Identification of Suppliers able to provide Hydraulic Fracturing Services in Unconventional Reservoirs and Risks associated with the Construction of these Wells

Authors

DOI:

https://doi.org/10.31686/ijier.vol10.iss3.3528

Keywords:

hydraulic fracturing, fracking, unconventional resources, shale gas, risk management

Abstract

According to the international agencies U.S. Energy Information Administration (EIA) and World Energy Council (WEC), Brazil is the 10th country in the world ranking of the largest holders of shale gas reserves, with 245 Tcf (trillion cubic feet) (6.9 Tcm – trillion cubic meters) of natural gas. Due to the low permeability of these formations, the so-called unconventional reservoirs, only become viable if stimulated through horizontal drilling and hydraulic fracturing techniques. These techniques, like any other ones, have associated risks that should be very well managed and mitigated. This article aims to show that the benefits, in terms of fostering the local economy, job creation and energy security, outweigh the risks since they are known and well managed. In addition, suppliers present in country, able to provide these services properly, with numerous successful cases around the world, are identified in the article as well.

Downloads

Download data is not yet available.

Author Biographies

  • Henrique Toby Ribeiro, Universidade de São Paulo

    Instituto de Energia e Ambiente

  • Hirdan Katarina de Medeiros Costa, Universidade de São Paulo

    Instituto de Energia e Ambiente

  • Thiago Luis Felipe Brito, Universidade de São Paulo

    Escola de Artes, Ciências e Humanidades

  • Edmilson Moutinho dos Santos, Universidade de São Paulo

    Instituto de Energia e Ambiente

References

ADGATE, J. L.; GOLDSTEIN, B. D.; MCKENZIE, L. M. 2014. Potential public health hazards, exposures and health effects from unconventional natural gas development. Environmental Science and Technology, v. 48, n. 15, p. 8307–8320, 2014. DOI: https://doi.org/10.1021/es404621d

ANP. Agência Nacional de Petróleo, Gás Natural e Biocombustíveis. 2014. Resolução ANP nº 21/2014. https://www.legisweb.com.br/legislacao/?id=269028

ANP. Agência Nacional de Petróleo, Gás Natural e Biocombustíveis. 2021. Boletim da Produção. https://www.gov.br/anp/pt-br/centrais-de-conteudo/publicacoes/boletins-anp/bmp/2021/2021-03-boletim-pdf.pdf

ATKINSON, G. M. et al. 2016. Hydraulic fracturing and seismicity in the western Canada sedimentary basin. Seismological Research Letters, v. 87, n. 3, p. 631–647, 2016. DOI: https://doi.org/10.1785/0220150263

BAO, X.; EATON, D. W. 2106. Fault activation by hydraulic fracturing in western Canada. Science, v. 354, n. 6318, p. 1406–1409, 2016. DOI: https://doi.org/10.1126/science.aag2583

BC OIL AND GAS COMMISION. 2012. Investigation of Observed Seismicity in the Horn River Basin. [s.l: s.n.].

DOSER, D. I.; BAKER, M. R.; MASON, D. B. 1991. Seismicity in the War-Wink gas field, Delaware Basin, west Texas, and its relationship to petroleum production. Bulletin - Seismological Society of America, v. 81, n. 3, p. 971–986, 1991.

EIA. U.S. Energy Information Administration. 2013. EIA/ARI World Shale Gas and Shale Oil Resources Assessment. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States. Washington, DC: U.S. Department of Energy, p. 6-7.

EPE. Empresa de Pesquisa Energética. 2019. Zoneamento Nacional de Recursos de Óleo e Gás. Ciclo 2017-2019. Brasília: MME/EPE, 2019, p 604. http://epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/zoneamento-nacional-de-recursos-de-oleo-e-gas-2017-2019

FGV ENERGIA, 2021. O desenvolvimento da exploração de recursos não convencionais no Brasil: novas óticas de desenvolvimento local. https://fgvenergia.fgv.br/sites/fgvenergia.fgv.br/files/caderno_desenvolvimento_da_exploracao_de_recursos_nao-convencionais_no_brasil.pdf

FRIBERG, P. A.; BESANA-OSTMAN, G. M.; DRICKER, I. 2014. Characterization of an earthquake sequence triggered by hydraulic fracturing in Harrison County, Ohio. Seismological Research Letters, v. 85, n. 6, p. 1295–1307, 2014. DOI: https://doi.org/10.1785/0220140127

GILLELAND, K. 2015. Microseismic Monitoring. http://factpages.npd.no/factpages/

HEALY, J. H. et al. 1968. The Denver earthquakes. Science, v. 161, n. 3848, p. 1301–1310, 1968. DOI: https://doi.org/10.1126/science.161.3848.1301

HOLLAND, A. A. 2013. Earthquakes triggered by hydraulic fracturing in south-central Oklahoma. Bulletin of the Seismological Society of America, v. 103, n. 3, p. 1784–1792, 2013. DOI: https://doi.org/10.1785/0120120109

HORTON, S. 2012. Disposal of Hydrofracking Waste Fluid by Injection into subsurface.pdf. Seismological Research Letters, v. 83, n. 2, p. 250–260, 2012. DOI: https://doi.org/10.1785/gssrl.83.2.250

INGRAFFE, A. R. et al. 2014. Assessment and risk analysis of casing and cement impairment in oil and gas wells in Pennsylvania, 2000-2012. Proceedings of the National Academy of Sciences of the United States of America, v. 111, n. 30, p. 10955–10960, 2014 DOI: https://doi.org/10.1073/pnas.1323422111

KIM, W. Y. 2013. Induced seismicity associated with fluid injection into a deep well in Youngstown, Ohio. Journal of Geophysical Research: Solid Earth, v. 118, n. 7, p. 3506–3518, 2013. DOI: https://doi.org/10.1002/jgrb.50247

KING, G. E.; KING, D. E. 2013. Environmental risk arising from well construction failure: Difference between barrier and well failure, and estimates of failure frequency across common well types, locations and well age. Proceedings - SPE Annual Technical Conference and Exhibition, v. 2, n. October, p. 885–913, 2013 DOI: https://doi.org/10.2118/166142-MS

LUND SNEE, J. E.; ZOBACK, M. D. 2016. State of stress in Texas: Implications for induced seismicity. Geophysical Research Letters, v. 43, n. 19, p. 10,208-10,214, 2016. DOI: https://doi.org/10.1002/2016GL070974

MURRAY, K. E. 2013. State-scale perspective on water use and production associated with oil and gas operations. Oklahoma, U.S. Environmental Science and Technology, v. 47, n. 9, p. 4918–4925, 2013. DOI: https://doi.org/10.1021/es4000593

NICHOLSON, C.; WESSON, R. L. 1992. Triggered Earthquakes and Deep Well Activities. Pure and Applied Geophysics, v. 139, n. 3, p. 561–578, 1992. DOI: https://doi.org/10.1007/BF00879951

PENNINGTON, W. D. et al. 1986. The Evolution of Seismic Barriers and Asperities Caused by the Depressuring of Fault Planes in Oil and Gas Fields of South Texas. v. 76, n. 4, p. 939–948, 1986.

RUBINSTEIN, J. L.; MAHANI, A. B. 2015. Myths and facts on wastewater injection, hydraulic fracturing, enhanced oil recovery, and induced seismicity. Seismological Research Letters, v. 86, n. 4, p. 1060–1067, 2015. DOI: https://doi.org/10.1785/0220150067

SKOUMAL, R. J.; BRUDZINSKI, M. R.; CURRIE, B. S. 2015. Earthquakes induced by hydraulic fracturing in Poland township, Ohio. Bulletin of the Seismological Society of America, v. 105, n. 1, p. 189–197, 2015. DOI: https://doi.org/10.1785/0120140168

WALSH, F. R. I. et al. 2017. FSP 1.0: A Program for Probabilistic Estimation of Fault Slip Potential Resulting from Fluid Injection. n. March, p. 46, 2017

WALSH, F. R.; ZOBACK, M. D. 2105. Oklahoma’s recent earthquakes and saltwater disposal. Science Advances, v. 1, n. 5, p. 1–9, 2015. DOI: https://doi.org/10.1126/sciadv.1500195

WALSH, F. R.; ZOBACK, M. D. 2016. Probabilistic assessment of potential fault slip related to injection induced earthquakes: Application to north-central Oklahoma, USA. Geology, v. 44, n. 12, p. 991–994, 2016. DOI: https://doi.org/10.1130/G38275.1

WARPINSKI, N. 2009. Microseismic monitoring: Inside and out. JPT, Journal of Petroleum Technology, v. 61, n. 11, p. 80–85, 2009. DOI: https://doi.org/10.2118/118537-JPT

WEC. World Energy Council. 2016. World Energy Resources. Unconventional gas, a global phenomenon. London: World Energy Council, 2016. p. 56.

YUAN, J. et al. 2016. Technical difficulties in the cementing of horizontal shale gas wells in Weiyuan block and the countermeasures. Natural Gas Industry B, v. 3, n. 3, p. 260–268, 2016. DOI: https://doi.org/10.1016/j.ngib.2016.05.011

ZOBACK, M. D.; KOHLI, A. H. 2019a. Environmental Impacts and Induced Seismicity. Unconventional Reservoir Geomechanics, p. 377–405, 2019a. DOI: https://doi.org/10.1017/9781316091869.014

ZOBACK, M. D.; KOHLI, A. H. 2019b. Managing the Risk of Injection Induced Seismicity. In: Unconventional Reservoir Geomechanics: Shale Gas, Tight Oil, and Induced Seismicity. [s.l.] Cambridge University Press, p. 407–441, 2019b. DOI: https://doi.org/10.1017/9781316091869

Downloads

Published

2022-03-01

How to Cite

Ribeiro, H. T., Costa, H. K. de M. ., Brito, T. L. F., & Moutinho dos Santos, E. (2022). Identification of Suppliers able to provide Hydraulic Fracturing Services in Unconventional Reservoirs and Risks associated with the Construction of these Wells. International Journal for Innovation Education and Research, 10(3), 59-83. https://doi.org/10.31686/ijier.vol10.iss3.3528
Received 2021-10-07
Accepted 2021-11-03
Published 2022-03-01