Exergoeconomic analysis in a food industry boiler
a case study
DOI:
https://doi.org/10.31686/ijier.vol10.iss9.3925Keywords:
Thermal System, Exergy, Exergoeconomic, SPECOAbstract
This study aims to apply the SPECO method in a firetube steam generating unit located in a food industry to measure the cost and to suggest actions that will increase its efficiency. In the current global scenario, researches for alternatives of the cost reduction and increased sustainability are more and more on the agenda in companies. Therefore, the present work develops a study to make possible the energy losses minimization in biomass boilers located in Saudali food industry, Ponte Nova (Minas Gerais, Brazil). The used methodology was developed from the exergoeconomic analysis using the Specific Exergy Costing (SPECO) method. To possibilitate this procedure it was necessary to map all the exergetic flows and to find its thermodynamic values. Regarding the fuel calorific potential, it was necessary the measurement of its average humidity, measured in (25 ± 1%), approximately, in order to obtain a Lower Calorific Power of 15960 kJ.kg-1. The massic and exergy flow rates values were defined using measurement equipments, thermodynamic tables and company’s information. The obtained results for exergetic efficiency, steam cost and fuel cost were, respectively, 51.74%, 0.0446 R$.(kWh)-1 and 0.01490 R$.(kWh)-1. These results evidenced a cost ratio between product and fuel of 1.99, which represents a product cost two times superior to the fuel cost, approximately. It is concluded that SPECO method application in Saudali industry evidenced important and often disregarded points, as the moisture interference in biomass available exergy and great variance between steam and fuel costs.
References
AHMADI, P., DINCER, I., ROSEN, M. A. Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants. 2011. Energy, vol. 36(10), 5886–5898. doi:10.1016/j.energy.2011.08.034. 2011. DOI: https://doi.org/10.1016/j.energy.2011.08.034
ALVES, R. C. Propriedades Físicas da Madeira de Eucalyptus cloeziana F. Muell. 2017.Acesso em 19 de out 2019. 2017. DOI: https://doi.org/10.1590/2179-8087.015312
BEJAN, A., TSATSARONIS, G., MORAN, M. Thermal Design and Optimization. Ed. New Jersey. 1996. A Wiley Interscience publication, John Wiley & Sons, Inc. 1996.
CALISKAN, H., HEPBASLI, A., DINCER, I. Exergy Analysis and Sustainability Assessment of a Solar-Ground Based Heat Pump With Thermal Energy Storage. 2011. Journal of Solar Energy Engineering, vol. 133(1), 011005. doi:10.1115/1.4003040. 2011. DOI: https://doi.org/10.1115/1.4003040
CAVALCANTI, E.J.C. Análise Exergoeconômica e Exergoambiental. 2016. Ed. Blucher, São Paulo, Brazil, 110 p. 2016.
CAVALCANTI, Eduardo J.C. & Carvalho, MONICA & B. Azevedo, JONATHAN L. Exergoenvironmental results of a eucalyptus biomass-fired power plant. 2019.Energy, Elsevier, vol. 189(C). 2019. DOI: https://doi.org/10.1016/j.energy.2019.116188
ÇENGEL, Y. A., BOLES, M. A. Termodinâmica. 2007. Ed. McGrawhill, São Paulo, Brazil, 500 p. 2007.
COSTA, V. A. F., TARELHO, L. A. C., SOBRINHO, A. Mass, energy and exergy analysis of a biomass boiler: a portuguese representative case of the pulp and paper industry. 2019. Applied Thermal Engineering, vol. 152, pp. 350-362. doi:10.1016/j.applthermaleng.2019.01.033. 2019. DOI: https://doi.org/10.1016/j.applthermaleng.2019.01.033
DINCER, I. and ÇENGEL, Y. Energy, Entropy and Exergy Concepts and Their Roles in Thermal Engineering Entropy. 2001. Journal Entropy, vol. 3, pp. 116-149. 2001. DOI: https://doi.org/10.3390/e3030116
DINCER, I., ROSEN, M.A. Exergy as a driver for achieving sustainability. 2004. International Journal of Green Energy, vol. 1, 1-19. 2004. DOI: https://doi.org/10.1081/GE-120027881
EL-EMAM, R. S., DINCER, I. Exergy and exergoeconomic analyses and optimization of geothermal
organic Rankine cycle. 2013. Applied Thermal Engineering, vol. 59, pp 435-444. http://dx.doi.org/10.1016/j.applthermaleng.2013.06.005. 2013. DOI: https://doi.org/10.1016/j.applthermaleng.2013.06.005
KOTAS, T.J. The Exergy Method of Thermal Plant Analysis. 1985. London: Anchor Brendon, 296 p. 1985.
LAZZARETTO, A., TSATSARONIS, G. SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems. 2006. Energy, vol. 31, pp. 1257–1289. 2006. DOI: https://doi.org/10.1016/j.energy.2005.03.011
MORAN, M.J., SHAPIRO, H.N., BOETNNER, D.D., MARGARET, B.B. Princípios de Termodinâmica para Engenharia. 2013. Ed. LTC, São Paulo, Brazil, 814 p. 2013.
RAMOS, V. F., PINHEIRO, O. S., FERREIRA da Costa, E., SOUZA da Costa, A. O. A method for exergetic analysis of a real kraft biomass boiler. 2019. Energy, vol. 183, pp. 946-957. doi:10.1016/j.energy.2019.07.001. 2019. DOI: https://doi.org/10.1016/j.energy.2019.07.001
SOUZA, R. M., CAMPOS, J.C.C., SILVA, C.L., MINETTE, L.J., ROSA, H. M. P. Análise Exergoeconômica em uma unidade de geração de vapor de uma empresa siderúrgica. 2019. Trabalho de conclusão de curso, UFV, pp. 50. 2019.
SZARGUT, J., Morris, D., Steward, F. Exergy Analysis of Thermal, Chemical and Metallurgical Processes. 1988. Hemisphere Publishing Corporation, New York. 1988.
TSATSARONIS, G. Definitions and nomenclature in exergy analysis and exergoeconomics. 2007.Energy, vol. 32(4), pp. 249–253. doi:10.1016/j.energy.2006.07.002. 2007. DOI: https://doi.org/10.1016/j.energy.2006.07.002
TSATSARONIS, G., Winhold, M. Exergoeconomic Analysis and Evaluation of Energy-Conversion Plants—I. A New General Methodology. 1985. Energy, vol.10(1), pp 69–80. doi:10.1016/0360-5442(85)90020-9. 1985. DOI: https://doi.org/10.1016/0360-5442(85)90020-9
YOURONG, Li and SHUANGYING, Wu. Exergy-Economic Criteria for Evaluating Heat Exchanger Performance. 2000. J.of Thermal Science, vol. 10, no.3. 2000. DOI: https://doi.org/10.1007/s11630-001-0022-9
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Caio Jahel Schwanz, Júlio Cesar Costa Campos, Antonio Marcos de Oliveira Siqueira, Charles Luiz da Silva, Marlons Lino da Cruz, Luciano Jose Minette
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyrights for articles published in IJIER journals are retained by the authors, with first publication rights granted to the journal. The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author for more visit Copyright & License.
How to Cite
Accepted 2022-08-31
Published 2022-09-01
Most read articles by the same author(s)
- Nayara Vilela Avelar, Ana Augusta Passos Rezende, Antonio Marcos de Oliveira Siqueira, Cláudio Mudadu Silva, Angélica de Cássia Oliveira Carneiro, Computational modeling of biosludge drying , International Journal for Innovation Education and Research: Vol. 9 No. 8 (2021): International Journal for Innovation Education and Research