A new multi-agent approach for generating feedbacks base on Multiple Choice Questions
DOI:
https://doi.org/10.31686/ijier.vol10.iss1.3608Keywords:
Evaluation, Feedback, MCQ, Exercise, Agent, Multi Agent SystemsAbstract
Most intelligent tutorial systems promote the learning and resolution of exercises based on feedback in the form of advice, remarks, explanation…To always remain in self-assessment, our approach offers a new type of feedback in the form of multiple-choice questions applied in the field of algorithms (language c, java ...) dedicated for beginners in programming.
The approach is based on the multi-agent model to have interaction between learners without the help of the teacher. There are three types of agents in our work, there is the learner agent who represents the learner, there is also the feedback agent who sends the MCQs to the learners who made mistakes and finally, the controller agent feeds the base of multiple-choice questions based on feedback from learners.
The controlling agent compares the instructions of the learners with the instructions of the correct model
based on the AST abstract syntax tree and detects errors which will be proposed as erroneous items (distractors) for the learners. We can say that this type of feedback is not direct like other work (advice, comments, explanation ...) but we always remain in the evaluation: MCQ, exercise ...
As perspectives, we will focus mainly on the classification of LO learning objects in the form of an ontology to facilitate the use of data and the generation of multiple-choice questions at different levels. And also, we aim to develop a suitable platform which allows to define the agents and the messages to be exchanged between them to set up our system.
References
El Hage, F., & Nahed, R., Apprentissage par Exploitation de l’Erreur et à Distance (AEED). Pour une évaluation formative et un feedback interactif et digital. Évaluer. Journal international de recherche en éducation et formation, Numéro Hors-série, 1, 2020, pp. 131-142.
Hattie, J.A., & Gan, M., Instruction based on Feedback. In Mayer, R & Alexander, P. (Eds).
Handbook of Research on Learning and Instruction, New York: Routledge, 2011. pp. 249-271.
Narciss, S., Feedback strategies for interactive learning tasks. In J.M. Spector, M.D. Merrill,
J.J.G. van Merrienboer, & M.P. Driscoll (Eds.), Handbook of Research on Educational Communications, and Technology (3rd ). Mahaw, NJ: Lawrence Erlbaum Associates. 2008, pp. 125-144.
Shute, V.J. Focus on formative feedback. Review of Educational Research, 78, 2008, 153-189. DOI: https://doi.org/10.3102/0034654307313795
Hattie, J., & Timperley, H. The power of feedback. Review of Educational Research, 77 (1), 2007, 81-112. DOI: https://doi.org/10.3102/003465430298487
Melis, E., &Siekmann, J. : ActiveMath: Un système de tutorat intelligent pour les mathématiques. En Intelligence Artificielle et Soft Computing-ICAISC. Springer Berlin Heidelberg, 2004.
Heeren, B., Jeuring, J., Van Leeuwen, A., &Gerdes, A. : Specifying strategies for
exercises. In Intelligent Computer Mathematics. Springer Berlin Heidelberg, 2008.
Gavota, M., Bétrancourt, M. & Schneider, D. (2010). Writing and commenting on professional procedures. In K. Gomez, L. Lyons, & J. Radinsky (Eds.) Learning in the Disciplines: Proceedings of the 9th International Conference of the Learning Sciences (ICLS 2010) - Volume 1, Full Papers, pp 683-689. International Society of the Learning Sciences: Chicago IL.
Ortoleva, G., Bétrancourt, M., et Morand, S., Entre personnalisation et contraintes collectives: Une démarche centrée utilisateur pour la mise en place d’un livret numérique de Suivi Pédagogique. Sciences et Technologies de l'Information et de la Communication pour l'Éducation et la Formation, 2012, vol. 19, no 1, p. 233-251. DOI: https://doi.org/10.3406/stice.2012.1046
F. Silvestre, P. Vidal, J. Broisin. Qualification semi-automatique de contributions d’apprenants pour l’intégration de feedbacks de qualité dans les tests en ligne. 7ème Conférence sur les Environnements Informatiques pour l’Apprentissage Humain (EIAH 2015), Agadir, Maroc, Jun 2015, pp.210-221.
Silvestre, F., Vidal, P., and Broisin, J.: Génération semi-automatique de tests d’autoévaluation pourvus de feedback résultant de la prise de notes collaborative, conférence des Technologies de l'Information et de la Communication pour l'Enseignement, 2014.
Sabeima, Massra, LAMOLLE, Myriam, et NANNE, Mohamedade. Tour d'horizon des systèmes d'apprentissage adaptatifs et collaboratifs. 2021.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Imane Lmati
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyrights for articles published in IJIER journals are retained by the authors, with first publication rights granted to the journal. The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author for more visit Copyright & License.
How to Cite
Accepted 2021-12-31
Published 2022-01-01
Most read articles by the same author(s)
- Imane Lmati, A collaborative Mathematics Learning Using Differentiated Pedagogy , International Journal for Innovation Education and Research: Vol. 10 No. 1 (2022): International Journal for Innovation Education and Research