseaseModelingandDrugScreening, InternationalJournalof Molecular Science,22, 8227. https://pubmed.ncbi.nlm.nih.gov/34360991/ DOI: 10.3390/ijms22158227 DOI: https://doi.org/10.3390/ijms22158227

Rossi, E. A.; Quintanilha, L. F.; Nonaka, C. K. V.; Souza, B. S. F. (2019). Advances in HepaticTissueBioengineeringwithDecellularizedLiverBioscaffold, StemCellsInternational. https://pubmed.ncbi.nlm.nih.gov/31198426/ DOI: 10.1155/2019/2693189. DOI: https://doi.org/10.1155/2019/2693189

Struecker, B. Raschzok, N.; Sauer, I. M. (2014). Liversupportstrategies: cutting-edgetechnologies, NatureReview, 11, 166–176. https://pubmed.ncbi.nlm.nih.gov/24166083/DOI:10.1038/nrgastro.2013.204 DOI: https://doi.org/10.1038/nrgastro.2013.204

Weng, J.;Han, X.; Zeng, F.; Zhang, Y.; Feng, L.; Cai, L.; Liang, K.; Liu, S.; Li. S.; Fu, G.; Zeng, M.; Gao, Y. (2021). Fiberscaffoldbioartificiallivertherapyrelievesacuteliverfailureandextrahepaticorganinjury in pigs, Theranostics, 11 (16), 7620 – 7639. DOI: 10.7150/thno.58515 DOI: https://doi.org/10.7150/thno.58515

Wiesmann, T.; Hoenl, D.; Wulf, H.; Irqsusi, M. (2019). Extracorporealliversupport: trendingepidemiologyandmortality - a nationwidedatabaseanalysis 2007–2015.BMC Gastroenterology, 19, 160. DOI: doi.org/10.1186/s12876-019-1077-y DOI: https://doi.org/10.1186/s12876-019-1077-y

Yao T., Zhang Y.,MengjiaoLv, Zang G., SengNg S., Chen X (2021). Advances in 3D cellculture for liverpreclinicalstudies, Acta BiochimicaetBiophysicaSinica, 53 (6), 643–651. https://doi.org/10.1093/abbs/gmab046 DOI: https://doi.org/10.1093/abbs/gmab046

Downloads

Published

2022-01-01

How to Cite

Karmouche, A., Siroma, T., Siqueira, G., & Assis, T. (2022). Challenges in the use of extracorporal livers technologies (J. Silva , Trans.). International Journal for Innovation Education and Research, 10(1), 191-199. https://doi.org/10.31686/ijier.vol10.iss1.3605
Received 2021-11-23
Accepted 2021-12-31
Published 2022-01-01