Fatigue design in reinforced concrete bridges according to Brazilian code
DOI:
https://doi.org/10.31686/ijier.vol9.iss3.2994Keywords:
Fatigue, Longitudinal Reinforcement, Reinforced Concrete Bridges, Stress Variations, Brazilian Normative Load TrainAbstract
There has been an increase in the flow of freight vehicles commuting on Brazilian highways. Then, special attention to the structural performance of bridges regarding the fatigue in beams is needed. Brazil has neither normative metrology to study real data flow of vehicles, nor specific fatigue load train models and coefficients to the analysis and design of road bridges. The same load train that is used for general dimensioning, TB 450, is used for the fatigue verification. Hence, this work aims to verify if the current TB 450 is representative of the freight heavy vehicles with 2 to 9 axles concerning the effects of fatigue in the longitudinal reinforcement of beams of theoretical reinforced concrete bridges with two, three, and five beams. This verification is performed analyzing the stress variations found in the longitudinal reinforcement of vehicles with 2 to 9 axles and the TB 450. Based on the results, the longitudinal steel reinforcement was more susceptible to fatigue's effects. Freight vehicles with 5, 6, 8 and 9 axles presented the most significant stress, therefore, they tend to cause more deleterious effects. Hence, the adoption of a Brazilian normative fatigue specific load train and coefficients is necessary to analyze pre-existing road bridges and design new ones most accurately.
References
ABNT NBR 6118, May 29th 2014. Design of concrete structures — Procedure. Rio de Janeiro: Associação Brasileira de Normas Técnicas.
ABNT NBR 7188, November 11th 2013. Road and pedestrian live loads on bridges, viaducts, footbridges and other structures. Rio de Janeiro: Associação Brasileira de Normas Técnicas
Albuquerque, I.M. ; Pfeil, M. S. (2012) Determinação de vida útil a fadiga em pontes de concreto armado considerando o espectro de veículos reais. Proceeding of the Congresso Brasileiro de Pontes e Estruturas. Rio de Janeiro, RJ, Brazil, 5.
Alencar, G. et al. (2018) Fatigue life evaluation of a composite steel-concrete roadway bridge through the hot-spot stress method considering progressive pavement deterioration. Engineering Structures, 166:46–61. DOI: https://doi.org/10.1016/j.engstruct.2018.02.058
Baroni, H. J. M., Silva Filho, L. C. P., & Gastal, F. P. S. L. (2009). Vida Útil de Fadiga de Elementos Estruturais de Concreto Armado de Pontes Rodoviária. Proceedings of the Congresso Brasileiro do Concreto, Curitiba, PR, Brazil, 51.
Baroni, H. J. M. (2010). Simulação da Vida Útil do Concreto em Vigas de Tabuleiro de Pontes em Função do Fluxo de Veículos Pesados (Ph. D. Thesis), Programa de Pós-Graduação em Engenharia Civil, da Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. Retrieved from https://www.lume.ufrgs.br/handle/10183/26005
Basso, F.; Carvalho, R. C.; Faria A. (2017). Estudo da armadura de flexão em vigas pré-moldadas de pontes com pré-tração e pós-tração. Proceedings of the Ccongresso Brasileiro do Concreto. Bento Gonçalves RS, Brazil, 59.
Braz, D., Silva Filho, J. N., Barros, R., & Lima, N. (2018). Otimização da proporção entre balanço e vão de pontes de concreto armado de duas longarinas com base na fadiga das armaduras. Proceedings of the Congresso Brasileiro de Pontes e Estruturas, Rio de Janeiro, RJ, Brazil, 10. Retrieved from http://www.abpe.org.br/trabalhos2018/056.pdf
Brighenti, R.; Carpinteri, A.; Corbari, N. (2013). Damage mechanics and Paris regime in fatigue life assessment of metals. International Journal of Pressure Vessels and Piping, 104:57-68. DOI: https://doi.org/10.1016/j.ijpvp.2013.01.005
Carneiro, A. L., & Bittencourt, T. N. (2018). Coeficientes de Impacto Normativos em Pontes Rodoviárias: Uma Avaliação da Norma Brasileira em relação aos Códigos Estrangeiros. Proceedings of the Congresso Brasileiro de Pontes e Estruturas, Rio de Janeiro, RJ, Brazil, 10. Retrieved from http://www.abpe.org.br/trabalhos2018/051.pdf
Confederação Nacional do Transporte (CNT) (2019). Informe CNT: Excesso de cargas aumenta custo das empresas. Retrieved from https://cnt.org.br/agencia-cnt/informe-cnt-excesso-aumenta-custos-empresas
Confederação Nacional do Transporte (2019). Pesquisa CNT de Rodovias 2019: Relatório Geral. Retrieved from https://pesquisarodovias.cnt.org.br/downloads/ultimaversao/gerencial.pdf
Confederação Nacional do Transporte – CNT (2020). Boletim Estatístico - CNT - Maio 2020. Retrieved from https://www.cnt.org.br/boletins
Pimentel, M., Bruhwiler, E., & Figueiras, J. (2008). Fatigue life of short-span reinforced concrete railway bridges. Structural Concrete, 9:215-222. Retrieved from https://www.icevirtuallibrary.com/doi/abs/10.1680/stco.2008.9.4.215 DOI: https://doi.org/10.1680/stco.2008.9.4.215
Deng, L., Wang, W., & Yu, Y. (2016). State-of-the-art review on the causes and mechanisms of bridge collapse. Journal of Performance of Constructed Facilities, 30:1-13. Retrieved from https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CF.1943-5509.0000731 DOI: https://doi.org/10.1061/(ASCE)CF.1943-5509.0000731
Deng, L., & Yan, W. (2018). Vehicle Weight Limits and Overload Permit Checking Considering the Cumulative Fatigue Damage of Bridges. Journal of Bridge Engineering, 23:1–8. Retrieved from https://doi-org.ez31.periodicos.capes.gov.br/10.1061/(ASCE)BE.1943-5592.0001267 DOI: https://doi.org/10.1061/(ASCE)BE.1943-5592.0001267
Departamento Nacional de Estradas De Rodagem (DNER) (1996). Manual de Projeto de Obras-de-Arte Especiais. Ministério dos Transportes, Rio de Janeiro. Retrieved from http://ipr.dnit.gov.br/normas-e-manuais/manuais/documentos/698_manual_de_projeto_de_obras_de_arte_especiais.pdf
Departamento Nacional de Infraestrutura de Transportes (DNIT) (2018). Base de Dados das OAE – BDOAE. Retrieved from http://servicos.dnit.gov.br/dnitcloud/index.php/s/gkQB3SNPH7cwF5F
Departamento Nacional de Infraestrutura de Transportes (DNIT) (2010). Manual de Projeto Geométrico de Travessias Urbanas – Publicação IPR – 740. Ministério dos Transportes, Rio de Janeiro. Retrieved from http://ipr.dnit.gov.br/normas-e-manuais/manuais/documentos/740_manual_projetos_geometricos_travessias_urbanas.pdf
Departamento Nacional de Infraestrutura de Transportes (DNIT) (2012). Quadro de Fabricantes de Veículos. Retrieved from http://www1.dnit.gov.br/Pesagem/sis_sgpv/QFV/QFV%20OFICIAL%204.1.pdf
Dineshkumar, R.; Ramkumar, S. (2020). Review paper on fatigue behavior of reinforced concrete beams. Materials Today: Proceedings, 21(1): 19-23. Retrieved from https://doi.org/10.1016/j.matpr.2019.05.353 DOI: https://doi.org/10.1016/j.matpr.2019.05.353
Drun, A. G., & Souza, R. A. (2018). Comparação Entre os Veículos de Carga Atuais e o Trem-Tipo Recomendado Pela NBR 7188. Proceedings of the Congresso Brasileiro de Pontes e Estruturas, Rio de Janeiro, RJ, Brazil, 10. Retrieved from http://www.abpe.org.br/trabalhos2018/153.pdf
Echaveguren, T., & Dechent, P. (2019). Allocation of bridge maintenance costs based on prioritization indexes. Journal of Construction, 18(3):568-578. Retrieved from https://doi.org/10.7764/RDLC.18.3.568 DOI: https://doi.org/10.7764/RDLC.18.3.568
EN1991-2, November 28th 2002. Eurocode 1 - Actions on structures - Part 2: Traffic Loads on Bridges European Committee for Standardization. Brussels: European Standard.
FHWA-NHI-15-047, July 2015. Load and Resistance Factor Design (LRFD) For Highway Bridge Superstructures - Reference Manual. Moon Township: American Association of State Highway and Transportation Officials (AASHTO), Federal Highway Administration, Washington.
Fontenele, H. B., Zanuncio, C. E. M., & Silva Junior, C. A. P. (2011). O excesso de peso nos veículos rodoviários de carga e seu efeito. Teoria e Prática na Engenharia Civil, 18:95-103. Retrieved from http://www.editoradunas.com.br/revistatpec/Art9_N18.pdf
Freitas, M. J. S. (2014). Verificação de Segurança à Fadiga de Pontes Rodoviárias (Masters Dissertation), Faculty of Engineering, University of Porto, Porto, Portugal. Retrieved from https://repositorio-aberto.up.pt/bitstream/10216/75873/2/32280.pdf
FTOOL (2018). A Graphical-Interactive Program for Teaching Structural Behavior. Retrieved from https://www.ftool.com.br/Ftool/
Gonzalez, A.; Schorr, M.; Valdez, B.; Mungaray, A. (2019). Bridges: Structures and Materials, Ancient and Modern. Infrastructure Management and Construction. Retrieved from https://www.intechopen.com/books/infrastructure-management-and-construction/bridges-structures-and-materials-ancient-and-modern DOI: https://doi.org/10.5772/intechopen.90718
Han, W. et al. (2015). Characteristics and Dynamic Impact of Overloaded Extra Heavy Trucks on Typical Highway Bridges. Journal of Bridge Engineering, 20:1-11. Retrieved from http://ascelibrary.org/doi/10.1061/%28ASCE%29BE.1943-5592.0000666 DOI: https://doi.org/10.1061/(ASCE)BE.1943-5592.0000666
Han, W. et al. (2017). Dynamic Impact of Heavy Traffic Load on Typical T-Beam Bridges Based on WIM Data. Journal of Performance of Constructed Facilities, 31:1-14. Retrieved from http://ascelibrary.org/doi/10.1061/%28ASCE%29CF.1943-5509.0000991 DOI: https://doi.org/10.1061/(ASCE)CF.1943-5509.0000991
Hassen, M. (2020). Determination and assessment of fatigue stresses on concrete bridges. Structural Concrete, 21(4): 1286-1297. Retrieved from https://doi.org/10.1002/suco.201900432 DOI: https://doi.org/10.1002/suco.201900432
Jang, B., & Mohammadi, J. (2017). Bridge rating modification to incorporate fatigue damage from truck overloads. Bridge Structures, 17:101-107. Retrieved from https://doi.org/10.3233/BRS-170121 DOI: https://doi.org/10.3233/BRS-170121
Junges P (2017) Análise da Fadiga em Pontes Curtas de Concreto Armado a partir de Dados do Sistema B-Win (Ph.D. Thesis), Graduate Program in Civil Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil. Retrieved from https://repositorio.ufsc.br/handle/123456789/188512
JTG D62-2004, October 1st 2004. Code for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts. Beijing: China Communications Press.
Keerthana, K., & Chandra Kishen, J. M. (2018). An Experimental and Analytical Study on Fatigue Damage in Concrete Under Variable Amplitude Loading. International Journal of Fatigue, 111:278-288. Retrieved from https://doi.org/10.1016/j.ijfatigue.2018.02.014 DOI: https://doi.org/10.1016/j.ijfatigue.2018.02.014
Leitão, F. N., Silva, J. G. S., Vellasco, P. C. G., Andrade, S. A. L., & Lima, L. R. O. (2011). Composite (steel-concrete) highway bridge fatigue assessment. Journal of Constructional Steel Research, 67:14–24. Retrieved from https://doi.org/10.1016/j.jcsr.2010.07.013 DOI: https://doi.org/10.1016/j.jcsr.2010.07.013
Liu, F.; Zhou, J. (2018) Experimental Research on Fatigue Damage of Reinforced Concrete Rectangular Beam. KSCE Journal of Civil Engineering, 22(9): 3512–3523. Retrieved from https://link.springer.com/article/10.1007/s12205-018-1767-y DOI: https://doi.org/10.1007/s12205-018-1767-y
Lou, P.; Nassif, H.; Su, D. (2017). Impact of Heavy Freight Railcar on the Remaining Fatigue Life of Centenarian Railway Bridges. Journal of Bridge Engineering, 22(11): 1-14. Retrieved from http://ascelibrary.org/doi/10.1061/%28ASCE%29BE.1943-5592.0001128 DOI: https://doi.org/10.1061/(ASCE)BE.1943-5592.0001128
Lu, N. et al. (2017) Lifetime Deflections of Long-Span Bridges under Dynamic and Growing Traffic Loads. Journal of Bridge Engineering, 22(11) :1–12. DOI: https://doi.org/10.1061/(ASCE)BE.1943-5592.0001125
Mascarenhas, F. J. R., & Carvalho, R. C. (2019). Fatigue service life of longitudinal reinforcement bars of reinforced concrete beams based on the real heavy traffic. Revista ALCONPAT, 9:303 - 319. Retrieved from https://doi.org/10.21041/ra.v9i3.375 DOI: https://doi.org/10.21041/ra.v9i3.375
Mascarenhas, F. J. R., Carvalho, R. C., & Vitório, J. A. P. (2019). Uma análise das atuais condições das pontes e viadutos das rodovias brasileiras. Proceedings of the Congresso Brasileiro do Concreto, Fortaleza, CE, Brazil, 61.
Mascarenhas, F. J. R., Christoforo, A. L., & Carvalho, R. C. (2020). A utilização de um software livre para determinação dos esforços internos de cargas móveis em vigas de pontes de concreto. HOLOS, 3:1-18. Retrieved from https://doi.org/10.15628/holos.2020.9466 DOI: https://doi.org/10.15628/holos.2020.9466
Medeiros, C. A. (2018). Análise de Fadiga para uma Viga de Rolamento de Ponte Rolante. Proceedings of the Congresso Brasileiro de Pontes e Estruturas, Rio de Janeiro, RJ, Brazil, 10. Retrieved from http://www.abpe.org.br/trabalhos2016/35.pdf
Moura, W. M., Ferreira, M. W., Real, M. V., & Santos, G. C. (2016). Comparação do Método de Fauchart e do Método dos Elementos Finitos na Avaliação da Distribuição de Esforços Transversais em Pontes Rodoviárias. Proceedings of the Congresso Brasileiro de Pontes e Estruturas, Rio de Janeiro, RJ, Brazil, 10. Retrieved from http://www.abpe.org.br/trabalhos2016/61.pdf
Nowak, M.; Fischer, O. (2016) Traffic Parameter Sensitivity in the Development of Site-specific Load Models. Procedia Engineering, 156: 296–303. DOI: https://doi.org/10.1016/j.proeng.2016.08.300
Osumeje, U. T., Ocholi, A., Kaura, J. M., & Abdulhamid, A. O. (2016). Effect of uncertainty on the fatigue reliability of reinforced concrete bridge deck under high stress loads. Nigerian Journal of Technology (NIJOTECH), 35:510-518. Retrieved from http://dx.doi.org/10.4314/njt.v35i3.6 DOI: https://doi.org/10.4314/njt.v35i3.6
Pillai, A.; Talukdar, S. (2020). Fatigue life estimation of continuous girder bridges based on the sequence of loading. Structure and Infrastructure Engineering. Retrieved from https://doi.org/10.1080/15732479.2020.1784962 DOI: https://doi.org/10.1080/15732479.2020.1784962
Pircher, M., Lechner, B., Mariani, O., & Kammersberger, A. (2011). Damage due to heavy traffic on three RC road bridges. Engineering Structures, 33:3755–3761. Retrieved from https://doi.org/10.1016/j.engstruct.2011.08.012 DOI: https://doi.org/10.1016/j.engstruct.2011.08.012
Réus, T. F., Silva Júnior, C. A. P., Fontenele, H. B. (2014). Empirical-mechanistic analysis of overload of the commercial vehicles. REEC – Revista Eletrônica de Engenharia Civil, 9(2):57-70. Retrieved from https://doi.org/10.5216/reec.V9i2.29489 DOI: https://doi.org/10.5216/reec.v9i2.29489
Rossigali, C. E., Pfeil, M. S., & Battista, R. C., Sagrilo, L. V. (2015). Towards actual Brazilian traffic load models for short span highway bridges. IBRACON Structures and Materials Journal, 8:124-139. Retrieved from https://doi.org/10.1590/S1983-41952015000200005 DOI: https://doi.org/10.1590/S1983-41952015000200005
Rota Oeste S.A. (2016). Análise do impacto do tráfego na vida útil das OAE’s – BR 163 KM 0 ao KM 855. Relatório técnico à Agência Nacional de Transportes Terrestres. Retrieved from http://portal.antt.gov.br/html/objects/_downloadblob.php?cod_blob=20196
Santos, L. F., & Pfeil, M. S. (2014). Desenvolvimento de Modelo de Cargas Móveis para Verificação de Fadiga em Pontes Rodoviárias. Engenharia Estudo e Pesquisa, 14:40-47. Retrieved from http://www.abperevista.com.br/imagens/volume14_01/cap05.pdf
Santos, J. P. M. C.; Perlingeiro, M. S. P. L.; Alves, R. V. (2017). Análise da Carga Móvel na Superestrutura de Pontes Biapoiadas em Vigas pré-moldadas. Proceeding of the Congresso Brasileiro do Concreto. Bento Gonçalves, RS, Brazil, 59.
Sindicato Nacional da Indústria e Componentes para Veículos Automotores (Sindipeças) (2018) Frota Circulante. Relatório da Frota Circulante. Retrieved from https://www.sindipecas.org.br/area-atuacao/?co=s&a=frota-circulante
Stucchi, F. R. (2016). Pontes e grandes estruturas. São Paulo: Polytechnical School, University of São Paulo. Retrieved from https://edisciplinas.usp.br/pluginfile.php/4398055/mod_resource/content/1/Apostiala%20Prof.%20Fernando%20R.%20Stucchi.pdf
Trentini, E. V. W., & Stucchi, F. R.; Luchi, L. A. R E. (2015). Real road load compared to standard load for Brazilian bridges. Proceedings of the ICE - Bridge Engineering.
Martins, C. H. (2015). Cálculo dos esforços atuantes em longarinas de viadutos ou pontes utilizando o processo de Fauchart e análise por método dos elementos finitos. Revista de Engenharia e Tecnologia, 7:162-173. Retrieved from https://revistas2.uepg.br/index.php/ret/article/view/11611
Wang, C-S., Zhai, M-S., Duan, L., & Wang, Q. (2015). Fatigue Service Life Evaluation of Existing Steel and Concrete Bridges. Advanced Steel Construction, 11:305-321. Retrieved from http://ascjournal.com/down/vol11no3/vol11no3_5.pdf. DOI:10.18057/IJASC.2015.11.3.2 DOI: https://doi.org/10.18057/IJASC.2015.11.3.5
Zhang, Y., Xin, X., & Cui, X. (2012). Updating Fatigue Damage Coefficient in Railway Bridge Design Code in China. Journal of Bridge Engineering, 17:788-793. Retrieved from https://ascelibrary.org/doi/10.1061/%28ASCE%29BE.1943-5592.0000310. doi: 10.1061/(ASCE)BE.1943-5592.0000310 DOI: https://doi.org/10.1061/(ASCE)BE.1943-5592.0000310
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Fernando Júnior Resende Mascarenhas, André Luis Christoforo, Fernando Menezes de Almeida Filho, Roberto Chust Carvalho, Alfredo Manuel Pereira Geraldes Dias, José Afonso Pereira Vitório
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Copyrights for articles published in IJIER journals are retained by the authors, with first publication rights granted to the journal. The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author for more visit Copyright & License.
How to Cite
Accepted 2021-02-28
Published 2021-03-01
Most read articles by the same author(s)
- Diogo Sartori, Julio Cesar Machado Cravo , Erika Yukari Nakanishi , Cleber Alexandre de Amorim , Márcio Eduardo Silveira , Andre Luis Christoforo , Juliano Fiorelli , Structural performance of modular wood panel of planted forest and particleboards based on sugarcane bagasse , International Journal for Innovation Education and Research: Vol. 7 No. 10 (2019): International Journal for Innovation Education and Research