Distribution of Order Parameter for Kuramoto Model
DOI:
https://doi.org/10.31686/ijier.vol3.iss9.432Abstract
The synchronization in large populations of interacting oscillators has been observed abundantly in nature, emergining in fields such as physical, biological and chemical system. For this reason, many scientists are seeking to understand the underlying mechansim of the generation of synchronous patterns in oscillatory system. The synchronization is analyzed in one of the most representative models of coupled phase oscillators, the Kuramoto model. The Kuramoto model can be used to understand the emergence of synchronization in nextworks of coupled, nonlinear oscillators. In particular, this model presents a phase transition from incoherence to synchronization. In this paper, we investigated the distribution of order parameter γ which describes the strength of synchrony of these oscillators. The larger the order parameter γ is, the more extent the oscillators are synchronized together. This order parameter γ is a critical parameter in the Kuramoto model. Kuramoto gave a initial estimate equation for the value of the order parameter by giving the value of the coupling constant. But our numerical results show that the distribution of the order parameter is slightly different from Kuramoto’s estimation. We gave an estimation for the distribution of order parameter for different values of initial conditions. We discussed how the numerical result will be distributed around Kuramoto’s analytical equation.
References
C.D.Acker, N.Kopell, J.A.White J. Comput Neurosci, 15(1): 71-90 2003: Synchronization of Strongly coupled excitatory neurons: relating network behavior to biophysics.
C.S. Peskin, Mathematical Aspects of Heart Physiology, Courant Institute of Mathematical Science Publication, New York, 1975, pp. 268278
C. Liu, D.R. Weaver, S.H. Strogatz, S.M. Reppert, Cell 91 (1997) 855 DOI: https://doi.org/10.1016/S0092-8674(00)80473-0
Renato E. Mirollo and Steven H. Strogatz, Synchronization of Pulse-Coupled Biological Oscillators, Siam J. Appl. Math. 50:1645-1662, 1990 DOI: https://doi.org/10.1137/0150098
David J. DeShazer, Romulus Breban, Edward Ott, and Rajarshi Roy, Detecting Phase Synchronization in a Chaotic Laser Array, Physical Review Letters, 87: 2001 DOI: https://doi.org/10.1103/PhysRevLett.87.044101
R.A. York, R.C. Compton, IEEE Trans. Microwave Theory Tech. 39 (1991) 1000 DOI: https://doi.org/10.1109/22.81670
Juan A. Acebrn, L. L. Bonilla, Conrad J. Prez Vicente, Flix Ritort, and Renato Spigler Rev. Mod. Phys. 77, 137 2005: The Kuramoto model: A simple paradigm for synchronization phenomena DOI: https://doi.org/10.1103/RevModPhys.77.137
Bryan C. Daniels Stanford University May 6, 2005 :Synchronization of Globally Coupled Nonlinear Oscillators: the Rich Behavior of the Kuramoto Model
RL Stratonovich Gordon and Breach 1967: Topics in the Theory of Random Noise
A. N. Malakhov, 1968: Fluctuations in Self-Oscillating Systems [in Russian],
Steven H. Strogatz and Renato E. Mirollo, Splay states in globally couled Josephson arrays: Analytical prediction of Floquet multipliers, Physical Review E, 47:220-226, 1993. DOI: https://doi.org/10.1103/PhysRevE.47.220
Arkady Pikovsky, Michael Rosenblum Cambridge University Press May 5, 2003: Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge Nonlinear Science Series)
SH Strogatz, RE Mirollo, PC Matthews Physical review letters 1992: Coupled nonlinear oscillators below the synchronization threshold: relaxation by generalized Landau damping DOI: https://doi.org/10.1103/PhysRevLett.68.2730
A.Pikovsky, Department of Physics, UniversityofPotsdam 2008: Synchronisation of coupled oscillators: From Huygens clock stochaotic systems and large ensembles
Leon Glass, Michael C. Mackey, Princeton University Press 1988: From Clocks to Chaos: The Rhythms of Life DOI: https://doi.org/10.1515/9780691221793
Kuramoto, Y. edited by H. Araki, Springer, New York 1975, volume 39 of Lect. N. Phys., pp. 420422.: in Int. Symp. on Mathematical problems in theoretical physics.
Kuramoto, Y.Springer, New York 1984: Chemical oscillations, waves and turbulence DOI: https://doi.org/10.1007/978-3-642-69689-3
Kuramoto, Y., and I. NishikawaJ. Stat. Phys 1987: 49,569. Statistical macrodynamics of large dynamical systems. Case of a phase transition in oscillator communities DOI: https://doi.org/10.1007/BF01009349
N. Kopell and G. B. Ermentrout,Comm. Pure Appl. Math., 39:623-660, 1986. Symmetry and phaselocking in chains of coupled oscillators, DOI: https://doi.org/10.1002/cpa.3160390504
M.K.S. Yeung and S.H. Strogatz. Physical Review Letters 82, 648-651 (1999): Time delay in the Kuramoto model of coupled oscillators. DOI: https://doi.org/10.1103/PhysRevLett.82.648
S. Strogatz, Addison-Wesley 1994: Nonlinear Dynamics and Chaos,[22] Strogatz, S. H.Physica D 2000: 143, 1.From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators DOI: https://doi.org/10.1016/S0167-2789(00)00094-4
Strogatz, S. H.Hyperion, New York 2003: SYNC: the emerging science of spontenous order.
Strogatz, S. H., C. Marcus, R. Westervelt, and R. E. Mirollo, Phys. Rev.,1988: Simple model of collective transport with phase slippage. Lett. 61, 2380. DOI: https://doi.org/10.1103/PhysRevLett.61.2380
Strogatz, S. H., C. Marcus, R. Westervelt, and R. E. Mirollo, Physica D,1989: 36, 23.Collective dynamics of coupled oscillators with random pinning. DOI: https://doi.org/10.1016/0167-2789(89)90246-7
Strogatz, S. H.and R. E. Mirollo, J. Phys. A: Math. Gen. ,1988a: 21, L699. Collective synchronisation in lattices of non-linear oscillators with randomness. DOI: https://doi.org/10.1088/0305-4470/21/13/005
Strogatz, S. H.and R. E. Mirollo, Physica D 1988b 31, 143: Phase-locking and critical phenomena in lattices of coupled nonlinear oscillators with random intrinsic frequencies. DOI: https://doi.org/10.1016/0167-2789(88)90074-7
Strogatz, S. H. and R. E. Mirollo,J. Stat. Phys, 1991: 63, 613.Stability of incoherence in a population of coupled oscillators. DOI: https://doi.org/10.1007/BF01029202
Strogatz, S. H., R. E. Mirollo, and P. C. Matthews, Phys. Rev. ,1992: Lett. 68, 2730. Coupled nonlinear oscillators below the synchronization threshold: relaxation by generalized Landau damping. DOI: https://doi.org/10.1103/PhysRevLett.68.2730
Strogatz, Daniel M. Abrams, Allan McRobie, Bruno Eckhardt, and Edward Ott, Nature, 438:43-44, 2005: Crowd Synchrony on the Millennium Bridge. DOI: https://doi.org/10.1038/438043a
Strogatz, S. H.,Ian Stewart Scientific American 1993: Coupled oscillators and biological synchronization DOI: https://doi.org/10.1038/scientificamerican1293-102
E. Izhikevich and G. B. Ermentrout, Scholarpedia ”Phase Model”
I. I. Blekhman, P. S. Landa and M. G. Rosenblum ,Applied Mechanics Reviews Volume 48 Issue 11, 1995: Synchronization and Chaotization in Interacting Dynamical Systems DOI: https://doi.org/10.1115/1.3005090
Winfree A. T., Springer-Verlag, New York. 1980: The geometry of biological time DOI: https://doi.org/10.1007/978-3-662-22492-2
Yamaguchi Y., and H. Shimizu, Physica D 1984: 11, 212.Theory of self-synchronization in the presence of native frequency distribution and external noises DOI: https://doi.org/10.1016/0167-2789(84)90444-5
Kathrin Kostorz, Robert W Hlzel and Katharina Krischer1, New Journal of Physics, Volume 15, August 2013: Distributed coupling complexity in a weakly coupled oscillatory network with associative properties DOI: https://doi.org/10.1088/1367-2630/15/8/083010
T. Kawahara, K. Katayama, and T. Nogawa, Biol. Cybern., vol. 48, pp. 19-25, 1983. Nonlinear equations of reaction-diffusion type for neural populations, DOI: https://doi.org/10.1007/BF00336881
Yamana M., M. Shiino, and M. Yoshioka,J. Phys. A: Math. Gen. 1999: 32, 3525. Oscillator neural network model with distributed native frequencies. DOI: https://doi.org/10.1088/0305-4470/32/19/305
Yeung, M. K. S., and S. H. Strogatz, Phys. Rev. Lett. 1999: 82, 648. Time delay in the Kuramoto model of coupled oscillators. DOI: https://doi.org/10.1103/PhysRevLett.82.648
Yoshimoto M., K. Yoshikawa, and Y. Mori, Phys. Rev. E. 1993: 47, 864. Coupling among three chemical oscillators: Synchronization, phase death, and frustration. DOI: https://doi.org/10.1103/PhysRevE.47.864
Yoshioka, M., and M. Shiino, Phys. Rev. E. 2000: 61, 4732. Associative memory storing an extensive number of patterns based on a network of oscillators with distributed natural frequencies in the presence of external white noise. DOI: https://doi.org/10.1103/PhysRevE.61.4732
H. Hong and S.H. Strogatz. Physical Review Letters 106, 054102 (2011): Kuramoto model of coupled oscillators with positive and negative coupling parameters: An example of conformist and contrarian oscillators. DOI: https://doi.org/10.1103/PhysRevLett.106.054102
DC Michaels, EP Matyas, and J Jalife, Circulation Research. 58:706-720, 1986: Dynamic interactions and mutual synchronization of sinoatrial node pacemaker cells. A mathematical model. DOI: https://doi.org/10.1161/01.RES.58.5.706
J. DeShazer, Romulus Breban, Edward Ott, and Rajarshi Roy,Physical Review Letters, 87: 2001: Detecting Phase Synchronization in a Chaotic Laser Array, DOI: https://doi.org/10.1103/PhysRevLett.87.044101
Didier Gonze, Samuel Bernard, Christian Waltermann, Achim Kramer, and Hanspeter Herzel, Biophysical Journal, 89:120-129, 2005: Spontaneous Synchronization of Coupled Circadian Oscillators, DOI: https://doi.org/10.1529/biophysj.104.058388
Glass Nature(2001) 410, 277-284: Synchronization and rhythmic processes in physiology,[47] Rosenblum and Pikovsky Contemp. Phys. 44: 401-416.(2003) Synchronization: from pendulum clocks to chaotic lasers and chemical oscillators, DOI: https://doi.org/10.1080/00107510310001603129
Zhou T1, Zhang J, Yuan Z, Chen L. (2008) Synchronization of Genetic Oscillators, Chaos 18:037126 DOI: https://doi.org/10.1063/1.2978183
S. Grossberg and D. Somers, Neural Networks Vol 4, pp 453-466 1991 ”Synchronized oscillations during cooperative feature linking in a cortical model of visual perception” DOI: https://doi.org/10.1016/0893-6080(91)90041-3
Avis H. Cohen, Philip J. Holmes, Richard H. RandJ Math Biol. 1982;13(3): 345-69 The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: a mathematical model. DOI: https://doi.org/10.1007/BF00276069
Paul Bertone, Mogens H. Jensena, Sandeep Krishnab: Febs letters Volume 586, Issue 11, 4 June 2012, Pages 1664-1668: Inducing phase-locking and chaos in cellular oscillators by modulating the driving stimuli DOI: https://doi.org/10.1016/j.febslet.2012.04.044
D.L. Wang, Proc. 15th Ann. Conf. Cognit. Sci. Soc., pp. 1058-1063, 1993. Modelling global synchrony in the visual cortex by locally coupled neural oscillators,
D. Somers and N. Kopell, Biol. Cybern., vol. 68, pp. 393-407, 1993. Rapid synchronization through fast threshold modulation, DOI: https://doi.org/10.1007/BF00198772
C. von der Malsburg and J. Buhmann, Biol. Cybern., vol. 67, pp. 233-246, 1992. Sensory segmentation with coupled neural oscillators, DOI: https://doi.org/10.1007/BF00204396
D.L. Wang, IEEE Trans. Neural Networks, in press 1994. Emergent synchrony in locally coupled neural oscillators
H.R. Wilson and J.D. Cowan, Biophys. J., vol. 12, pp. 1-24, 1972. Excitatory and inhibitory interactions in localized populations of model neurons, DOI: https://doi.org/10.1016/S0006-3495(72)86068-5
H.G. Schuster and P. Wagner, Biol. Cybern., vol. 64, pp. 77-82, 1990. A model for neuronal oscillations in the visual cortex DOI: https://doi.org/10.1007/BF00203633
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Hui Wu, Dongwook Kim
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Copyrights for articles published in IJIER journals are retained by the authors, with first publication rights granted to the journal. The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author for more visit Copyright & License.
How to Cite
Most read articles by the same author(s)
- Hui Wu, The Sturm Liouville Problems with a random variable in Boundary Conditions , International Journal for Innovation Education and Research: Vol. 5 No. 2 (2017): International Journal for Innovation Education and Research
- Dong Hoon Shin, Dongwook Kim, An Analysis of Offset Emission Permit Pricing Factors in the Korean Carbon Market , International Journal for Innovation Education and Research: Vol. 10 No. 10 (2022): International Journal for Innovation Education and Research
- Dongwook Kim, Dong-Hoon Shin, Population Dynamics in Diffusive Coupled Insect Population , International Journal for Innovation Education and Research: Vol. 6 No. 4 (2018): International Journal for Innovation Education and Research