Issues on the optimization of bioreactors of microalgae and cyanobacteria crops for hydrogen and bioproduct productions

microalgae and cyanobacteria crops for hydrogen and bioproduct productions

Authors

DOI:

https://doi.org/10.31686/ijier.vol8.iss12.2840

Keywords:

Microalgae, cyanobacteria, bioproducts, hydrogen, PBR, biofuels

Abstract

Optimizing the design and operating parameters for optimum production of hydrogen and other bioproducts is a necessary step to address the rate of production of this energy input. Optimization is basically based on the appropriate choice of microalgae strain along with the available growth conditions. This paper presents a simplified review of the possible monitoring variables for microalgae and cyanobacteria crops. In addition, the design of open pond bioreactors and photobioreactors (PBR) that allow greater control of monitoring and crop parameters were presented. The physicochemical bioproduct characterization, such as fatty acids constituent and gases, is an aspect to be considered. The use of the optimization of the physical-chemical properties for their subsequent processing may improve the production of biofuels and biomass. In addition, the generation of hydrogen in the photosynthetic cycle of bioreactors based on microalgae cultures is presented as a solution to energy demand. And finally, we comment on some findings obtained from Multiphysics computational modeling carried out in PBRs.

Downloads

Download data is not yet available.

Author Biographies

  • Carlos Julio Montano, Universidade Federal de Minas Gerais

    Departamento de Engenharia Nuclear – Laboratório de Radiações Ionizantes

    Av. Antônio Carlos, 6627, ZIP Code 31270-901, Belo Horizonte—MG / Brasil

  • Sonia Seger Pereira Mercedes , Universidade Federal de Minas Gerais

    Departamento de Engenharia Nuclear – Laboratório de Radiações Ionizantes

    Av. Antônio Carlos, 6627, ZIP Code 31270-901, Belo Horizonte—MG / Brasil

  • Tarcisio PR Campos, Universidade Federal de Minas Gerais

    Departamento de Engenharia Nuclear – Laboratório de Radiações Ionizantes

    Av. Antônio Carlos, 6627, ZIP Code 31270-901, Belo Horizonte—MG / Brasil

References

ADAMS, M. W. The structure and mechanism of iron-hydrogenases. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1020, n. 2, p. 115-145, 1990. DOI: https://doi.org/10.1016/0005-2728(90)90044-5

AZWAR, M.; HUSSAIN, M.; ABDUL-WAHAB, A. Development of biohydrogen production by photobiological, fermentation and electrochemical processes: a review. Renewable and Sustainable Energy Reviews, 31, p. 158-173, 2014. DOI: https://doi.org/10.1016/j.rser.2013.11.022

BATISTA, F.; LUCCHESI, K.; CARARETO, N.; COSTA, M. et al. Properties of microalgae oil from the species Chlorella protothecoides and its ethylic biodiesel. Brazilian Journal of Chemical Engineering, 35, n. 4, p. 1383-1394, 2018. DOI: https://doi.org/10.1590/0104-6632.20180354s20170191

BECKER, E. W. Micro-algae as a source of protein. Biotechnology advances, 25, n. 2, p. 207-210, 2007. DOI: https://doi.org/10.1016/j.biotechadv.2006.11.002

BEHERA, S.; SINGH, R.; ARORA, R.; SHARMA, N. K. et al. Scope of algae as third generation biofuels. Frontiers in bioengineering and biotechnology, 2, p. 90, 2015. DOI: https://doi.org/10.3389/fbioe.2014.00090

BERENGUEL, M.; RODRIGUEZ, F.; ACIÉN, F.; GARCIA, J. Model predictive control of pH in tubular photobioreactors. Journal of Process Control, 14, n. 4, p. 377-387, 2004. DOI: https://doi.org/10.1016/j.jprocont.2003.07.001

BJÖRN, L. O.; PAPAGEORGIOU, G. C.; BLANKENSHIP, R. E. A viewpoint: why chlorophyll a? Photosynthesis research, 99, n. 2, p. 85-98, 2009. DOI: https://doi.org/10.1007/s11120-008-9395-x

BROUERS, M.; SHI, D.; HALL, D. [70] Immobilization methods for cyanobacteria in solid matrices. In: Methods in Enzymology: Elsevier, 1988. v. 167, p. 629-636. DOI: https://doi.org/10.1016/0076-6879(88)67073-X

CANTOS, E.; GARCÍA-VIGUERA, C.; DE PASCUAL-TERESA, S.; TOMÁS-BARBERÁN, F. A. Effect of postharvest ultraviolet irradiation on resveratrol and other phenolics of cv. Napoleon table grapes. Journal of Agricultural and Food Chemistry, 48, n. 10, p. 4606-4612, 2000. DOI: https://doi.org/10.1021/jf0002948

CHANG, F.-Y.; LIN, C.-Y. Biohydrogen production using an up-flow anaerobic sludge blanket reactor. International Journal of Hydrogen Energy, 29, n. 1, p. 33-39, 2004. DOI: https://doi.org/10.1016/S0360-3199(03)00082-X

CHAUMONT, D. Biotechnology of algal biomass production: a review of systems for outdoor mass culture. Journal of Applied Phycology, 5, n. 6, p. 593-604, 1993. DOI: https://doi.org/10.1007/BF02184638

CHIARAMONTI, D. Bioethanol: role and production technologies. In: Improvement of crop plants for industrial end uses: Springer, 2007. p. 209-251. DOI: https://doi.org/10.1007/978-1-4020-5486-0_8

CHINNASAMY, S.; RAMAKRISHNAN, B.; BHATNAGAR, A.; DAS, K. C. Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature. International journal of molecular sciences, 10, n. 2, p. 518-532, 2009. DOI: https://doi.org/10.3390/ijms10020518

CHISTI, Y. Biodiesel from microalgae. Biotechnology advances, 25, n. 3, p. 294-306, 2007. DOI: https://doi.org/10.1016/j.biotechadv.2007.02.001

COCKELL, C. S.; KNOWLAND, J. Ultraviolet radiation screening compounds. Biological Reviews, 74, n. 3, p. 311-345, 1999. DOI: https://doi.org/10.1017/S0006323199005356

COUTTEAU, P.; SORGELOOS, P. The use of algal substitutes and the requirement for live algae and their replacement by artificial diets in the hatchery and nursery rearing of bivalve molluscs: an international survey. Journal of Shellfish Research, 11, p. 467-476, 1992.

DINCER, I. Green methods for hydrogen production. International journal of hydrogen energy, 37, n. 2, p. 1954-1971, 2012. DOI: https://doi.org/10.1016/j.ijhydene.2011.03.173

DUVAL, B.; SHETTY, K.; THOMAS, W. H. Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light. Journal of Applied Phycology, 11, n. 6, p. 559, 1999. DOI: https://doi.org/10.1023/A:1008178208949

ESTEVES, F. D. A. Fundamentos de limnología. Ed. Interciencia. Brasil, p. 122-124, 1998.

FINKEL, T.; HOLBROOK, N. J. Oxidants, oxidative stress and the biology of ageing. nature, 408, n. 6809, p. 239, 2000. DOI: https://doi.org/10.1038/35041687

FLYNN, K. J.; GREENWELL, H. C.; LOVITT, R. W.; SHIELDS, R. J. Selection for fitness at the individual or population levels: modelling effects of genetic modifications in microalgae on productivity and environmental safety. Journal of theoretical biology, 263, n. 3, p. 269-280, 2010. DOI: https://doi.org/10.1016/j.jtbi.2009.12.021

GAFFRON, H. Reduction of CO2 with molecular H2 in green plants. Nature, 143, p. 204-205, 1939. DOI: https://doi.org/10.1038/143204a0

GAFFRON, H.; RUBIN, J. Fermentative and photochemical production of hydrogen in algae. The Journal of General Physiology, 26, n. 2, p. 219-240, 1942. DOI: https://doi.org/10.1085/jgp.26.2.219

GARCIA‐PICHEL, F. A model for internal self‐shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnology and Oceanography, 39, n. 7, p. 1704-1717, 1994. DOI: https://doi.org/10.4319/lo.1994.39.7.1704

GHIRARDI, M. L.; ZHANG, L.; LEE, J. W.; FLYNN, T. et al. Microalgae: a green source of renewable H2. Trends in biotechnology, 18, n. 12, p. 506-511, 2000. DOI: https://doi.org/10.1016/S0167-7799(00)01511-0

GREENBAUM, E. Photosynthetic hydrogen and oxygen production: kinetic studies. Science, 215, n. 4530, p. 291-293, 1982. DOI: https://doi.org/10.1126/science.215.4530.291

GREENWELL, H. C.; LAURENS, L.; SHIELDS, R.; LOVITT, R. et al. Placing microalgae on the biofuels priority list: a review of the technological challenges. Journal of the royal society interface, 7, n. 46, p. 703-726, 2009. DOI: https://doi.org/10.1098/rsif.2009.0322

GUSCHINA, I. A.; HARWOOD, J. L. Complex lipid biosynthesis and its manipulation in plants. In: Improvement of crop plants for industrial end uses: Springer, 2007. p. 253-279. DOI: https://doi.org/10.1007/978-1-4020-5486-0_9

GÓMEZ, I.; PÉREZ-RODRÍGUEZ, E.; VIÑEGLA, B.; FIGUEROA, F. L. et al. Effects of solar radiation on photosynthesis, UV-absorbing compounds and enzyme activities of the green alga Dasycladus vermicularis from southern Spain. Journal of Photochemistry and Photobiology B: Biology, 47, n. 1, p. 46-57, 1998. DOI: https://doi.org/10.1016/S1011-1344(98)00199-7

HAPPE, T.; MOSLER, B.; NABER, J. D. Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. European Journal of Biochemistry, 222, n. 3, p. 769-774, 1994. DOI: https://doi.org/10.1111/j.1432-1033.1994.tb18923.x

HAPPE, T.; NABER, J. D. Isolation, characterization and N‐terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. European Journal of Biochemistry, 214, n. 2, p. 475-481, 1993. DOI: https://doi.org/10.1111/j.1432-1033.1993.tb17944.x

HERNANDO, M.; MALANGA, G.; FERREYRA, G. Oxidative stress and antioxidant defenses due UV radiation in sub-antarctic marine phytoplankton. Sci. Mar, 69, n. Suppl 2, p. 287-295, 2005. DOI: https://doi.org/10.3989/scimar.2005.69s2287

HOYER, K.; KARSTEN, U.; SAWALL, T.; WIENCKE, C. Photoprotective substances in Antarctic macroalgae and their variation with respect to depth distribution, different tissues and developmental stages. Marine Ecology Progress Series, 211, p. 117-129, 2001. DOI: https://doi.org/10.3354/meps211117

JANKNEGT, P. J.; DE GRAAFF, C. M.; VAN DE POLL, W. H.; VISSER, R. J. et al. Antioxidative responses of two marine microalgae during acclimation to static and fluctuating natural UV radiation. Photochemistry and photobiology, 85, n. 6, p. 1336-1345, 2009. DOI: https://doi.org/10.1111/j.1751-1097.2009.00603.x

KAPARAPU, J.; GEDDADA, M. N. R. Applications of immobilized algae. Journal of Algal Biomass Utilization, 7, p. 122-128, 2016.

KERBY, N.; STEWART, W. The biotechnology of microalgae and cyanobacteria. Biochemistry of the algae and cyanobacteria, p. 326-327, 1988.

KLASSON, K.; ACKERSON, M.; CLAUSEN, E.; GADDY, J. Bioreactor design for synthesis gas fermentations. Fuel, 70, n. 5, p. 605-614, 1991. DOI: https://doi.org/10.1016/0016-2361(91)90174-9

KOTAY, S. M.; DAS, D. Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge. Bioresour Technol, 98, n. 6, p. 1183-1190, Apr 2007. DOI: https://doi.org/10.1016/j.biortech.2006.05.009

KUSKOSKI, E. M.; ASUERO, A. G.; GARCÍA-PARILLA, M. C.; TRONCOSO, A. M. et al. Actividad antioxidante de pigmentos antociánicos. Food Science and Technology, 24, n. 4, p. 691-693, 2004. DOI: https://doi.org/10.1590/S0101-20612004000400036

LOURENÇO, S. O. Cultivo de microalgas marinhas: princípios e aplicações. RiMa São Carlos, 2006.

MAHBOOB, S.; RAUF, A.; ASHRAF, M.; SULTANA, T. et al. High-density growth and crude protein productivity of a thermotolerant Chlorella vulgaris: production kinetics and thermodynamics. Aquaculture international, 20, n. 3, p. 455-466, 2012. DOI: https://doi.org/10.1007/s10499-011-9477-1

MALANGA, G.; CALMANOVICI, G.; PUNTARULO, S. Oxidative damage to chloroplasts from Chlorella vulgaris exposed to ultraviolet‐B radiation. Physiologia Plantarum, 101, n. 3, p. 455-462, 1997. DOI: https://doi.org/10.1111/j.1399-3054.1997.tb01023.x

MALLICK, N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. biometals, 15, n. 4, p. 377-390, 2002. DOI: https://doi.org/10.1023/A:1020238520948

MANISH, S.; BANERJEE, R. Comparison of biohydrogen production processes. International Journal of Hydrogen Energy, 33, n. 1, p. 279-286, 2008. DOI: https://doi.org/10.1016/j.ijhydene.2007.07.026

MAYO, A. W.; NOIKE, T. Effect of glucose loading on the growth behavior of Chlorella vulgaris and heterotrophic bacteria in mixed culture. Water research, 28, n. 5, p. 1001-1008, 1994. DOI: https://doi.org/10.1016/0043-1354(94)90184-8

MEHLITZ, T. H. Temperature influence and heat management requirements of microalgae cultivation in photobioreactors. 2009.

MEYER, J.; GAGNON, J. Primary structure of hydrogenase from Clostridium pasteurianum. Biochemistry, 30, n. 40, p. 9697-9704, 1991. DOI: https://doi.org/10.1021/bi00104a018

MONTEIRO, M. P. D. C.; LUCHESE, R. H.; ABSHER, T. M. Effect of three different types of culture conditions on Spirulina maxima growth. Brazilian Archives of Biology and Technology, 53, n. 2, p. 369-373, 2010. DOI: https://doi.org/10.1590/S1516-89132010000200016

MORENO-GARRIDO, I. Microalgae immobilization: current techniques and uses. Bioresource technology, 99, n. 10, p. 3949-3964, 2008. DOI: https://doi.org/10.1016/j.biortech.2007.05.040

MOSKAUG, J. Ø.; CARLSEN, H.; MYHRSTAD, M. C.; BLOMHOFF, R. Polyphenols and glutathione synthesis regulation. The American journal of clinical nutrition, 81, n. 1, p. 277S-283S, 2005. DOI: https://doi.org/10.1093/ajcn/81.1.277S

MURPHY, D. J. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Progress in lipid research, 40, n. 5, p. 325-438, 2001. DOI: https://doi.org/10.1016/S0163-7827(01)00013-3

MUÑOZ, R.; KÖLLNER, C.; GUIEYSSE, B.; MATTIASSON, B. Photosynthetically oxygenated salicylate biodegradation in a continuous stirred tank photobioreactor. Biotechnology and bioengineering, 87, n. 6, p. 797-803, 2004. DOI: https://doi.org/10.1002/bit.20204

MÜLLER, P.; LI, X.-P.; NIYOGI, K. K. Non-photochemical quenching. A response to excess light energy. Plant physiology, 125, n. 4, p. 1558-1566, 2001. DOI: https://doi.org/10.1104/pp.125.4.1558

NAUHA, E. K.; ALOPAEUS, V. Modeling method for combining fluid dynamics and algal growth in a bubble column photobioreactor. Chemical engineering journal, 229, p. 559-568, 2013. DOI: https://doi.org/10.1016/j.cej.2013.06.065

ONO, E.; CUELLO, J. L. Carbon dioxide mitigation using thermophilic cyanobacteria. Biosystems engineering, 96, n. 1, p. 129-134, 2007. DOI: https://doi.org/10.1016/j.biosystemseng.2006.09.010

OSWALD, W. J. Micro-algae and wastewater treatment. Microalgal biotechnology, p. 305-328, 1988.

PAVIA, H.; CERVIN, G.; LINDGREN, A.; ÅBERG, P. Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Marine Ecology Progress Series, 157, p. 139-146, 1997. DOI: https://doi.org/10.3354/meps157139

REDAELLI, C.; KOCHEM, L. H.; DIERINGS, T.; JARENKOW, A. et al. Influência da intensidade da luz sobre a biofixação de carbono em Chlorella minutíssima. Universidade Federal do rio Grande do Sul. Porto Alegre, 2011.

REUBER, S.; BORNMAN, J.; WEISSENBÖCK, G. A flavonoid mutant of barley (Hordeum vulgare L.) exhibits increased sensitivity to UV‐B radiation in the primary leaf. Plant, Cell & Environment, 19, n. 5, p. 593-601, 1996. DOI: https://doi.org/10.1111/j.1365-3040.1996.tb00393.x

RIBEIRO, R. L.; MARIANO, A. B.; VARGAS, J. V. Software para Simulação de Crescimento de Microalgas em Fotobiorreatores Tubulares. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, 4, n. 1, 2016. DOI: https://doi.org/10.5540/03.2016.004.01.0037

ROESSLER, P. G.; LIEN, S. Activation and de novo synthesis of hydrogenase in Chlamydomonas. Plant physiology, 76, n. 4, p. 1086-1089, 1984. DOI: https://doi.org/10.1104/pp.76.4.1086

ROZEMA, J.; BJÖRN, L. O.; BORNMAN, J.; GABERŠČIK, A. et al. The role of UV-B radiation in aquatic and terrestrial ecosystems—an experimental and functional analysis of the evolution of UV-absorbing compounds. Journal of Photochemistry and Photobiology B: Biology, 66, n. 1, p. 2-12, 2002. DOI: https://doi.org/10.1016/S1011-1344(01)00269-X

RÓS, P.; DA, C.; SILVA, C. S.; SILVA-STENICO, M. E. et al. Assessment of chemical and physico-chemical properties of cyanobacterial lipids for biodiesel production. Marine drugs, 11, n. 7, p. 2365-2381, 2013. DOI: https://doi.org/10.3390/md11072365

SAIFUDDIN, N.; PRIATHARSINI, P. Developments in bio-hydrogen production from algae: a review. Res J Appl Sci Eng Technol, 12, n. 9, p. 968-982, 2016. DOI: https://doi.org/10.19026/rjaset.12.2815

SCALBERT, A.; WILLIAMSON, G. Dietary intake and bioavailability of polyphenols. The Journal of nutrition, 130, n. 8, p. 2073S-2085S, 2000. DOI: https://doi.org/10.1093/jn/130.8.2073S

SCHULZ, R. Hydrogenases and hydrogen production in eukaryotic organisms and cyanobacteria. Journal of marine biotechnology, 4, n. 1, p. 16-22, 1996.

SHERIF, S. A.; BARBIR, F.; VEZIROGLU, T. N. Principles of hydrogen energy production, storage and utilization. 2003.

SHIU, C.-T.; LEE, T.-M. Ultraviolet-B-induced oxidative stress and responses of the ascorbate–glutathione cycle in a marine macroalga Ulva fasciata. Journal of Experimental Botany, 56, n. 421, p. 2851-2865, 2005. DOI: https://doi.org/10.1093/jxb/eri277

SOLETTO, D.; BINAGHI, L.; LODI, A.; CARVALHO, J. et al. Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture, 243, n. 1-4, p. 217-224, 2005. DOI: https://doi.org/10.1016/j.aquaculture.2004.10.005

TAMAGNINI, P.; LEITÃO, E.; OLIVEIRA, P.; FERREIRA, D. et al. Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS microbiology reviews, 31, n. 6, p. 692-720, 2007. DOI: https://doi.org/10.1111/j.1574-6976.2007.00085.x

THAJUDDIN, N.; SUBRAMANIAN, G. Cyanobacterial biodiversity and potential applications in biotechnology. Current science, p. 47-57, 2005.

VAN GERPEN, J. Biodiesel production. In: Improvement of Crop Plants for Industrial End Uses: Springer, 2007. p. 281-289. DOI: https://doi.org/10.1007/978-1-4020-5486-0_10

VIMALABAI, C.; KULANDAIVELU, G. Effects of prolonged UV-B enhanced fluorescent radiation on some marine microalgae. Biologia plantarum, 45, n. 3, p. 389-394, 2002. DOI: https://doi.org/10.1023/A:1016217700979

VOORDOUW, G.; STRANG, J. D.; WILSON, F. R. Organization of the genes encoding [Fe] hydrogenase in Desulfovibrio vulgaris subsp. oxamicus Monticello. Journal of Bacteriology, 171, n. 7, p. 3881-3889, 1989. DOI: https://doi.org/10.1128/jb.171.7.3881-3889.1989

WHEATON, Z. C.; KRISHNAMOORTHY, G. Modeling radiative transfer in photobioreactors for algal growth. Computers and electronics in agriculture, 87, p. 64-73, 2012. DOI: https://doi.org/10.1016/j.compag.2012.05.002

WILLIAMS, P. J. L. B.; LAURENS, L. M. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy & Environmental Science, 3, n. 5, p. 554-590, 2010. DOI: https://doi.org/10.1039/b924978h

WONG, C.; CHU, W.; MARCHANT, H.; PHANG, S. Comparing the response of Antarctic, tropical and temperate microalgae to ultraviolet radiation (UVR) stress. Journal of Applied Phycology, 19, n. 6, p. 689-699, 2007. DOI: https://doi.org/10.1007/s10811-007-9214-3

XU, H.; MIAO, X.; WU, Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of biotechnology, 126, n. 4, p. 499-507, 2006. DOI: https://doi.org/10.1016/j.jbiotec.2006.05.002

ZHANG, L.; HAPPE, T. Biochemical and morphological characterization of sulfur-deprived and hydrogen-producing Chlamydomonas reinhardtii (green algae). Science Access, 3, n. 1, 2001.

ZUDAIRE, L.; ROY, S. Photoprotection and long-term acclimation to UV radiation in the marine diatom Thalassiosira weissflogii. Journal of Photochemistry and Photobiology B: Biology, 62, n. 1-2, p. 26-34, 2001. DOI: https://doi.org/10.1016/S1011-1344(01)00150-6

Downloads

Published

2020-12-01

How to Cite

Montano, C. J., Seger Pereira Mercedes , S., & PR Campos, T. (2020). Issues on the optimization of bioreactors of microalgae and cyanobacteria crops for hydrogen and bioproduct productions: microalgae and cyanobacteria crops for hydrogen and bioproduct productions. International Journal for Innovation Education and Research, 8(12), 276-293. https://doi.org/10.31686/ijier.vol8.iss12.2840
Received 2020-11-20
Accepted 2020-12-04
Published 2020-12-01