Time-series forecasting models
An application for climatological parameters in the city of Belém, Pará, Brazil
DOI:
https://doi.org/10.31686/ijier.vol9.iss8.3239Keywords:
Time Series, Forecasting, Meteorology, SARIMA, Holt-WintersAbstract
Statistical and mathematical models of forecasting are of paramount importance for the understanding and study of databases, especially when applied to data of climatological variables, which enables the atmospheric study of a city or region, enabling greater management of the anthropic activities and actions that suffer the direct or indirect influence of meteorological parameters, such as precipitation and temperature. Therefore, this article aimed to analyze the behavior of monthly time series of Average Minimum Temperature, Average Maximum Temperature, Average Compensated Temperature, and Total Precipitation in Belém (Pará, Brazil) on data provided by INMET, for the production and application forecasting models. A 30-year time series was considered for the four variables, from January 1990 to December 2020. The Box and Jenkins methodology was used to determine the statistical models, and during their applications, models of the SARIMA and Holt-Winters class were estimated. For the selection of the models, analyzes of the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Autocorrelation Correlogram (ACF), and Partial Autocorrelation (PACF) and tests such as Ljung-Box and Shapiro-Wilk were performed, in addition to Mean Square Error (NDE) and Absolute Percent Error Mean (MPAE) to find the best accuracy in the predictions. It was possible to find three SARIMA models: (0,1,2) (1,1,0) [12], (1,1,1) (0,0,1) [12], (0,1,2) (1,1,0) [12]; and a Holt-Winters model with additive seasonality. Thus, we found forecasts close to the real data for the four-time series worked from the SARIMA and Holt-Winters models, which indicates the feasibility of its applicability in the study of weather forecasting in the city of Belém. However, it is necessary to apply other possible statistical models, which may present more accurate forecasts.
References
Akaike, Hirotugu. A new look at the statistical model identification. IEEE Transactions on Automatic Control, v. 19, n. 6, p. 716–723, 1974. DOI:10.1109/tac.1974.1100705. DOI: https://doi.org/10.1109/TAC.1974.1100705
Afrifa-Yamoah, Ebenezer; Saeed, Bashiru I. I.; Karim, Azumah. Sarima Modelling and Forecasting of Monthly Rainfall in the Brong Ahafo Region of Ghana. World environment. v. 6, p. 1-9, 2016. DOI: 10.5923/j.env.20160601.01.
Asamoah-Boaheng, Michael. Using SARIMA to forecast monthly mean surface air temperature in the Ashanti Region of Ghana. International Journal of Statistics and Applications. v. 4, n. 6, p. 292-299, 2014. DOI: 10.5923/j.statistics.20140406.06.
BARBOSA, E. C.; SÁFADI, T.; NASCIMENTO, M.; NASCIMENTO, A. C. C.; SILVA, C. H. O.; MANULI, R. C. Box & Jenkins methodology to forecasting of average monthly temperature of Bauru city (SP). Rev. Bras. Biom., São Paulo, v.33, n.1, p.104-117, 2015.
BASTOS, T. X.; PACHECO, N. A.; NECHET, D.; SÁ, T. D. A. Aspectos climáticos de Belém nos últimos cem anos. Embrapa Amazônia Oriental-Documentos (INFOTECA-E), 2002.
Box, George E. P.; Jenkins, Gwilym M.; Reinsel, Gregory C.; Ljung, Greta M.. Time series analysis: forecasting and control. John Wiley & Sons, 2015.
Box, George E. P.; Jenkins, Gwilym M.. Time series analysis: forecasting and control. HOLDEN-DAY, 1996.
Brockwell, Peter J.; Davis, Richard A.. Time series: theory and methods. 2ª ed. Springer Series in Statistics, 1991. DOI: https://doi.org/10.1007/978-1-4419-0320-4
CHATFIELD, Chris. The Holt‐winters forecasting procedure. Journal of the Royal Statistical Society: Series C (Applied Statistics), v. 27, n. 3, p. 264-279, 1978. DOI: https://doi.org/10.2307/2347162
Chen, Peng; Niu, Aichen; Liu, Duanyang; Jiang, Wei; Ma; Bin. Time series forecasting of temperatures using SARIMA: An example from Nanjing. IOP Conference Series: Materials Science and Engineering 394 052024, v. 394, 2018. DOI:10.1088/1757-899X/394/5/052024. DOI: https://doi.org/10.1088/1757-899X/394/5/052024
DIAS, L. C.; DA CRUZ VALENTE, A. M.; FERNANDES, L. L. Análise e correlação de variáveis climatológicas com os fenômenos climáticos e a urbanização na Cidade de Belém, no Estado do Pará, região Norte do Brasil. Research, Society and Development, v. 9, n. 8, p. e972986790-e972986790, 2020. DOI: https://doi.org/10.33448/rsd-v9i8.6790
Heydari, Mohammad; Ghadim, Hamed Benisi; Rashidi, Mahmood; Noori, Mohammad. Application of Holt-Winters Time Series Models for Predicting Climatic Parameters (Case Study: Robat Garah-Bil Station, Iran). Polish Journal of Environmental Studies, vol. 29, no. 1, 2020, pp. 617-627. DOI:10.15244/pjoes/100496. DOI: https://doi.org/10.15244/pjoes/100496
Holt, Charles C. Forecasting seasonals and trends by exponentially weighted moving averages. International journal of forecasting, v. 20, n. 1, p. 5-10, 2004. DOI: https://doi.org/10.1016/j.ijforecast.2003.09.015
Hyndman R, Athanasopoulos G, Bergmeir C, Caceres G, Chhay L, O'Hara-Wild M, Petropoulos F, Razbash S, Wang E, Yasmeen F (2021). forecast: Forecasting functions for time series and linear models. R package version 8.14, https://pkg.robjhyndman.com/forecast/.
Instituto Nacional de Metereologia (INMET) – Banco de Dados Metereológicos do INMET. Disponível em: <https://bdmep.inmet.gov.br/>. Acesso em: 17 de fevereiro de 2021.
Instituto Brasileiro de Geografia e Estatística – IBGE. População: população estimada, Belém/PA. 2020. Disponível em: https://cidades.ibge.gov.br/brasil/pa/belem/panorama. Acesso em: 21/02/2021.
Instituto Brasileiro de Geografia e Estatística – IBGE. Território e Ambiente: Área da unidade territorial, Belém/PA. 2019. Disponível em: https://cidades.ibge.gov.br/brasil/pa/belem/panorama. Acesso em: 21/02/2021.
LIMA, Marcos Bruno Santos Pereira; Santos, Wagner Barbosa; Droguett, Enrique Lopez; Diniz, Helder Henrique Lima; Santos, Rita de Cassia Barbosa. Aplicação do modelo de previsão de demanda Holt-Winters em uma Regional de corte e dobra de aço. XXXV Encontro Nacional de Engenharia da Produção. Fortaleza-CE, 2015.
Instituto Brasileiro de Geografia e Estatística – IBGE. Território e Ambiente: Bioma, Belém/PA. 2019. Disponível em: https://cidades.ibge.gov.br/brasil/pa/belem/panorama. Acesso em: 21/02/2021.
MISHRA, Ashok K.; Singh, Vijay P.. Simulating hydrological drought properties at different spatial units in the United States based on wavelet–Bayesian regression approach. Earth Interactions. v. 16, n. 17, p. 1-23, 2012. DOI: 10.1175/2012EI000453.1 DOI: https://doi.org/10.1175/2012EI000453.1
Morettin, P. A.; Toloi, C. M. C.. Análise de series temporais. 2ª ed. São Paulo: Egard Blucher, 2006.
R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
SANTOS, D. N. dos; DA SILVA, V. de P. R.; SOUSA, F. de A. S.; SILVA, R. A. e. Estudo de alguns cenários climáticos para o Nordeste do Brasil. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 14, n. 5, p. 492-500, 2010. DOI: https://doi.org/10.1590/S1415-43662010000500006
SANTOS, K. E. A. Dinâmica biogeoquímica do Estuário Guajarino. Trabalho de Conclusão de Curso (TCC). Graduação em Engenharia de Pesca. Universidade Federal Rural da Amazônia – UFRA, campus Belém/PA. 2019.
SARMENTO, I. C. C. Dinâmica do nitrato, amônio e nitrogênio total dissolvido no Estuário Guajarino. Trabalho de Conclusão de Curso (TCC). Graduação em Engenharia Ambiental e Energias Renováveis. Universidade Federal Rural da Amazônia – UFRA, campus Belém/PA. 2019.
Schwarz, Gideon. Estimating the dimension of a model. The Annals of Statistics. v. 6, n. 2, p. 461-464, 1978. DOI: 10.2307/2958889. DOI: https://doi.org/10.1214/aos/1176344136
Shapiro, Samuel Sanford; Wilk, Martin B.. An analysis of variance test for normality (complete samples). Biometrika, v. 52, n. 3/4, p. 591-611, 1965. DOI:10.2307/2333709 DOI: https://doi.org/10.1093/biomet/52.3-4.591
SILVA, J. W. da; GUIMARÃES, E. C.; TAVARES, M. Variabilidade temporal da precipitação mensal e anual na estação climatológica de Uberaba-MG. Ciência e Agrotecnologia, v. 27, n. 3, p. 665-674, 2003. DOI: https://doi.org/10.1590/S1413-70542003000300023
SILVA, M. IS; GUIMARÃES, E. C.; TAVARES, M. Previsão da temperatura média mensal de Uberlândia, MG, com modelos de séries temporais. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 12, n. 5, p. 480-485, 2008. DOI: https://doi.org/10.1590/S1415-43662008000500006
Winters, Peter R. Forecasting sales by exponentially weighted moving averages. Management science, v. 6, n. 3, p. 324-342, 1960. DOI: 10.2307/2627346 DOI: https://doi.org/10.1287/mnsc.6.3.324
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Douglas Matheus das Neves Santos, Yuri Antônio da Silva Rocha, Danúbia Leão de Freitas, Paulo Roberto Estumano Beltrão Júnior, Paulo Cerqueira dos Santos Junior, Glauber Tadaiesky Marques, Otavio Andre Chase, Pedro Silvestre da Silva Campos
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Copyrights for articles published in IJIER journals are retained by the authors, with first publication rights granted to the journal. The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author for more visit Copyright & License.
How to Cite
Accepted 2021-06-29
Published 2021-08-01
Most read articles by the same author(s)
- Deisiane Santos da Cruz, Caio Castro Rodrigues, Otavio A Chase, Dênmora Gomes de Araújo, José Felipe Souza de Almeida, IoT-based Smart Mini Greenhouse , International Journal for Innovation Education and Research: Vol. 7 No. 10 (2019): International Journal for Innovation Education and Research
- Rhuan Carlos Martins Ribeiro, Glauber Tadaiesky Marques, Paulo Cerqueira dos Santos Júnior, José Felipe Souza de Almeida, Pedro Silvestre da Silva Campos, Otavio Chase, Holt-Winters Forecasting for Brazilian Natural Gas Production , International Journal for Innovation Education and Research: Vol. 7 No. 6 (2019): International Journal for Innovation Education and Research
- Layse Pereira do Nascimento, Joice Machado Martins, Caio Castro Rodrigues, Rhuan Carlos Martins Ribeiro, Glauber Tadaiesky Marques, Emerson Cordeiro Morais, Walmir Oliveira Couto, Pedro Silvestre da Silva Campos, Otavio Andre Chase, José Felipe Souza de Almeida, Internet of Things-Aided Smart Home Off-Grid Photovoltaic-Powered , International Journal for Innovation Education and Research: Vol. 8 No. 5 (2020): International Journal for Innovation Education and Research
- Luciano André Barbosa Da Silva, Otavio Chase, Glauber Tadaiesky Marques, José Felipe Souza de Almeida, Milena Marília Nogueira de Andrade, Cost-Effective Platform for Particulate Matter Rapid Monitoring , International Journal for Innovation Education and Research: Vol. 8 No. 1 (2020): International Journal for Innovation Education and Research
- Tobias Ribeiro Sombra, Rose Marie Santini, Emerson Cordeiro Morais, Walmir Oliveira Couto, Alex de Jesus Zissou, Pedro Silvestre da Silva Campos, Paulo Cerqueira dos Santos Junior, Glauber Tadaiesky Marques, Otavio Andre Chase, José Felipe Souza de Almeida, Quantitative Analysis Powered by Naïve Bayes Classifier Algorithm to Data-Related Publications Social-Scientific Network , International Journal for Innovation Education and Research: Vol. 8 No. 6 (2020): International Journal for Innovation Education and Research
- Tobias Ribeiro Sombra, Rose Marie Santini , Emerson Cordeiro Morais , Walmir Oliveira Couto , Alex de Jesus Zissou , Pedro Silvestre da Silva Campos , Paulo Cerqueira dos Santos Junior , Glauber Tadaiesky Marques , Otavio Andre Chase, José Felipe Souza de Almeida , Quantitative and Qualitative Approach of Scientific Paper Popularity By Naïve Bayes Classifier , International Journal for Innovation Education and Research: Vol. 8 No. 8 (2020): International Journal for Innovation Education and Research