Rheological Analysis of Asphalt Binders Modified with Hydrated Lime and Titanium Dioxide Nanoparticles

Authors

DOI:

https://doi.org/10.31686/ijier.vol8.iss11.2787

Keywords:

Asphalt binder, Hydrated Lime, Nanoparticles, Titanium dioxide.

Abstract

The significant increase in traffic on paved roads has accelerated the deterioration of asphalt coatings. Because of this, the use of additives to modify the properties of the asphalt binder has been studied in order to improve the performance in relation to, mainly, permanent deformations and fatigue life. This work evaluates the changes in the rheological properties of CAP 50/70 modified with fractionated particles of hydrated lime and titanium dioxide nanoparticles, obtained from the use of a ball mill. For this purpose, the CAP 50/70 was modified with the addition of fractionated lime particles in the contents of 3%, 5% and 7% by weight of the pure binder and with 3% of ground nano TiO2 (180 nm). The modified samples showed less loss of mass in the short term aging, proving to be an antioxidant alternative. In addition, it was found that the modified binders provided an increase in G* (stiffness parameter) and, consequently, in the maximum Performance Grade (PG) temperature, allowing the use of the studied binders at higher temperatures. The binder modified with a content of 5% hydrated lime presented better results in the tests of permanent deformation (MSCR and LAS). The decrease in TiO2 granulometry increased the integrity of the binder and made it more sensitive to deformations under temperature variations, however, milled titanium dioxide showed a positive result in increasing the resistance of the asphalt binder to fatigue when compared to the binder with nano TiO2 220 nm. Finally, it was possible to establish that the addition of fractionated particles of hydrated lime to CAP 50/70 is a viable and effective technique that meets the requirements of DNIT for use in paving and that the incorporation of ground nano TiO2 (180 nm) attributed to the asphalt binder 50/70 higher working temperature in the field.

Downloads

Download data is not yet available.

Author Biographies

  • Osires de Medeiros Melo Neto, Federal University of Campina Grande

    Master's Degree student, Department of Civil Engineering

  • Adriana Albuquerque Ferreiro, Federal University of Campina Grande

    Civil engineer, Department of Civil Engineering

  • Túlio de Souza Freire, Federal University of Campina Grande

    Civil engineer, Department of Civil Engineering

  • Gustavo Correia Basto da Silva, State University of Paraiba

    PhD student, Department of Dentistry

  • Lêda Christiane de Figueirêdo Lopes Lucena, Federal University of Campina Grande, Campina Grande, Paraiba, Brazil.

    PhD in Civil Engineering, Department of Civil Engineering

  • Valter Ferreira de Sousa Neto, Federal University of Campina Grande

    PhD Degree student, Department of Civil Engineering

References

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION. AASHTO M 320: Standard specification for performance-graded asphalt binder. Washington, DC, Estados Unidos, 2010.

AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D 5: Standard Test Method for Penetration of Bituminous Materials. Estados Unidos, 2019.

AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D 36: Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). Estados Unidos, 2014.

AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D 2872: Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test). Estados Unidos, 2012.

AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D 4402: Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. Estados Unidos, 2015.

AMINI N.; HAYATI, P. Effects of CuO nanoparticles as phase change material on chemical, thermal and mechanical properties of asphalt binder and mixture. Construction and Building Materials, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118996

ANP Nº 19. Regulamento Técnico para Realização dos Investimentos em Pesquisa e Desenvolvimento e Elaboração do Relatório Demonstrativo. Agência Nacional de Petróleo, Gás Natural e Biocombustíveis. 2005.

BEHBAHANI, H.; HAMEDI, G. H.; GILANI, V. N. M. Predictive model of modified asphalt mixtures with nano hydrated lime to increase resistance to moisture and fatigue damages by the use of deicing agents. Construction and Building Materials, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120353

BERNUCCI, L. B., L. M. G. MOTTA, J. A. P. CERATTI, E J. B. SOARES. Pavimentação

Asfáltica: Formação Básica para Engenheiros. 1. Rio de Janeiro: ABEDA, 2006.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTE. DNIT 095/2006 - EM: Cimentos asfálticos de petróleo. Rio de Janeiro, 2006.

DIAB, A.; WANG. H.; YOU, Z. Reological Evaluation of Foamed WMA Modified with Nano. 13th COTA International Conference of Transportation Professionals, 2013. DOI: https://doi.org/10.1016/j.sbspro.2013.08.318

GAJOVIC, A; FURIC, K; MUSIC, S. Ball-milling of TiO2 and ZrO2, 2002.

GUILE, D. B. Effects of Nanoclay Modification on Rheology of Bitumen and on Performance of Asphalt Mixtures. Dissertação de mestrado. Delft University Of Technology, Delft, The Netherlands, 2006.

HONG, H.; ZHANG, H. ZHANG, S. Effect of multi-dimensional nanomaterials on the aging behavior of asphalt by atomic force microscope. Construction and Building Materials, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120389

JAHROMI, S. G.; KHODAII, A. Effects of nanoclay on rheological properties of bitumen binder. Construction and Building Materials, 23(8), 2894–2904, 2009. DOI: https://doi.org/10.1016/j.conbuildmat.2009.02.027

KAVUSSI, A.; BARGHABANY, P. Investigating Fatigue Behavior of Nanoclay and Nano Hydrated Lime Modified Bitumen Using LAS Test. Journal of Materials in Civil Engineering, 2015. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001376

MAMUM, A. A.; ARIFUZZAMAN, MD. Nano-scale moisture damage evaluation of carbon nanotube-modified asphalt. Construction and Building Materials, 2018. DOI: https://doi.org/10.1016/j.conbuildmat.2018.10.155

MARINHO FILHO, P. G. T. Avaliação reológica de ligantes asfálticos modificados com nanopartículas de dióxido de titânio. Dissertação de Mestrado em Engenharia Civil e Ambiental. Universidade Federal de Campina Grande, 2017.

MORTEZAEI, M.; SHABANI, S.; MOHAMMADIAN-GERZAZ, S. Assessing the effects of premixing on the rheological properties for three-phases asphalt binder nano-composite including clay and SBS. Construction and Building Materials, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117151

NASCIMENTO, T. C. B. Efeito Dos Envelhecimentos Termo-Oxidativo E Foto-Oxidativo Sobre Propriedades Reológicas De Ligantes Asfálticos Modificados. Dissertação (Mestrado) – Escola de Engenharia de São Carlos da Universidade de São Paulo, São Carlos, 2015.

NAZARI, H.; NADERI, K.; NEJAD, F. M. Improving aging resistance and fatigue performance of asphalt binders using inorganic nanoparticles. Construction and Building Materials, 2018. DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.107

SAHA, M. C.; NILUFAR, S. Nanoclay reinforced syntactic foams: flexure and thermal behavior. Polymer Composites, 2010. DOI: https://doi.org/10.1002/pc.20918

SHAFABKHSH, G. H.; ANI, O. J. Experimental Investigation Of Effect Of Nano Tio2/Sio2 Modified Bitumen On The Rutting And Fatigue Performance Of Asphalt Mixtures Containing Steel Slag Aggregates. Construction and Buildings Materials, v. 98, 692- 702, 2015. DOI: https://doi.org/10.1016/j.conbuildmat.2015.08.083

SOBREIRO, F. Efeito da adição de ácidos fosfóricos no comportamento reológico de ligantes asfálticos puros e modificados com copolímero SBS. Escola de Engenharia de São Carlos. Universidade de São Paulo. São Carlos. 2014.

SUN, Z.; YI, J.; HUANG, Y.; FENG, D.; GUO, C. Properties of asphalt binder modified by bio-oil derived from waste cooking oil. Construction and Building Materials, p. 496-504, 2016. DOI: https://doi.org/10.1016/j.conbuildmat.2015.10.173

THEISEVASANTHI, T. Review of titania nanopowder – processing and applications. Materials Science, 2017.

XIAO, F.; AMIRKHANIAN, A.N.; AMIRKHANIAN, S. N. Influence on rheological characteristics of asphalt binders containing carbon nanoparticles. Journal of Materials in Civil Engineering, 2011. DOI: https://doi.org/10.1080/10298436.2011.560267

YANG, J.; TIGHE, S. A review of advances of nanotechnology in asphalt mixures. 13th COTA International Conference of Transportation Professionals (CICTP 2013).

YAO H.; YOU Z.; LI L.; SHI X.; GOH S. W.; MILLS-BEALE J.; WINGARD D. Performance of asphalt binder blended with non-modified and polymer-modified nanoclay. Construction and Building Materials, 2012. DOI: https://doi.org/10.1016/j.conbuildmat.2012.02.056

YOU, L.; YOU, Z.; DAI, Q.; ZHANG, L. Assessment of nanoparticles dispersion in asphalt during bubble escaping and bursting: Nano hydrated lime modified foamed asphalt. Construction and Building Materials, 2018. DOI: https://doi.org/10.1016/j.conbuildmat.2018.06.234

ZHANG, H.; ZIHAO, C.; ZHU, C.; ZHAO, B. Reological examination of aging in bitumen with inorganic nanoparticles and organic expanded vermiculite. Construction and Building Materials, 2015.

Downloads

Published

2020-11-01

How to Cite

Neto, O. de M. M., Ferreiro, A. A., Freire, T. de S., Lucena, L. C. de F. L., & Neto, V. F. de S. (2020). Rheological Analysis of Asphalt Binders Modified with Hydrated Lime and Titanium Dioxide Nanoparticles (G. C. B. da Silva , Trans.). International Journal for Innovation Education and Research, 8(11), 579-598. https://doi.org/10.31686/ijier.vol8.iss11.2787
Received 2020-10-23
Accepted 2020-11-04
Published 2020-11-01

Most read articles by the same author(s)