Computational modeling of biosludge drying

Authors

DOI:

https://doi.org/10.31686/ijier.vol9.iss8.3280

Keywords:

Biosludge drying, Heat and mass transfer, Modeling

Abstract

Considerable increases in industrial and urban wastewater sludge generation in recent years require proper treatment, such as thermal drying, and disposal. The sludge drying is a complex process involving simultaneous and coupled heat and mass transfer, which can be modeled by taking into account mass and heat balances, and assuming that water diffuses according to kinetic laws. This research implemented a simulation model for biosludge drying processes to predict the temperature and moisture distribution inside the biosludge, using the COMSOL Multiphysics® simulation program v5.2. A parametric analysis was carried out to determine the effect of initial moisture content on biosludge final temperature and moisture reduction. The simulated temperature and moisture content were experimentally validated and good agreement was observed between the simulation and experimental results. This model is a useful tool to optimize the drying process and develop better strategies for the control of the system.

Downloads

Download data is not yet available.

References

Bennamoun, L. Solar drying of wastewater sludge: A review. Renew. Sustainable Energy Reviews 2012, 16, 1061-1073. http://doi.org/10.1016/j.rser.2011.10.005 DOI: https://doi.org/10.1016/j.rser.2011.10.005

Bennamoun, L.; Arlabosse, P.; Léonard, A. Review on fundamental aspect of application of drying process to wastewater sludge. Renew. Sustainable Energy Reviews 2013, 28, 29-43. http://doi.org/10.1016/j.rser.2013.07.043 DOI: https://doi.org/10.1016/j.rser.2013.07.043

Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; Dewitt, D.P. Fundamentals of heat and mass transfer; John Wiley & Sons Inc.: United States of America, 2011.

Bianchini, A.; Bonfiglioli, L.; Pellegrini, M.; Saccani, C. Sewage sludge drying process integration with a waste-to-energy power plant. Waste Management 2015, 42, 159-165. http://doi.org/10.1016/j.wasman.2015.04.020 DOI: https://doi.org/10.1016/j.wasman.2015.04.020

Bisceglia, B.; Brasiello, A.; Pappacena, R.; Vietri, R. Food cooking process. Numerical simulation of the transport phenomena, Proceedings of the 2013 COMSOL Conference, Rotterdam, Netherlands, October 23-25 2013.

Çengel, Y.A. Heat and mass transfer: a practical approach; McGraw-Hill: New York, United States of America, 2006.

Datta, A.K. Biological and bioenvironmental heat and mass transfer; Marceld Ekkerin C.: New York, United States of America, 2002. DOI: https://doi.org/10.1201/9780203910184

Defraeye, T. Advanced computational modelling for drying processes – A review. Appl. Energy 2014, 131, 323-344. https://doi.org/10.1016/j.apenergy.2014.06.027 DOI: https://doi.org/10.1016/j.apenergy.2014.06.027

Deng, S.; Wang, X.; Tan, H.; Mikulčić, H.; Li, Z.; Cao, R.; Wang, Z.; Vujanović, M. Experimental and modeling study of the long cylindrical oily sludge drying process. Appl. Therm. Engineering 2015, 91, 354-362. https://doi.org/10.1016/j.applthermaleng.2015.08.054 DOI: https://doi.org/10.1016/j.applthermaleng.2015.08.054

Deng, W.Y.; Yan, J.H.; Li, X.D.; Wang, F.; Lu, S.H.; Chi, Y.; Cen, K.F. Measurement and simulation of the contact drying of sewage sludge in a Nara-type paddle dryer. Chemical Engineering Science 2009, 65 (24), 5117-5124. https://doi.org/10.1016/j.ces.2009.08.015 DOI: https://doi.org/10.1016/j.ces.2009.08.015

Font, R.; Gomez-Rico, M.F.; Fullana, A. Skin effect in the heat and mass transfer model for sewage sludge drying. Sep. Purif. Technology 2011, 77, 146-161. http://doi.org/10.1016/j.seppur.2010.12.001 DOI: https://doi.org/10.1016/j.seppur.2010.12.001

Frei, K.M.; Cameron, D.; Stuart, P.R. Novel drying process using forced aeration through a porous biomass matrix. Drying Technology 2004, 22 (5), 1191-1215. https://doi.org/10.1081/DRT-120038587 DOI: https://doi.org/10.1081/DRT-120038587

Huang, Y.W.; Chen, M.Q.; Jia, L. Assessment on thermal behavior of municipal sewage sludges thin-layer during hot air forced convective drying. Appl. Therm. Engineering 2016, 96, 209-216. http://doi.org/10.1016/j.applthermaleng.2015.11.090 DOI: https://doi.org/10.1016/j.applthermaleng.2015.11.090

Hussain, M.M.; Dincer, I. Two-dimensional heat and moisture transfer analysis of a cylindrical moist object subjected to drying: A finite-difference approach. International J. Heat and Mass Transf. 2003, 46, 4033-4039. http://doi.org/10.1016/S0017-9310(03)00229-1 DOI: https://doi.org/10.1016/S0017-9310(03)00229-1

Kaya, A.; Aydın, O.; Dincer, I. Numerical modeling of heat and mass transfer during forced convection drying of rectangular moist objects. International J. Heat and Mass Transf. 2006, 49, 3094-3103. http://doi.org/10.1016/j.ijheatmasstransfer.2006.01.043 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2006.01.043

Kraft, D.L.; Orender, H.C. Considerations for using sludge as a fuel. Tappi Journal 1993, 76 (3), 175-183.

Krawczyk, P.; Badyda, K. Two-dimensional CFD modeling of the heat and mass transfer process during sewage sludge drying in a solar dryer. Archives of Thermodynamics 2011, 32 (4), 3-16. http://doi.org/10.2478/v10173-011-0028-y DOI: https://doi.org/10.2478/v10173-011-0028-y

Kudra, T.; Gawrzynski, Z.; Glaser, R.; Stanislawski, J.; Poirier, M. Drying of pulp and paper sludge in a pulsed fluid bed dryer. Drying Technology 2002, 20, 917-933. https://doi.org/10.1081/DRT-120003769 DOI: https://doi.org/10.1081/DRT-120003769

Léonard, A.; Meneses, E.; Le Trong, E.; Salmon, T.; Marchot, P.; Toye, D.; Crine, M. Influence of back mixing on the convective drying of residual sludges in a fixed bed. Water Res. 2008, 42 (10-11), 2671-2677. https://doi.org/10.1016/j.watres.2008.01.020 DOI: https://doi.org/10.1016/j.watres.2008.01.020

Li, J.; Liang, Q.C.; Bennamoun, L. Superheated steam drying: Design aspects, energetic performances, and mathematical modeling. Renew. Sustainable Energy Reviews 2016, 60, 1562-1583. https://doi.org/10.1016/j.rser.2016.03.033 DOI: https://doi.org/10.1016/j.rser.2016.03.033

Mäkelä, M.; Geladi, P.; Larsson, S.H.; Finell, M. Pretreatment of recycled paper sludge with a novel high-velocity pilot cyclone: effect of process parameters on convective drying efficiency Appl. Energy 2014, 131, 490-498. https://doi.org/10.1016/j.apenergy.2014.06.057 DOI: https://doi.org/10.1016/j.apenergy.2014.06.057

Milhé, M.; Sauceau, M.; Arlabosse, P. Modeling of a continuous sewage sludge paddle dryer by coupling Markov chains with penetration theory. Appl. Mathematical Modelling 2016, 40 (19-20), 8201-8216. http://doi.org/10.1016/j.apm.2016.04.006 DOI: https://doi.org/10.1016/j.apm.2016.04.006

Mujumdar, A.S.; Devahastin, S. Fundamental principles of drying. In: Handbook of Industrial Drying, 3rd ed.; Mujumdar, A.S., Ed.; CRC Press: Boca Raton, United States of America, 2007; pp. 1-22.

Otero, M.; Calvo, L.F.; Gil, M.V.; García, A.I.; Morán, A. Co-combustion of different sewage sludge and coal: A non-isothermal thermogravimetric kinetic analysis. Bioresource Technology 2008, 99 (14), 6311-6319. http://doi.org/10.1016/j.biortech.2007.12.011 DOI: https://doi.org/10.1016/j.biortech.2007.12.011

Pagano, A.M.; Mascheroni, R.H. Computational modelling of the transport phenomenons during low temperature in-bin drying and aeration of amaranth grains, Proceedings of Mecánica Computacional Vol XXXII, Mendonza, Argentina, November 19-22 2013; 1321-1345.

Putranto, A.; Chen, X. A simple and effective model for modeling of convective drying of sewage sludge: the reaction engineering approach (REA). Procedia Chemistry 2014, 9, 77-87. http://doi.org/10.1016/j.proche.2014.05.010 DOI: https://doi.org/10.1016/j.proche.2014.05.010

Salemović, D.R.; Dedić, A.D.; Ćuprić, N.L. A mathematical model and simulation of the drying process of thin layers of potatoes in a conveyor-belt dryer. Therm. Science 2015, 19 (3), 1107-1118. http://doi.org/10.2298/TSCI130920020S DOI: https://doi.org/10.2298/TSCI130920020S

Seggiani, M.; Puccini, M.; Raggio, G.; Vitolo, S. Effect of sewage sludge content on gas quality and solid residues produced by cogasification in an updraft gasifier. Waste Management 2012, 32 (10), 1826-1834. http://doi.org/10.1016/j.wasman.2012.04.018 DOI: https://doi.org/10.1016/j.wasman.2012.04.018

Siqueira, A. M. O., Krink, N. ; Pereira, F. P. S. ; Villela, F. G. ; Silva, G. S. ; Moura, A. F. F. . One-Dimensional Mathematical Model for Solar Drying of Beds of Sludge. Journal of Applied Fluid Mechanics v. 11, p. 1407-1419, 2018. DOI: https://doi.org/10.29252/jafm.11.05.28823

Stasta, P.; Boran, J.; Bebar, L.; Stehlik, P.; Oral, J. Thermal processing of sewage sludge. App. Therm. Engineering 2006, 26 (13), 1420-1426. https://doi.org/10.1016/j.applthermaleng.2005.05.030 DOI: https://doi.org/10.1016/j.applthermaleng.2005.05.030

Vaxelaire, J.; Bongiovanni, J.M.; Mousques, P.; Puiggali, J.R. Thermal drying of residual sludges. Water Res. 2000, 34 (17), 4318-4323. https://doi.org/10.1016/S0043-1354(00)00193-7 DOI: https://doi.org/10.1016/S0043-1354(00)00193-7

Werther, J.; Ogada, T. Sewage sludge combustion. Progress in Energy and Combustion Science 1999, 25, 55-116. https://doi.org/10.1016/S0360-1285(98)00020-3 DOI: https://doi.org/10.1016/S0360-1285(98)00020-3

Zhou, Y.; Jin, Y. Mathematical modeling of thin-layer infrared drying of dewatered municipal sewage sludge (DWMSS). Procedia Environmental Sciences 2016, 31 (86), 758-766. http://doi.org/10.1016/j.proenv.2016.02.066 DOI: https://doi.org/10.1016/j.proenv.2016.02.066

Downloads

Published

2021-08-01

How to Cite

Avelar, N. V., Rezende, A. A. P., Siqueira, A. M. de O., Silva, C. M., & Carneiro, A. de C. O. (2021). Computational modeling of biosludge drying. International Journal for Innovation Education and Research, 9(8), 219-232. https://doi.org/10.31686/ijier.vol9.iss8.3280
Received 2021-06-23
Accepted 2021-07-13
Published 2021-08-01

Most read articles by the same author(s)