Effect of fat replacement by fructooligosaccharide in hamburger: physicochemical, technological and sensorial analysis

Authors

  • Giovanna Hartmann Department of Nutrition, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil
  • Flávia Teixeira Department of Nutrition, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil
  • Jaqueline Machado Soares Department of Nutrition, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil
  • Kátia Aparecida da Silva Department of Nutrition, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
  • Kélin Schwarz Department of Nutrition, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
  • Dalton Luiz Schiessel Department of Nutrition, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil
  • Daiana Novello a:1:{s:5:"en_US";s:9:"UNICENTRO";}

DOI:

https://doi.org/10.31686/ijier.vol8.iss3.2128

Keywords:

Prebiotic, meat products, healthiness

Abstract

The aim of this study was to evaluate the influence of fat substitution by fructooligosaccharide on physicochemical, technological and sensory characteristics of hamburgers. Five hamburgers formulations were prepared: F1 - standard (0% FOS) and the others added 1.25% (F2), 2.50% (F3), 3.75% (F4) and 5% (F5) of FOS. The Acceptability similar to standard sample was found for hamburgers with up to 3.75% prebiotic addition. However, all formulations had acceptability index above 70%. Cooking yield, moisture retention, shrinkage and fat retention have been increased as FOS was added. Substitution of fat by FOS increased carbohydrate and fiber content and decreased lipid and calorie hamburgers content. FOS addition did not change red and yellow values, however it increased brightness of product. FOS is an ingredient with potential for addition in beef hamburger, improving physicochemical and technological parameters and with little influence on sensory characteristics.

Downloads

Download data is not yet available.

Author Biographies

  • Giovanna Hartmann, Department of Nutrition, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil

    Department of Nutrition, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil

  • Flávia Teixeira, Department of Nutrition, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil

    Department of Nutrition, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil

  • Jaqueline Machado Soares, Department of Nutrition, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil

    Department of Nutrition, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil

  • Kátia Aparecida da Silva, Department of Nutrition, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil

    Department of Nutrition, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil

  • Kélin Schwarz, Department of Nutrition, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil

    Department of Nutrition, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil

  • Dalton Luiz Schiessel, Department of Nutrition, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil

    Department of Nutrition, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil

References

[1] Cofrades, S., Benedí, J., Garcimartin, A., Sánchez-Muniz, F. J., Jimenez-Colmenero, F. A comprehensive approach to formulation of seaweed-enriched meat products: From technological development to assessment of healthy properties. Food Research International, 99 (3) 1084-1094, 2017
[2] Jiang, J., Xiong, Y. L. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products A review. Meat Science, 120 (1) 107-117, 2017.
[3] Klurfeld, D. M. Research gaps in evaluating the relationship of meat and health. Meat Science, 109 (1) 86-95, 2017.
[4] Boada, L. D., Henríquez-Hernández, L. A., Luzardo, O. P. The impact of red and processed meat consumption on cancer and other health outcomes: Epidemiological evidences. Food Chemical Toxicology, 92 (1) 236-244, 2016.
[5] Barbut, S., Wood, J., Marangoni, A. Potential use of organogels to replace animal fat in comminuted meat products. Meat Science, 122 (1) 155-162, 2016.
[6] Jimenez-Colmenero, F., Salcedo-Sandoval, L., Bou, R., Cofrades, S., Herrero, A. M., Ruiz-Capillasa, C. Novel applications of oil-structuring methods as a strategy to improve the fat content of meat products. Trends Food Science and Technology, 44 (2) 177-188, 2015.
[7] Afoakwah, N. A., Dong, Y., Zhao, Y., Xiong, Z., Owusu, J., Wang, Y., Zhang, J. Characterization of Jerusalem artichoke (Helianthus tuberosus L.) powder and its application in emulsion-type sausage. Food Science and Technology, 64 (1) 74–81, 2015.
[8] Méndez-Zamora, G., García-Macías, J. A., Santellano-Estrada, E., Chávez-Martínez, A., Durán-Meléndez, L. A., Silva-Vázquez, R., Quintero-Ramos, A. Fat reduction in the formulation of frankfurter sausages using inulin and pectin. Food Science and Technology, 35 (1) 25-31, 2015.
[9] Schmiele, M., Mascarenhas M. C. C. N., Barretto, A. C. S., Pollonio, M. A. R. Dietary fiber as fat substitute in emulsified and cooked meat model system. Food Science and Technology, 61 (1) 105–111, 2015.
[10] Zhuang, X., Han, M., Kang, Z., Wang, K., Bai, Y., Xu, X., Zhou, G. Effects of the sugarcane dietary fiber and pre-emulsified sesame oil on low-fat meat batter physicochemical property, texture, and microstructure. Meat Science, 113 (1) 107–115, 2016.
[11] Alves, L. A. A. S., Lorenzo, J. M., Gonçalves, C. A. A., Santos, B. A., Heck, R. T., Cichoski, A. J., Campagnol, P. C. B. Production of healthier bologna type sausages using pork skin and green banana flour as a fat replacers. Meat Science, 121 (1) 73–78, 2016.
[12] Felisberto, M. H. F., Galvão, M. T. E. L., Picone, C. S. F., Cunha, R. L., Pollonio, M. A. R. Effect of prebiotic ingredients on the rheological properties and microstructure of reduced-sodium and low-fat meat emulsions. Food Science and Technology, 60 (1) 148–155, 2015.
[13] Praznik, W., Loeppert, R., Viernstein, H., Haslberger, A. G., Unger, F. M. Dietary fiber and prebiotics. Polysaccharides bioactivity and bioavailability. Berlin: Springer, 2015.
[14] Singla, V., Chakkaravarthi, S. Applications of prebiotics in food industry: A review. International Journal of Food Science and Technology, 23 (8) 649–667, 2017.
[15] Campos, D., Mescua, L., Aguilar-Galvez, A., Chirinos, R., Pedreschi, R. Effect of Yacon (Smallanthus sonchifolius) fructooligosaccharide purification technique using activated charcoal or ion exchange fixed bed column on recovery, purity and sugar content. International Journal of Food Science and Technoloy, 52 (12) 2637-2646, 2017.
[16] Angiolillo, L., Conte, A., Del Nobile, M. A. Technological strategies to produce functional meat burgers. Food Science and Technology, 62 (1) 697–703, 2015.
[17] Park, E. Y., Jang, S. B., Lim, S. T. Effect of fructo-oligosaccharide and isomaltooligosaccharide addition on baking quality of frozen dough. Food Chemical, 15 (213) 157-162, 2016.
[18] Aidoo, R. P., Afoakwa, E. O., Dewettinck, K. Rheological properties, melting behaviours and physical quality characteristics of sugar-free chocolates processed using inulin/polydextrose bulking mixtures sweetened with stevia and thaumatin extracts. Food Science and Technology, 62 (1) 592–597, 2015.
[19] Rubel, I. A., Pérez, E. E., Manrique, G. D., Genovese, D. B. Fibre enrichment of wheat bread with Jerusalem artichoke inulin: Effect on dough rheology and bread quality. Food Structure, 3 (1) 21–29, 2015.
[20] American Meat Science Association (AMSA). Research guidelines for cookery, sensory evaluation and instrumental tenderness measurements of meat. Champaign: American Meat Science Association, 2015.
[21] Meilgaard, M., Civille, G. V., Carr, B. T. Sensory evaluation techniques. Boca Raton: CRC, 1999.
[22] Macfie, H. J., Bratchell, N., Greenhof, K., Vallis, L. V. Designs to balance the effect of order of presentation and first order carry over effects in hall tests. Journal of Sensory Studies, 4 (2) 129-148, 1989.
[23] Association of Official Agricultural Chemists (AOAC) International. Official Methods of Analysis of AOAC International. Gaithersburg: Association of Official Analytical Chemists, 2011.
[24] Atwater, W. O., Woods, C. D. The chemical composition of American food materials. US Official Experiment Stations. Experiment Station Bulletin, 28 (1) 461-462, 1896.
[25] Murphy, E. W., Criner, P. E., Gray, B. C. Comparisons of methods for calculating retentions of nutrients in cooked foods. Journal of Agricultural and Food Chemistry, 23 (6) 1153-1157, 1975.
[26] Berry, B. W. Low Fat Level Effects on Sensory, Shear, Cooking, and Chemical Properties of Ground Beef Patties. Journal of Food Science, 57 (3) 537–537, 1992.
[27] El-Magoli, S. B., Laroia, S., Hansen, P. T. M. Flavour and texture characteristics of low fat ground beef patties formulated with whey protein concentrate. Meat Science, 42 (2) 179-193, 1996.
[28] Cáceres, E., Garcı́a, M. L., Toro, J., Selgas, M. D. The effect of fructooligosaccharides on the sensory characteristics of cooked sausages. Meat Science, 68 (1) 87–96, 2004.
[29] Salazar, P., García, M. L., Selgas, M. D. Short chain fructooligosaccharides as potential functional ingredient in dry fermented sausages with different fat levels. International Journal of Food Science and Technology, 44 (6) 1100–1107, 2009.
[30] Santos, B. A., Campagnol, P. C. B., Pacheco, M. T. B., Pollonio, M. A. R. Fructooligosaccharides as a fat replacer in fermented cooked sausages. International Journal of Food Science and Technology, 47 (6) 1183–1192, 2012.
[31] García, M. L., Cáceres, E., Selgas, M. D. Effect of inulin on the textural and sensory properties of mortadella, a Spanish cooked meat product. International Journal of Food Science and Technology, 41 (10) 1207–1215, 2006.
[32] Archer, B. J., Johnson, S. K., Devereux, H. M., Baxter, A. L. Effect of fat replacement by inulin or lupin-kernel fibre on sausage patty acceptability, post-meal perceptions of satiety and food intake in men. British Journal of Nutrition, 91 (4) 591-599, 2004.
[33] Mottram, D. S. Flavour formation in meat and meat products: a review. Food Chemical, 62 (4) 415–424, 1998.
[34] Devereux, H. M., Jones, G. P., McCormack, L., Hunter, W. C. Consumer Acceptability of Low-Fat Foods Containing Inulin and Oligofructose. Journal of Food Science, 68 (5) 1850-1854, 2003.
[35] Chevance, F. F. V., Farmer, L. J., Desmond, E. M., Novelli, E., Troy, D. J., Chizzolini, R. Effect of Some Fat Replacers on the Release of Volatile Aroma Compounds from Low-Fat Meat Products. Journal of Agricultural and Food Chemistry, 48 (8) 3476–3484, 2000.
[36] Olivares, A., Navarro, J. L., Flores, M. Effect of fat content on aroma generation during processing of dry fermented sausages. Meat Science, 87 (3) 264–273, 2011.
[37] Bolumar, T., Toepfl, S., Heinz, V. Fat Reduction and Replacement in Dry-Cured Fermented Sausage by Using High Pressure Processing Meat as Fat Replacer and Olive Oil. Polish Journal of Food and Nutrition Sciences, 65 (3) 175–182, 2015.
[38] Corradini, S. A. S., Madrona, G. S., Visentainer, J. V., Bonafe, E. G., Carvalho, C. B., Roche, P. M., Prado, I. N. Sensorial and fatty acid profile of ice cream manufactured with milk of crossbred cows fed palm oil and coconut fat. Journal of Dairy Science, 97 (1) 6745-6753, 2014.
[39] Mapric Greentech Company [internet]. Access in: 27 de jul 2019. Available in: https://mapric.com.br/
[40] United States Department of Agriculture [internet]. FoodData Central. Access in: 24 de jun 2019. Available in: https://ndb.nal.usda.gov/ndb/search/list.
[41] Figuerola, F., Hurtado, M. L., Estévez, A. M., Chiffelle, I., Fasenjo, F. Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chemical, 91 (1) 395-401, 2005.
[42] Keenan, D. F., Resconi, V. C., Kerry, J. P., Hamill, R. M. Modelling the influence of inulin as a fat substitute in comminuted meat products on their physico-chemical characteristics and eating quality using a mixture design approach. Meat Science, 96 (3) 1384–1394, 2014.
[43] Dykes, G. A., Cloete, T. E., Von Holy, A. Quantification of microbial populations associated with the manufacture of vacuum-packaged, smoked Vienna sausages. International Journal of Food and Microbiology, 13 (4) 239–248, 1991.
[44] Kaplan, H., Hutkins, R. W. Fermentation of Fructooligosaccharides by Lactic Acid Bacteria and Bifidobacteria. Applied and Environmental Microbiology, 66 (6) 2682-2684, 2000.
[45] Menegas, L. Z., Pimentel, T. C., Garcia, S., Prudencio, S. H. Dry-fermented chicken sausage produced with inulin and corn oil: Physicochemical, microbiological, and textural characteristics and acceptability during storage. Meat Science, 93 (3) 501–506, 2013.
[46] Anderson, E. T., Berry, B. W. Effects on inner pea fiber on fat retention and cooking yield in high fat ground beef. Food Research International, 34 (1) 689–694, 2001.
[47] Troy, D. J, Desmond, E. M., Buckley, D. J. Eating quality of low-fat beef burgers containing fat-replacing functional blends. Journal of the Science of Food and Agriculture, 79 (4) 507–516, 1999.
[48] Afshari, R., Hosseini, H., Khaksar, R., Mohammadifar, M. A., Amiri, Z., Komeili, R., Khaneghah, A. M. Investigation of the Effects of Inulin and β-Glucan on the Physical and Sensory Properties of Low-Fat Beef Burgers Containing Vegetable Oils: Optimisation of the Formulation Using D-Optimal Mixture Design. Food Technology and Biotechnology, 53 (4) 436-445, 2015.
[49] Beuschel, B. C., Partridge, J. A., Smith, D. M. Insolubilized whey protein concentrate and/or chicken salt-soluble protein gel properties. Journal of Food Science, 57 (4) 852-855, 1992.
[50] Tornberg, E., Olsson, A., Persson, K. A comparison in fat holding between hamburgers and emulsion sausages. Proceedings International Congress on Meat Science Technology, 35 (1) 753-757, 1989.

Downloads

Published

2020-03-01

How to Cite

Hartmann, G., Teixeira, F., Soares, J. M., Silva, K. A. da, Schwarz, K., Schiessel, D. L. ., & Novello, D. (2020). Effect of fat replacement by fructooligosaccharide in hamburger: physicochemical, technological and sensorial analysis. International Journal for Innovation Education and Research, 8(3), 15-25. https://doi.org/10.31686/ijier.vol8.iss3.2128

Most read articles by the same author(s)