Application of the Kalman Filter in Functional Magnetic Resonance Image Data
DOI:
https://doi.org/10.31686/ijier.vol8.iss9.2657Keywords:
Kalman Filter, Temporal Filtering, fMRI, Self-organizing mapsAbstract
The Kalman-Bucy filter was applied on the preprocessing of the functional magnetic resonance image-fMRI. Numerical simulations of hemodynamic response added Gaussian noise were performed to evaluate the performance of the filter. After the proceeding was applied in auditory real data. The Kohonen’s self-organized map was employed as tools to compare the performance of the Kalman’s filter with another type of pre-processing. The results of the application of Kalman-Bucy filter for simulated data and real auditory data showed that it can be used as a tool in the temporal filtering step in fMRI data.
References
Bannister, P.; Smith, S.; Brady, M.; Flitney, D.; Woolrich, M. Evaluating Lowpass Filters for fMRI Temporal Analysis. Department of Clinical Neurology, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK. www.fmrib.ox.ac.uk/analysi
Campelo, A. D. de S.; FARIAS, V. J. da C.; Tavares, H. R.; ROCHA, M. P. C. Self-organizing maps and entropy applied to data analysis of functional magnetic resonance images. Applied Mathematical Sciences (Ruse), v. 8, pp. 4953-4969, 2014. DOI: https://doi.org/10.12988/ams.2014.310585
Fischer, H., Henning, J., Neural-network based analysis of MR time series. Magnetic Resonance in
Medicine 41:124-131, 1999. DOI: https://doi.org/10.1002/(SICI)1522-2594(199901)41:1<124::AID-MRM17>3.0.CO;2-9
Friston, K. J., Mechelli, A., Turner, R., Price, C. J. “Nonlinear responses in fMRI: the balloon model, volterra kernels, and other hemodynamics,” NeuroImage, vol. 12, no. 4, pp. 466 - 477, 2000. DOI: https://doi.org/10.1006/nimg.2000.0630
Haykin, S. Neural Networks Principles and practice. 2 ed., Bookman, São Paulo, 2001.
Hu, Z.; Zhao, X.; Liu, H.; Shi, P. Nonlinear analysis of the bold signal. EURASIP Journal on Advances in Signal Processing, v. 2009, pp. 1 - 13, 2009. DOI: https://doi.org/10.1155/2009/215409
Huettel, S. A., Song, A. W., e Mccarthy, G., 2004. Functional Magnetic Resonance Imaging. Sinauer Associates.
Kalman, R. E. A new Approach to Linear Filtering and Predction Problems. ASME, Series D, Journal of Basic Engineering, 82, pp. 35–45, 1960. DOI: https://doi.org/10.1115/1.3662552
Kalman, R. E., Bucy, R. E. New results in linear filtering and prediction theory. ASME, Series D, Journal of Basic Engineering, 83, pp. 95–107, 1961. DOI: https://doi.org/10.1115/1.3658902
Kohonen, T. Self-Organizing Maps. 3 ed.; Springer: Berlim, 2001. DOI: https://doi.org/10.1007/978-3-642-56927-2
Kruggel, F.; Von Cramon, D. Y.; Descombes, X. Comparison of Filtering Methods for fMRI Datasets. Neuroimage, 10, pp. 530–543, 1999. DOI: https://doi.org/10.1006/nimg.1999.0490
Liao, W., Chen, H., Yang, Q., Lei, X. Analysis of fMRI Data Using Improved Self-Organizing Mapping and Spatio-Temporal Metric Hierarchical Clustering. IEEE Transactions on Medical Imaging, vol. 27, pp. 1472-1483, 2008. DOI: https://doi.org/10.1109/TMI.2008.923987
Ngan, S. C.; LaConte, S. M.; Hu, X. Temporal Filtering of Event-Related fMRI Data Using Cross-Validation. NeuroImage, 11, pp. 797–804, 2000. DOI: https://doi.org/10.1006/nimg.2000.0558
Nowak, R. D., and Baraniuk, R. G. Wavelet-domain filtering for photon imaging systems. IEEE Trans. Image Process., 8, pp. 666–678,1999. DOI: https://doi.org/10.1109/83.760334
Peltier, S. J., Polk T. A., Noll D.C. Detecting low-frequency functional connectivity in fMRI using a
self-organizing map (SOM) algorithm. Hum. Brain Mapp., vol. 20, pp. 220-226, 2003. DOI: https://doi.org/10.1002/hbm.10144
Rocha, M. P. C., Leite, L. W. B. Treatment of geophysical data as a non-stationary process. Computational and Applied Mathematics, Vol. 22, N. 2, pp. 149–166, 2003. DOI: https://doi.org/10.1590/S0101-82052003000200001
Rocha, M. P. C.; Leite, L. W. B.; Santos, M. L.; Farias, V. J. C. Attenuation of multiple in reflection seismec data using Kalman-Bucy filter. Applied Mathematics and Computation, v. 189, p. 805-815, 2007. DOI: https://doi.org/10.1016/j.amc.2006.11.186
Ribeiro, R. C. M., Quadros, T. A., Ausique, J. J. S., Chase, O. A., Campos, P. S. da S., Júnior, P. C. dos S., Almeida, J. F. S. de, & Marques, G. T. (2019). Forecasting incidence of tuberculosis cases in Brazil based on various univariate time-series models. International Journal for Innovation Education and Research, 7(10), 894-909. https://doi.org/10.31686/ijier.vol7.iss10.1841 DOI: https://doi.org/10.31686/ijier.vol7.iss10.1841
Wiener, N. Extrapolation, Interpolation, and Smoothing of Stationary Time Series. New York. John Wiley and Sons. 1949. DOI: https://doi.org/10.7551/mitpress/2946.001.0001
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Valcir J. da C. Farias, Marcus P. C. Rocha, Heliton Tavares
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Copyrights for articles published in IJIER journals are retained by the authors, with first publication rights granted to the journal. The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author for more visit Copyright & License.
How to Cite
Accepted 2020-08-28
Published 2020-09-01
Most read articles by the same author(s)
- Marcus Pinto da Costa da Rocha, Matheus Souza, Valcir Farias, Heliton Tavares, Optimization of soybean outflow routes from Mato Grosso, Brazil , International Journal for Innovation Education and Research: Vol. 8 No. 8 (2020): International Journal for Innovation Education and Research
- Valcir Farias, Kleber, Carmem, Kalil, Use of Physical Education Classes as a Didactic Laboratory for Teaching Mathematics , International Journal for Innovation Education and Research: Vol. 8 No. 6 (2020): International Journal for Innovation Education and Research